
System Administration Guide:
Security Services

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–4557–10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, SunOS, Java, JumpStart, Trusted Solaris, and Solaris are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc. Xylogics product is protected by copyright and licensed to Sun by Xylogics. Xylogics and Annex are
trademarks of Xylogics, Inc., Portions of the software copyright 1996 by the Massachusetts Institute of Technology. All rights reserved.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, SunOS, Java, JumpStart, Trusted Solaris, et Solaris sont des marques
de fabrique ou des marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Le produit de Xylogics est protégé par le copyright
et autorisé au Sun par Xylogics. Xylogics et Annex sont des marques déposées de Xylogics, Inc.; Copyright 1996 des portions du logiciel par
Massachusetts Institute of Technology. Tous droits réservés.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

041209@10536

Contents

Preface 23

Part I Security Overview 27

1 Security Services (Overview) 29
System Security 29
Solaris Cryptographic Services 30
Authentication Services 31
Authentication With Encryption 32
Solaris Auditing 32
Security Policy 33

Part II System, File, and Device Security 35

2 Managing Machine Security (Overview) 37
Enhancements to Machine Security in the Solaris 10 Release 37
Controlling Access to a Computer System 38

Maintaining Physical Security 38
Maintaining Login Control 39

Controlling Access to Devices 44
Device Policy (Overview) 45
Device Allocation (Overview) 46

Controlling Access to Machine Resources 46
Limiting and Monitoring Superuser 46
Configuring Role-Based Access Control to Replace Superuser 47

3

Preventing Unintentional Misuse of Machine Resources 47
Restricting setuid Executable Files 49
Using the Automated Security Enhancement Tool 49
Using the Solaris Security Toolkit 49
Using Solaris Resource Management Features 50
Using Solaris Zones 50
Monitoring Use of Machine Resources 50
Monitoring File Integrity 50

Controlling Access to Files 51
Protecting Files With Encryption 51
Using Access Control Lists 51
Sharing Files Across Machines 52
Restricting root Access to Shared Files 52

Controlling Network Access 52
Network Security Mechanisms 53
Authentication and Authorization for Remote Access 54
Firewall Systems 55
Encryption and Firewall Systems 56

Reporting Security Problems 57

3 Controlling Access to Systems (Tasks) 59

Controlling System Access (Task Map) 59
Securing Logins and Passwords (Task Map) 60
Securing Logins and Passwords 60

� How to Display a User’s Login Status 61
� How to Display Users Without Passwords 62
� How to Temporarily Disable User Logins 62
� How to Monitor Failed Login Attempts 63
� How to Monitor All Failed Login Attempts 64
� How to Create a Dial-Up Password 65
� How to Temporarily Disable Dial-Up Logins 67

Changing the Password Algorithm (Task Map) 67
Changing the Default Algorithm for Password Encryption 68

� How to Specify an Algorithm for Password Encryption 68
� How to Specify a New Password Algorithm for an NIS Domain 69
� How to Specify a New Password Algorithm for an NIS+ Domain 70
� How to Specify a New Password Algorithm for an LDAP Domain 70
� How to Install a Password Encryption Module From a Third Party 71

4 System Administration Guide: Security Services • January 2005

Monitoring and Restricting Superuser (Task Map) 72
Monitoring and Restricting Superuser 72

� How to Monitor Who Is Using the su Command 72
� How to Display Superuser (root) Access Attempts to the Console 73
� How to Prevent Remote Login by Superuser (root) 74

SPARC: Controlling Access to System Hardware (Task Map) 75
Controlling Access to System Hardware 75

� How to Require a Password for Hardware Access 75
� How to Disable a System’s Abort Sequence 76

4 Controlling Access to Devices (Tasks) 77
Configuring Devices (Task Map) 77
Configuring Device Policy (Task Map) 78
Configuring Device Policy 78

� How to View Device Policy 78
� How to Change the Device Policy on an Existing Device 79
� How to Audit Changes in Device Policy 80
� How to Retrieve IP MIB-II Information From a /dev/* Device 81

Managing Device Allocation (Task Map) 81
Managing Device Allocation 82

� How to Make a Device Allocatable 82
� How to Authorize Users to Allocate a Device 83
� How to View Allocation Information About a Device 84
� Forcibly Allocating a Device 84
� Forcibly Deallocating a Device 85
� How to Change Which Devices Can Be Allocated 85
� How to Audit Device Allocation 86

Allocating Devices (Task Map) 87
Allocating Devices 87

� How to Allocate a Device 87
� How to Mount an Allocated Device 88
� How to Deallocate a Device 90

Device Protection (Reference) 91
Device Policy Commands 91
Device Allocation 92

5 Using the Basic Audit Reporting Tool (Tasks) 99
Basic Audit Reporting Tool (Overview) 99

5

BART Features 100
BART Components 100

Using BART (Task Map) 102
Using BART (Tasks) 103

BART Security Considerations 103
� How to Create a Manifest 104
� How to Customize a Manifest 106
� How to Compare Manifests for the Same System Over Time 109
� How to Compare Manifests From a Different System With the Manifest of a
Control System 112
� How to Customize a BART Report by Specifying File Attributes 114
� How to Customize a BART Report by Using a Rules File 115

BART Manifest, Rules File, and Reporting (Reference) 117
BART Manifest File Format 117
BART Rules File Format 118
BART Reporting 119

6 Controlling Access to Files (Tasks) 123

Using UNIX Permissions to Protect Files 123
Commands for Viewing and Securing Files 123
File and Directory Ownership 124
UNIX File Permissions 125
Special File Permissions (setuid, setgid and Sticky Bit) 125
Default umask Value 127
File Permission Modes 128

Using Access Control Lists to Protect Files 130
ACL Entries for Files 131
ACL Entries for Directories 131
Commands for Administering ACLs 132

Preventing Executable Files From Compromising Security 132
Protecting Files (Task Map) 133
Protecting Files With UNIX Permissions (Task Map) 134

� How to Display File Information 134
� How to Change the Owner of a File 135
� How to Change Group Ownership of a File 136
� How to Change File Permissions in Symbolic Mode 137
� How to Change File Permissions in Absolute Mode 137
� How to Change Special File Permissions in Absolute Mode 139

6 System Administration Guide: Security Services • January 2005

Protecting Files With ACLs (Task Map) 140
� How to Check if a File Has an ACL 140
� How to Add ACL Entries to a File 141
� How to Copy an ACL 142
� How to Change ACL Entries on a File 143
� How to Delete ACL Entries From a File 143
� How to Display ACL Entries for a File 144

Protecting Against Programs With Security Risk (Task Map) 145
� How to Find Files With Special File Permissions 146
� How to Disable Programs From Using Executable Stacks 147

7 Using the Automated Security Enhancement Tool (Tasks) 149

Automated Security Enhancement Tool (ASET) 149
ASET Security Levels 150
ASET Task List 151
ASET Execution Log 154
ASET Reports 154
ASET Master Files 157
ASET Environment File (asetenv) 158
Configuring ASET 158
Restoring System Files Modified by ASET 161
Network Operation With the NFS System 161
ASET Environment Variables 162
ASET File Examples 165

Running ASET (Task Map) 167
� How to Run ASET Interactively 167
� How to Run ASET Periodically 168
� How to Stop Running ASET Periodically 169
� How to Collect ASET Reports on a Server 169

Troubleshooting ASET Problems 171
ASET Error Messages 171

Part III Roles, Rights Profiles, and Privileges 175

8 Using Roles and Privileges (Overview) 177

Role-Based Access Control (Overview) 177
RBAC: An Alternative to the Superuser Model 177

7

Solaris RBAC Elements and Basic Concepts 179
RBAC Authorizations 182
Authorizations and Privileges 182
Privileged Applications and RBAC 182
RBAC Rights Profiles 184
RBAC Roles 184
Profile Shell in RBAC 185
Name Service Scope and RBAC 185
Security Considerations When Directly Assigning Security Attributes 185

Privileges (Overview) 186
Privileges Protect Kernel Processes 186
Privilege Descriptions 187
Administrative Differences on a System With Privileges 188
How Privileges Are Implemented 189
How Processes Get Privileges 191
Assigning Privileges 191
Privileges and Devices 193
Privileges and Debugging 193

9 Using Role-Based Access Control (Tasks) 195

Using RBAC (Task Map) 195
Configuring RBAC (Task Map) 196
Configuring RBAC 197

� How to Plan Your RBAC Implementation 197
� How to Create and Assign a Role By Using the GUI 199
� How to Create a Role From the Command Line 202
� How to Assign a Role to a Local User 204
� How to Audit Roles 206
� How to Make root User Into a Role 206

Using Roles (Task Map) 208
Using Roles 209

� How to Assume a Role in a Terminal Window 209
� How to Assume a Role in the Solaris Management Console 211

Managing RBAC (Task Map) 212
Managing RBAC 213

� How to Change the Properties of a Role 213
� How to Create or Change a Rights Profile 215
� How to Change the RBAC Properties of a User 218

8 System Administration Guide: Security Services • January 2005

� How to Add RBAC Properties to Legacy Applications 220

10 Role-Based Access Control (Reference) 223

Contents of Rights Profiles 223

Primary Administrator Rights Profile 224

System Administrator Rights Profile 224

Operator Rights Profile 225

Printer Management Rights Profile 225

Basic Solaris User Rights Profile 226

All Rights Profile 227

Order of Rights Profiles 227

Viewing the Contents of Rights Profiles 227

Authorization Naming and Delegation 228

Authorization Naming Conventions 228

Example of Authorization Granularity 228

Delegation Authority in Authorizations 228

Databases That Support RBAC 229

RBAC Database Relationships 229

RBAC Databases and the Name Service 230

user_attr Database 231

auth_attr Database 232

prof_attr Database 233

exec_attr Database 234

policy.conf File 235

RBAC Commands 236

Commands That Manage RBAC 236

Commands That Require Authorizations 237

11 Privileges (Tasks) 239

Managing and Using Privileges (Task Map) 239

Managing Privileges (Task Map) 240

Managing Privileges 240

� How to Determine the Privileges on a Process 241

� How to Determine Which Privileges a Program Requires 242

� How to Add Privileges to a Command 244

� How to Assign Privileges to a User or Role 244

� How to Limit a User’s or Role’s Privileges 245

9

� How to Run a Shell Script With Privileged Commands 247
Determining Your Privileges (Task Map) 248
Determining Your Assigned Privileges 248

� How to Determine the Privileges That You Have Been Directly Assigned 248
� How to Determine the Privileged Commands That You Can Run 250
� How to Determine the Privileged Commands That a Role Can Run 251

12 Privileges (Reference) 255
Administrative Commands for Handling Privileges 255
Files With Privilege Information 256
Privileges and Auditing 257
Prevention of Privilege Escalation 258
Legacy Applications and the Privilege Model 259

Part IV Solaris Cryptographic Services 261

13 Solaris Cryptographic Framework (Overview) 263
Solaris Cryptographic Framework 263
Terminology in the Solaris Cryptographic Framework 264
Scope of the Solaris Cryptographic Framework 265
Administrative Commands in the Solaris Cryptographic Framework 266
User-Level Commands in the Solaris Cryptographic Framework 266

Binary Signatures for Third-Party Software 267
Plugins to the Solaris Cryptographic Framework 267
Cryptographic Services and Zones 268

14 Solaris Cryptographic Framework (Tasks) 269
Using the Cryptographic Framework (Task Map) 269
Protecting Files With the Solaris Cryptographic Framework (Task Map) 270
Protecting Files With the Solaris Cryptographic Framework 270

� How to Generate a Symmetric Key 270
� How to Compute a Digest of a File 272
� How to Compute a MAC of a File 273
� How to Encrypt and Decrypt a File 275

Administering the Cryptographic Framework (Task Map) 277
Administering the Cryptographic Framework 278

� How to List Available Providers 278

10 System Administration Guide: Security Services • January 2005

� How to Add a Software Provider 280
� How to Prevent the Use of a User-Level Mechanism 282
� How to Prevent the Use of a Kernel Software Provider 284
� How to List Hardware Providers 286
� How to Disable Hardware Provider Mechanisms and Features 287
� How to Refresh or Restart All Cryptographic Services 288

Part V Authentication Services and Secure Communication 291

15 Using Authentication Services (Tasks) 293

Overview of Secure RPC 293
NFS Services and Secure RPC 293
DES Encryption With Secure NFS 294
Kerberos Authentication 294
Diffie-Hellman Authentication 294

Administering Secure RPC (Task Map) 298
Administering Authentication With Secure RPC 298

� How to Restart the Secure RPC Keyserver 299
� How to Set Up a Diffie-Hellman Key for an NIS+ Host 299
� How to Set Up a Diffie-Hellman Key for an NIS+ User 300
� How to Set Up a Diffie-Hellman Key for an NIS Host 301
� How to Set Up a Diffie-Hellman Key for an NIS User 302
� How to Share NFS Files With Diffie-Hellman Authentication 303

16 Using PAM 305

PAM (Overview) 305
Benefits of Using PAM 305
PAM Components 306
Changes to PAM for the Solaris 10 Release 307

PAM (Tasks) 308
PAM (Task Map) 308
Planning for Your PAM Implementation 309
� How to Add a PAM Module 310
� How to Prevent Rhost-Style Access From Remote Systems With PAM 310
� How to Log PAM Error Reports 311

PAM Configuration File (Reference) 311
PAM Configuration File Syntax 311

11

Service Names for PAM 312

PAM Module Types 312

PAM Control Flags 312

PAM Modules 314

Examples From the Generic pam.conf File 314

17 Using SASL 317

SASL (Overview) 317

SASL (Reference) 318

SASL Plug-ins 318

SASL Environment Variable 319

SASL Options 319

18 Using Solaris Secure Shell (Tasks) 321

Solaris Secure Shell (Overview) 321

Solaris Secure Shell Authentication 322

Solaris Secure Shell in the Enterprise 324

Solaris Secure Shell Enhancements in the Solaris 10 Release 324

Solaris Secure Shell (Task Map) 325

Configuring Solaris Secure Shell (Task Map) 326

Configuring Solaris Secure Shell 326

� How to Set Up Host-Based Authentication for Solaris Secure Shell 326

� How to Enable Solaris Secure Shell v1 328

� How to Configure Port Forwarding in Solaris Secure Shell 329

Using Solaris Secure Shell (Task Map) 330

Using Solaris Secure Shell 331

� How to Generate a Public/Private Key Pair for Use With Solaris Secure
Shell 331

� How to Change the Passphrase for a Solaris Secure Shell Private Key 333

� How to Log In to a Remote Host With Solaris Secure Shell 334

� How to Reduce Password Prompts in Solaris Secure Shell 335

� How to Set Up the ssh-agent Command to Run Automatically 336

� How to Use Port Forwarding in Solaris Secure Shell 337

� How to Copy Files With Solaris Secure Shell 338

� How to Set Up Default Connections to Hosts Outside a Firewall 339

12 System Administration Guide: Security Services • January 2005

19 Solaris Secure Shell (Reference) 343

A Typical Solaris Secure Shell Session 343

Session Characteristics in Solaris Secure Shell 344

Authentication and Key Exchange in Solaris Secure Shell 344

Command Execution and Data Forwarding in Solaris Secure Shell 345

Client and Server Configuration in Solaris Secure Shell 346

Client Configuration in Solaris Secure Shell 346

Server Configuration in Solaris Secure Shell 346

Keywords in Solaris Secure Shell 347

Host-Specific Parameters in Solaris Secure Shell 350

Solaris Secure Shell and Login Environment Variables 351

Maintaining Known Hosts in Solaris Secure Shell 352

Solaris Secure Shell Packages and Initialization 352

Solaris Secure Shell Files 353

Solaris Secure Shell Commands 355

Part VI Kerberos Service 359

20 Introduction to the Kerberos Service 361

What Is the Kerberos Service? 361

How the Kerberos Service Works 362

Initial Authentication: the Ticket-Granting Ticket 363

Subsequent Kerberos Authentications 365

The Kerberos Remote Applications 366

Kerberos Principals 366

Kerberos Realms 367

Kerberos Security Services 369

The Components of Various Kerberos Releases 370

Kerberos Components 370

Kerberos Enhancements in the Solaris 10 Release 371

Kerberos Components in the Solaris 9 Release 373

SEAM 1.0.2 Components 374

Kerberos Components in the Solaris 8 Release 374

SEAM 1.0.1 Components 374

SEAM 1.0 Components 375

13

21 Planning for the Kerberos Service 377

Why Plan for Kerberos Deployments? 377
Kerberos Realms 378

Realm Names 378
Number of Realms 378
Realm Hierarchy 379

Mapping Host Names Onto Realms 379
Client and Service Principal Names 379
Ports for the KDC and Admin Services 380
The Number of Slave KDCs 380
Mapping GSS Credentials to UNIX Credentials 381
Automatic User Migration to a Kerberos Realm 382
Which Database Propagation System to Use 382
Clock Synchronization Within a Realm 383
Client Installation Options 383
Kerberos Encryption Types 383
Online Help URL in the SEAM Administration Tool 384

22 Configuring the Kerberos Service (Tasks) 385

Configuring the Kerberos Service (Task Map) 385
Configuring Additional Kerberos Services (Task Map) 386
Configuring KDC Servers 387

� How to Configure a Master KDC 387
� How to Configure a Slave KDC 392

Configuring Cross-Realm Authentication 396
� How to Establish Hierarchical Cross-Realm Authentication 397
� How to Establish Direct Cross-Realm Authentication 398

Configuring Kerberos Network Application Servers 399
� How to Configure a Kerberos Network Application Server 399

Configuring Kerberos NFS Servers 401
� How to Configure Kerberos NFS Servers 401
� How to Create a Credential Table 403
� How to Add a Single Entry to the Credential Table 403
� How to Provide Credential Mapping Between Realms 404
� How to Set Up a Secure NFS Environment With Multiple Kerberos Security
Modes 405

Configuring Kerberos Clients 407
Configuring Kerberos Clients (Task Map) 407

14 System Administration Guide: Security Services • January 2005

� How to Create a Kerberos Client Installation Profile 407
� How to Automatically Configure a Kerberos Client 408
� How to Interactively Configure a Kerberos Client 409
� How to Manually Configure a Kerberos Client 410
� How to Access a Kerberos Protected NFS File System as the root User 415
� Configuring Automatic Migration of Users in a Kerberos Realm 416

Synchronizing Clocks Between KDCs and Kerberos Clients 418
Swapping a Master KDC and a Slave KDC 419

� How to Configure a Swappable Slave KDC 420
� How to Swap a Master KDC and a Slave KDC 420

Administering the Kerberos Database 424
Backing Up and Propagating the Kerberos Database 424
� How to Back Up the Kerberos Database 426
� How to Restore the Kerberos Database 427
� How to Reload a Kerberos Database 428
� How to Reconfigure a Master KDC to Use Incremental Propagation 428
� How to Reconfigure a Slave KDC to Use Incremental Propagation 430
� How to Configure a Slave KDC to Use Full Propagation 431
� How to Verify That the KDC Servers Are Synchronized 435
� How to Manually Propagate the Kerberos Database to the Slave KDCs 436
Setting Up Parallel Propagation 437
Configuration Steps for Setting Up Parallel Propagation 437
Administering the Stash File 438
� How to Remove a Stash File 439

Increasing Security on Kerberos Servers 439
� How to Enable Only Kerberized Applications 439
� How to Restrict Access to KDC Servers 440

23 Kerberos Error Messages and Troubleshooting 441

Kerberos Error Messages 441
SEAM Administration Tool Error Messages 441
Common Kerberos Error Messages (A-M) 442
Common Kerberos Error Messages (N-Z) 449

Kerberos Troubleshooting 453
Problems With the Format of the krb5.conf File 453
Problems Propagating the Kerberos Database 453
Problems Mounting a Kerberized NFS File System 454
Problems Authenticating as root 454

15

Observing Mapping from GSS Credentials to UNIX Credentials 455

24 Administering Kerberos Principals and Policies (Tasks) 457

Ways to Administer Kerberos Principals and Policies 457
SEAM Administration Tool 458

Command-Line Equivalents of the SEAM Tool 459
The Only File Modified by the SEAM Tool 459
Print and Online Help Features of the SEAM Tool 459
Working With Large Lists in the SEAM Tool 460
� How to Start the SEAM Tool 461

Administering Kerberos Principals 462
Administering Kerberos Principals (Task Map) 463
Automating the Creation of New Kerberos Principals 463
� How to View the List of Kerberos Principals 464
� How to View a Kerberos Principal’s Attributes 466
� How to Create a New Kerberos Principal 468
� How to Duplicate a Kerberos Principal 470
� How to Modify a Kerberos Principal 470
� How to Delete a Kerberos Principal 472
� How to Set Up Defaults for Creating New Kerberos Principals 472
� How to Modify the Kerberos Administration Privileges 473

Administering Kerberos Policies 475
Administering Kerberos Policies (Task Map) 475
� How to View the List of Kerberos Policies 475
� How to View a Kerberos Policy’s Attributes 477
� How to Create a New Kerberos Policy 479
� How to Duplicate a Kerberos Policy 481
� How to Modify a Kerberos Policy 481
� How to Delete a Kerberos Policy 482

SEAM Tool Reference 483
SEAM Tool Panel Descriptions 483
Using the SEAM Tool With Limited Kerberos Administration Privileges 486

Administering Keytab Files 487
Administering Keytab Files (Task Map) 488
� How to Add a Kerberos Service Principal to a Keytab File 489
� How to Remove a Service Principal From a Keytab File 491
� How to Display the Keylist (Principals) in a Keytab File 492
� How to Temporarily Disable Authentication for a Service on a Host 493

16 System Administration Guide: Security Services • January 2005

25 Using Kerberos Applications (Tasks) 495

Kerberos Ticket Management 495
Do You Need to Worry About Tickets? 495
Creating a Kerberos Ticket 496
Viewing Kerberos Tickets 497
Destroying Kerberos Tickets 498

Kerberos Password Management 499
Advice on Choosing a Password 499
Changing Your Password 499
Granting Access to Your Account 502

Kerberos User Commands 503
Overview of Kerberized Commands 504
Forwarding Kerberos Tickets 506
Examples — Using Kerberized Commands 508

26 The Kerberos Service (Reference) 511

Kerberos Files 511
Kerberos Commands 513
Kerberos Daemons 513
Kerberos Terminology 514

Kerberos-Specific Terminology 514
Authentication-Specific Terminology 515
Types of Tickets 516

How the Kerberos Authentication System Works 520
Gaining Access to a Service Using Kerberos 520

Obtaining a Credential for the Ticket-Granting Service 520
Obtaining a Credential for a Server 521
Obtaining Access to a Specific Service 522

Using Kerberos Encryption Types 523
Using the gsscred Table 525
Notable Differences Between Solaris Kerberos and MIT Kerberos 526

Part VII Solaris Auditing 527

27 Solaris Auditing (Overview) 529

What Is Auditing? 529
How Does Auditing Work? 530

17

How Is Auditing Related to Security? 531

Audit Terminology and Concepts 532

Audit Events 533

Audit Classes and Preselection 534

Audit Records and Audit Tokens 535

Audit Files 535

Audit Storage 537

Examining the Audit Trail 537

Solaris Auditing Enhancements in the Solaris 10 Release 537

28 Planning for Solaris Auditing 539

Planning Solaris Auditing (Task Map) 539

Planning Solaris Auditing (Tasks) 540

� How to Plan Auditing in Zones 540

� How to Plan Storage for Audit Records 541

� How to Plan Who and What to Audit 542

Determining Audit Policy 543

Controlling Auditing Costs 546

Cost of Increased Processing Time of Audit Data 546

Cost of Analysis of Audit Data 546

Cost of Storage of Audit Data 546

Auditing Efficiently 547

29 Managing Solaris Auditing (Tasks) 549

Solaris Auditing (Task Map) 549

Configuring Audit Files (Task Map) 550

Configuring Audit Files 550

� How to Modify the audit_control File 551

� How to Configure syslog Audit Logs 553

� How to Change a User’s Audit Characteristics 555

� How to Add an Audit Class 557

� How to Change an Audit Event’s Class Membership 557

Configuring and Enabling the Auditing Service (Task Map) 559

Configuring and Enabling the Auditing Service 560

� How to Create Partitions for Audit Files 560

� How to Configure the audit_warn Email Alias 562

� How to Configure Audit Policy 563

18 System Administration Guide: Security Services • January 2005

� How to Enable Auditing 566
� How to Disable Auditing 567
� How to Update the Auditing Service 568

Managing Audit Records (Task Map) 569
Managing Audit Records 570

� How to Display Audit Record Formats 570
� How to Merge Audit Files From the Audit Trail 572
� How to Select Audit Events From the Audit Trail 574
� How to View the Contents of Binary Audit Files 576
� How to Clean Up a not_terminated Audit File 577
� How to Prevent Audit Trail Overflow 578

30 Solaris Auditing (Reference) 581

Audit Commands 581
auditd Daemon 582
audit Command 582
bsmrecord Command 583
auditreduce Command 583
praudit Command 585
auditconfig Command 586

Files Used in the Auditing Service 586
system File 587
syslog.conf File 587
audit_class File 587
audit_control File 587
audit_event File 589
audit_startup Script 589
audit_user Database 589
audit_warn Script 590
bsmconv Script 591

Rights Profiles for Administering Auditing 592
Auditing and Solaris Zones 592
Audit Classes 593

Definitions of Audit Classes 593
Audit Class Syntax 595

Audit Policy 596
Process Audit Characteristics 596
Audit Trail 597

19

Conventions for Binary Audit File Names 597

Binary Audit File Names 598

Binary Audit File Timestamps 598

Audit Record Structure 598

Audit Record Analysis 599

Audit Token Formats 600

acl Token 601

arbitrary Token (Obsolete) 601

arg Token 602

attribute Token 603

cmd Token 603

exec_args Token 604

exec_env Token 604

exit Token (Obsolete) 604

file Token 605

group Token (Obsolete) 605

groups Token 605

header Token 606

in_addr Token 606

ip Token (Obsolete) 607

ipc Token 607

ipc_perm Token 608

iport Token 608

opaque Token (Obsolete) 608

path Token 609

path_attr Token 609

privilege Token 610

process Token 610

return Token 611

sequence Token 612

socket Token 612

subject Token 613

text Token 615

trailer Token 615

uauth Token 615

zonename Token 616

20 System Administration Guide: Security Services • January 2005

Glossary 617

Index 631

21

22 System Administration Guide: Security Services • January 2005

Preface

System Administration Guide: Security Services is part of a multivolume set that covers a
significant part of the Solaris™ Operating System administration information. This
book assumes that you have already installed the SunOS™ 5.10 operating system, and
you have set up any networking software that you plan to use. The SunOS 5.10
operating system is part of the Solaris 10 product family, which includes many
features, such as the Solaris Common Desktop Environment (CDE).

Note – This Solaris release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T.
The supported systems appear in the Solaris 10 Hardware Compatibility List at
http://www.sun.com/bigadmin/hcl. This document cites any implementation
differences between the platform types.

In this document, the term “x86” refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product families.
For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book
This book is intended for anyone who is responsible for administering one or more
systems that run the Solaris 10 release. To use this book, you should have more than
two years of UNIX® system administration experience. Attending training courses in
UNIX system administration might be helpful.

23

http://www.sun.com/bigadmin/hcl

How the System Administration
Volumes Are Organized
Here is a list of the topics that are covered by the volumes of the System
Administration Guides.

Book Title Topics

System Administration Guide: Basic Administration User accounts and groups, server and client support,
shutting down and booting a system, managing
services, and managing software (packages and
patches)

System Administration Guide: Advanced Administration Printing services, terminals and modems, system
resources (disk quotas, accounting, and crontabs),
system processes, and troubleshooting Solaris software
problems

System Administration Guide: Devices and File Systems Removable media, disks and devices, file systems, and
backing up and restoring data

System Administration Guide: IP Services TCP/IP network administration, IPv4 and IPv6 address
administration, DHCP, IPsec, IKE, Solaris IP filter,
Mobile IP, IP network multipathing (IPMP), and IPQoS

System Administration Guide: Naming and Directory
Services (DNS, NIS, and LDAP)

DNS, NIS, and LDAP naming and directory services,
including transitioning from NIS to LDAP and
transitioning from NIS+ to LDAP

System Administration Guide: Naming and Directory
Services (NIS+)

NIS+ naming and directory services

System Administration Guide: Network Services Web cache servers, time-related services, network file
systems (NFS and Autofs), mail, SLP, and PPP

System Administration Guide: Security Services Auditing, device management, file security, BART,
Kerberos services, PAM, Solaris cryptographic
framework, privileges, RBAC, SASL, and Solaris Secure
Shell

System Administration Guide: Solaris Containers—Resource
Management and Solaris Zones

Resource management topics projects and tasks,
extended accounting, resource controls, fair share
scheduler (FSS), physical memory control using the
resource capping daemon (rcapd), and dynamic
resource pools; virtualization using Solaris Zones
software partitioning technology

24 System Administration Guide: Security Services • January 2005

Related Third-Party Web Site References
Third party URLs are referenced in this document and provide additional, related
information.

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content, goods,
or services that are available on or through such sites or resources.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

25

http://docs.sun.com
http://docs.sun.com

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized
items appear bold online.]

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

26 System Administration Guide: Security Services • January 2005

PART I Security Overview

This book focuses on the features that enhance security in the Solaris Operating
System. This book is intended for system administrators and users of these security
features. The overview chapter introduces the topics in the book.

27

28 System Administration Guide: Security Services • January 2005

CHAPTER 1

Security Services (Overview)

To maintain the security of the Solaris Operating System (Solaris OS), Solaris software
provides the following features:

� “System Security” on page 29 – The ability to prevent intrusion, to protect
machine resources and devices from misuse, and to protect files from malicious
modification or unintentional modification by users or intruders

For a general discussion of system security, see Chapter 2.
� “Solaris Cryptographic Services” on page 30 – The ability to scramble data so that

only the sender and the designated receiver can read the contents, and to manage
cryptographic providers

� “Authentication Services” on page 31 – The ability to securely identify a user,
which requires the user’s name and some form of proof, typically a password

� “Authentication With Encryption” on page 32 – The ability to ensure that
authenticated parties can communicate without interception, modification, or
spoofing

� “Solaris Auditing” on page 32 – The ability to identify the source of security
changes to the system, including file access, security-related system calls, and
authentication failures

� “Security Policy” on page 33 – The design and implementation of security
guidelines for a computer or network of computers

System Security
System security ensures that the system’s resources are used properly. Access controls
can restrict who is permitted access to resources on the system. The Solaris OS features
for system security and access control include the following:

� Login administration tools – Commands for monitoring and controlling a user’s
ability to log in. See “Securing Logins and Passwords (Task Map)” on page 60.

29

� Hardware access – Commands for limiting access to the PROM, and for restricting
who can boot the system. See “SPARC: Controlling Access to System Hardware
(Task Map)” on page 75.

� Resource access – Tools and strategies for maximizing the appropriate use of
machine resources while minimizing the misuse of those resources. See
“Controlling Access to Machine Resources” on page 46.

� Role-based access control (RBAC) – An architecture for creating special, restricted
user accounts that are permitted to perform specific administrative tasks. See
“Role-Based Access Control (Overview)” on page 177.

� Privileges – Discrete rights on processes to perform operations. These process
rights are enforced in the kernel. See “Privileges (Overview)” on page 186.

� Device management – Device policy additionally protects devices that are already
protected by UNIX permissions. Device allocation controls access to peripheral
devices, such as a microphone or CD-ROM drive. Upon deallocation, device-clean
scripts can then erase any data from the device. See “Controlling Access to
Devices” on page 44.

� Basic Audit Reporting Tool (BART) – A snapshot, called a manifest, of the file
attributes of files on a system. By comparing the manifests across systems or on
one system over time, changes to files can be monitored to reduce security risks.
See Chapter 5.

� File permissions – Attributes of a file or directory. Permissions restrict the users
and groups that are permitted to read, write, or execute a file, or search a directory.
See Chapter 6.

� Security enhancement scripts – Through the use of scripts, many system files and
parameters can be adjusted to reduce security risks. See Chapter 7.

Solaris Cryptographic Services
Cryptography is the science of encrypting and decrypting data. Cryptography is used
to insure integrity, privacy, and authenticity. Integrity means that the data has not been
altered. Privacy means that the data is not readable by others. Authenticity for data
means that what was delivered is what was sent. User authentication means that the
user has supplied one or more proofs of identity. Authentication mechanisms
mathematically verify the source of the data or the proof of identity. Encryption
mechanisms scramble data so that the data is not readable by a casual observer.
Cryptographic services provide authentication and encryption mechanisms to
applications and users.

Cryptographic algorithms use hashing, chaining, and other mathematical techniques
to create ciphers that are difficult to break. Authentication mechanisms require that the
sender and the receiver compute an identical number from the data. Encryption

30 System Administration Guide: Security Services • January 2005

mechanisms rely on the sender and the receiver sharing information about the method
of encryption. This information enables only the receiver and the sender to decrypt the
message. The Solaris OS provides a centralized cryptographic framework, and
provides encryption mechanisms that are tied to particular applications.

� Solaris Cryptographic Framework – A central framework of cryptographic
services for kernel-level and user-level consumers. Uses include passwords, IPsec,
and third-party applications. The cryptographic framework includes a number of
software encryption modules. The framework enables you to specify which
software encryption modules or hardware encryption sources an application can
use. The framework is built on the PKCS #11 v2 library. This library is
implemented according to the following standard: RSA Security Inc. PKCS #11
Cryptographic Token Interface (Cryptoki). The library provides an API for
third-party developers to plug in the cryptographic requirements for their
applications. See Chapter 13.

� Encryption mechanisms per application –

� For the use of DES in Secure RPC, see “Overview of Secure RPC” on page 293.
� For the use of DES, 3DES, AES, and ARCFOUR in the Kerberos service, see

Chapter 20.
� For the use of RSA, DSA, and ciphers such as Blowfish in Solaris Secure Shell,

see Chapter 18.
� For the use of cryptographic algorithms in passwords, see “Changing the

Password Algorithm (Task Map)” on page 67.

Authentication Services
Authentication is a mechanism that identifies a user or service based on predefined
criteria. Authentication services range from simple name-password pairs to more
elaborate challenge-response systems, such as smart cards and biometrics. Strong
authentication mechanisms rely on a user supplying information that only that person
knows, and a personal item that can be verified. A user name is an example of
information that the person knows. A smart card or a fingerprint, for example, can be
verified. The Solaris features for authentication include the following:

� Secure RPC – An authentication mechanism that uses the Diffie-Hellman protocol
to protect NFS mounts and a name service, such as NIS or NIS+. See “Overview of
Secure RPC” on page 293.

� Pluggable Authentication Module (PAM) – A framework that enables various
authentication technologies to be plugged into a system entry service without
recompiling the service. Some of the system entry services include login and ftp.
See Chapter 16.

� Simple Authentication and Security Layer (SASL) – A framework that provides
authentication and security services to network protocols. See Chapter 17.

Chapter 1 • Security Services (Overview) 31

� Solaris Secure Shell – A secure remote login and transfer protocol that encrypts
communications over an insecure network. See Chapter 18.

� Kerberos service – A client-server architecture that provides encryption with
authentication. See Chapter 20.

� Solaris smart card – A plastic card with a microprocessor and memory that can be
used with a card reader to access systems. See Solaris Smartcard Administration
Guide.

Authentication With Encryption
Authentication with encryption is the basis of secure communication. Authentication
helps ensure that the source and the destination are the intended parties. Encryption
codes the communication at the source, and decodes the communication at the
destination. Encryption prevents intruders from reading any transmissions that the
intruders might manage to intercept. The Solaris features for secure communication
include the following:

� Solaris Secure Shell – A protocol for protecting data transfers and interactive user
network sessions from eavesdropping, session hijacking, and “man-in-the-middle”
attacks. Strong authentication is provided through public key cryptography. X
windows services and other network services can be tunneled safely over Secure
Shell connections for additional protection. See Chapter 18.

� Kerberos service – A client-server architecture that provides authentication with
encryption. See Chapter 20.

� Internet Protocol Security Architecture (IPsec) – An architecture that provides IP
datagram protection. Protections include confidentiality, strong integrity of the
data, data authentication, and partial sequence integrity. See Chapter 18, “IP
Security Architecture (Overview),” in System Administration Guide: IP Services.

Solaris Auditing
Auditing is a fundamental concept of system security and maintainability. Auditing is
the process of examining the history of actions and events on a system to determine
what happened. The history is kept in a log of what was done, when it was done, by
whom, and what was affected. See Chapter 27.

32 System Administration Guide: Security Services • January 2005

Security Policy
The phrase security policy, or policy, is used throughout this book to refer to an
organization’s security guidelines. Your site’s security policy is the set of rules that
define the sensitivity of the information that is being processed and the measures that
are used to protect the information from unauthorized access. Security technologies
such as Solaris Secure Shell, authentication, RBAC, authorization, privileges, and
resource control provide measures to protect information.

Some security technologies also use the word policy when describing specific aspects
of their implementation. For example, Solaris auditing uses audit policy options to
configure some aspects of auditing policy. The following table points to glossary, man
page, and information on features that use the word policy to describe specific aspects
of their implementation.

TABLE 1–1 Use of Policy in the Solaris OS

Glossary Definition Selected Man Pages Further Information

audit policy audit_control(4),
audit_user(4),
auditconfig(1M)

Chapter 27

policy in the cryptographic
framework

cryptoadm(1M) Chapter 13

device policy getdevpolicy(1M) “Controlling Access to Devices”
on page 44

Kerberos policy krb5.conf(4) Chapter 24

network policies ipfilter(5),
ifconfig(1M),
ike.config(4),
ipsecconf(1M),
routeadm(1M)

Part IV, “IP Security,” in System
Administration Guide: IP Services

password policy passwd(1),
nsswitch.conf(4),
crypt.conf(4),
policy.conf(4)

“Maintaining Login Control”
on page 39

RBAC policy rbac(5) “exec_attr Database”
on page 234

Chapter 1 • Security Services (Overview) 33

34 System Administration Guide: Security Services • January 2005

PART II System, File, and Device Security

This section covers security that can be configured on a non-networked system. The
chapters discuss planning, monitoring, and controlling access to the disk, to files, and
to peripheral devices.

35

36 System Administration Guide: Security Services • January 2005

CHAPTER 2

Managing Machine Security
(Overview)

Keeping a machine’s information secure is an important system administration
responsibility. This chapter provides overview information about managing machine
security.

The following is a list of the overview information in this chapter.

� “Enhancements to Machine Security in the Solaris 10 Release” on page 37
� “Controlling Access to a Computer System” on page 38
� “Controlling Access to Devices” on page 44
� “Controlling Access to Machine Resources” on page 46
� “Controlling Access to Files” on page 51
� “Controlling Network Access” on page 52
� “Reporting Security Problems” on page 57

Enhancements to Machine Security in
the Solaris 10 Release
Since the Solaris 9 release, the following features have been introduced to enhance
system security:

� Strong password encryption is available and configurable. For more information,
see “Password Encryption” on page 41.

� Device policy is enforced with privileges. For more information, see “Device Policy
(Overview)” on page 45.

For device allocation, the /etc/security/dev directory might not be supported
in future releases of the Solaris OS.

� The Basic Audit Reporting Tool (BART) can monitor the authenticity of the files on
your system. For more information, see Chapter 5.

37

� Files can be protected with strong encryption. For more information, see
“Protecting Files With Encryption” on page 51.

� Privileges enforce process rights at the kernel level. For more information, see
“Privileges (Overview)” on page 186.

� The Solaris cryptographic framework centralizes cryptographic services for
providers and for consumers. For more information, see Chapter 13.

� The PAM framework provides functionality for many programs, such as Solaris
Secure Shell. For more information, see “Changes to PAM for the Solaris 10
Release” on page 307.

� Solaris zones and resource management control access to machine resources. For
more information, see System Administration Guide: Solaris Containers—Resource
Management and Solaris Zones.

Controlling Access to a Computer
System
In the workplace, all machines that are connected to a server can be thought of as one
large multifaceted system. You are responsible for the security of this larger system.
You need to defend the network from outsiders who are trying to gain access to the
network. You also need to ensure the integrity of the data on the machines within the
network.

At the file level, the Solaris OS provides standard security features that you can use to
protect files, directories, and devices. At the system and network levels, the security
issues are mostly the same. The first line of security defense is to control access to your
system. You can control and monitor system access by doing the following:

� “Maintaining Physical Security” on page 38
� “Maintaining Login Control” on page 39
� “Controlling Access to Devices” on page 44
� “Controlling Access to Machine Resources” on page 46
� “Controlling Access to Files” on page 51
� “Controlling Network Access” on page 52
� “Reporting Security Problems” on page 57

Maintaining Physical Security
To control access to your system, you must maintain the physical security of your
computing environment. For instance, a system that is logged in and left unattended is
vulnerable to unauthorized access. An intruder can gain access to the operating
system and to the network. The computer’s surroundings and the computer hardware
should be physically protected from unauthorized access.

38 System Administration Guide: Security Services • January 2005

You can protect a SPARC system from unauthorized access to the hardware settings.
Use the eeprom command to require a password to access the PROM. For more
information, see “How to Require a Password for Hardware Access” on page 75.

Maintaining Login Control
You also must prevent unauthorized logins to a system or the network, which you can
do through password assignment and login control. All accounts on a system should
have a password. A password is a simple authentication mechanism. An account
without a password makes your entire network accessible to an intruder who guesses
a user name. A strong password algorithm protects against brute force attacks.

When a user logs in to a system, the login command checks the appropriate name
service or directory service database according to the information that is listed in the
/etc/nsswitch.conf file. This file can include the following entries:

� files – Designates the /etc files on the local system
� ldap – Designates the LDAP directory service on the LDAP server
� nis – Designates the NIS database on the NIS master server
� nisplus – Designates the NIS+ database on the NIS+ root server

For a description of the nsswitch.conf file, see the nsswitch.conf(4) man page.
For information about naming services and directory services, see the System
Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP) or the
System Administration Guide: Naming and Directory Services (NIS+).

The login command verifies the user name and password that were supplied by the
user. If the user name is not in the password file, the login command denies access to
the system. If the password is not correct for the user name that was specified, the
login command denies access to the system. When the user supplies a valid user
name and its corresponding password, the system grants the user access to the system.

PAM modules can streamline login to applications after a successful system login. For
more information, see Chapter 16.

Sophisticated authentication and authorization mechanisms are available on Solaris
systems. For a discussion of authentication and authorization mechanisms at the
network level, see “Authentication and Authorization for Remote Access” on page
54.

Managing Password Information
When users log in to a system, they must supply both a user name and a password.
Although logins are publicly known, passwords must be kept secret. Passwords
should be known only to each user. You should ask your users to choose their
passwords carefully. Users should change their passwords often.

Chapter 2 • Managing Machine Security (Overview) 39

Passwords are initially created when you set up a user account. To maintain security
on user accounts, you can set up password aging to force users to routinely change
their passwords. You can also disable a user account by locking the password. For
detailed information about administering passwords, see Chapter 4, “Managing User
Accounts and Groups (Overview),” in System Administration Guide: Basic
Administration and the passwd(1) man page.

Local Passwords

If your network uses local files to authenticate users, the password information is kept
in the system’s /etc/passwd and /etc/shadow files. The user name and other
information are kept in the password file /etc/passwd. The encrypted password
itself is kept in a separate shadow file, /etc/shadow. This security measure prevents a
user from gaining access to the encrypted passwords. While the /etc/passwd file is
available to anyone who can log in to a system, only superuser or an equivalent role
can read the /etc/shadow file. You can use the passwd command to change a user’s
password on a local system.

NIS and NIS+ Passwords

If your network uses NIS to authenticate users, password information is kept in the
NIS password map. NIS does not support password aging. You can use the command
passwd -r nis to change a user’s password that is stored in an NIS password map.

If your network uses NIS+ to authenticate users, password information is kept in the
NIS+ database. Information in the NIS+ database can be protected by restricting access
to authorized users only. You can use the passwd -r nisplus command to change a
user’s password that is stored in an NIS+ database.

LDAP Passwords

The Solaris LDAP naming service stores password information and shadow
information in the ou=people container of the LDAP directory tree. On the Solaris
LDAP naming service client, you can use the passwd -r ldap command to change a
user’s password. The LDAP naming service stores the password in the LDAP
repository.

In the Solaris 10 release, password policy is enforced on the Sun Java™ System
Directory Server. Specifically, the client’s pam_ldap module follows the password
policy controls that are enforced on the Sun Java System Directory Server. For more
information, see “LDAP Naming Services Security Model” in System Administration
Guide: Naming and Directory Services (DNS, NIS, and LDAP).

40 System Administration Guide: Security Services • January 2005

Password Encryption
Strong password encryption provides an early barrier against attack. Solaris software
provides four password encryption algorithms. The two MD5 algorithms and the
Blowfish algorithm provide more robust password encryption than the UNIX
algorithm.

Password Algorithm Identifiers

You specify the algorithms configuration for your site in the
/etc/security/policy.conf file. In the policy.conf file, the algorithms are
named by their identifier, as shown in the following table.

TABLE 2–1 Password Encryption Algorithms

Identifier Description Algorithm Man Page

1 The MD5 algorithm that is compatible with MD5
algorithms on BSD and Linux systems.

crypt_bsdmd5(5)

2a The Blowfish algorithm that is compatible with the
Blowfish algorithm on BSD systems.

crypt_bsdbf(5)

md5 The Sun MD5 algorithm, which is considered stronger
than the BSD and Linux version of MD5.

crypt_sunmd5(5)

__unix__ The traditional UNIX encryption algorithm. This
algorithm is the default module in the policy.conf file.

crypt_unix(5)

Algorithms Configuration in the policy.conf File

The following shows the default algorithms configuration in the policy.conf file:

#
...
crypt(3c) Algorithms Configuration
#
CRYPT_ALGORITHMS_ALLOW specifies the algorithms that are allowed to
be used for new passwords. This is enforced only in crypt_gensalt(3c).
#
CRYPT_ALGORITHMS_ALLOW=1,2a,md5

To deprecate use of the traditional unix algorithm, uncomment below
and change CRYPT_DEFAULT= to another algorithm. For example,
CRYPT_DEFAULT=1 for BSD/Linux MD5.
#
#CRYPT_ALGORITHMS_DEPRECATE=__unix__

The Solaris default is the traditional UNIX algorithm. This is not
listed in crypt.conf(4) since it is internal to libc. The reserved
name __unix__ is used to refer to it.

Chapter 2 • Managing Machine Security (Overview) 41

#
CRYPT_DEFAULT=__unix__

...

When you change the value for CRYPT_DEFAULT, the passwords of new users are
encrypted with the algorithm that is associated with the new value. When current
users change their passwords, how their old password was encrypted affects which
algorithm is used to encrypt the new password.

For example, assume that CRYPT_ALGORITHMS_ALLOW=1,2a,md5 and
CRYPT_DEFAULT=1. The following table shows which algorithm would be used to
generate the encrypted password.

Identifier = Password Algorithm

ExplanationInitial Password Changed Password

1 =
crypt_bsdmd5

Uses same
algorithm

The 1 identifier is also the value of CRYPT_DEFAULT.
The user’s password continues to be encrypted with the
crypt_bsdmd5 algorithm.

2a =
crypt_bsdbf

Uses same
algorithm

The 2a identifier is in the CRYPT_ALGORITHMS_ALLOW
list. Therefore, the new password is encrypted with the
crypt_bsbdf algorithm.

md5 =
crypt_md5

Uses same
algorithm

The md5 identifier is in the
CRYPT_ALGORITHMS_ALLOW list. Therefore, the new
password is encrypted with the crypt_md5 algorithm.

__unix__ =
crypt_unix

Uses
crypt_bsdmd5
algorithm

The __unix__ identifier is not in the
CRYPT_ALGORITHMS_ALLOW list. Therefore, the
crypt_unix algorithm cannot be used. The new
password is encrypted with the CRYPT_DEFAULT
algorithm.

For more information on configuring the algorithm choices, see the policy.conf(4)
man page. To specify password encryption algorithms, see “Changing the Password
Algorithm (Task Map)” on page 67.

Special System Logins
Two common ways to access a system are by using a conventional user login, or by
using the root login. In addition, a number of special system logins enable a user to
run administrative commands without using the root account. As system
administrator, you assign passwords to these login accounts.

The following table lists some system login accounts and their uses. The system logins
perform special functions. Each login has its own group identification number (GID).
Each login should have its own password, which should be divulged on a
need-to-know basis.

42 System Administration Guide: Security Services • January 2005

TABLE 2–2 System Login Accounts and Their Uses

Login Account GID Use

root 0 Has almost no restrictions. Overrides all other logins, protections, and
permissions. The root account has access to the entire system. The
password for the root login should be very carefully protected. The
root account, superuser, owns most of the Solaris commands.

daemon 1 Controls background processing.

bin 2 Owns some Solaris commands.

sys 3 Owns many system files.

adm 4 Owns certain administrative files.

lp 71 Owns the object data files and spooled data files for the printer.

uucp 5 Owns the object data files and spooled data files for UUCP, the
UNIX-to-UNIX copy program.

nuucp 9 Is used by remote systems to log in to the system and start file
transfers.

Remote Logins
Remote logins offer a tempting avenue for intruders. The Solaris OS provides several
commands to monitor, limit, and disable remote logins. For procedures, see “Securing
Logins and Passwords (Task Map)” on page 60.

By default, remote logins cannot gain control or read certain system devices, such as
the system mouse, keyboard, frame buffer, or audio device. For more information, see
the logindevperm(4) man page.

Dial-Up Logins
When a computer can be accessed through a modem or a dial-up port, you can add an
extra layer of security. You can require a dial-up password for users who access a system
through a modem or dial-up port. The dial-up password is an additional password
that a user must supply before being granted access to the system.

Only superuser or a role of equivalent capabilities can create or change a dial-up
password. To ensure the integrity of the system, the password should be changed
about once a month. The most effective use of this feature is to require a dial-up
password to gain access to a gateway system. To set up dial-up passwords, see “How
to Create a Dial-Up Password” on page 65.

Chapter 2 • Managing Machine Security (Overview) 43

Two files are involved in creating a dial-up password, /etc/dialups and
/etc/d_passwd. The dialups file contains a list of ports that require a dial-up
password. The d_passwd file contains a list of shell programs that require an
encrypted password as the additional dial-up password. The information in these two
files is processed as follows:

� If the user’s login shell in /etc/passwd matches an entry in /etc/d_passwd, the
user must supply a dial-up password.

� If the user’s login shell in /etc/passwd is not found in /etc/d_passwd, the user
must supply the default password. The default password is the entry for
/usr/bin/sh.

� If the login shell field in /etc/passwd is empty, the user must supply the default
password. The default password is the entry for /usr/bin/sh.

� If /etc/d_passwd has no entry for /usr/bin/sh, then those users whose login
shell field in /etc/passwd is empty or does not match any entry in
/etc/d_passwd are not prompted for a dial-up password.

� Dial-up logins are disabled if /etc/d_passwd has the /usr/bin/sh:*: entry
only.

Controlling Access to Devices
Peripheral devices that are attached to a computer system pose a security risk.
Microphones can pick up conversations and transmit them to remote systems.
CD-ROMs can leave their information behind for reading by the next user of the
CD-ROM device. Printers can be accessed remotely. Devices that are integral to the
system can also present security issues. For example, network interfaces such as hme0
are considered integral devices.

Solaris software provides two methods of controlling access to devices. Device policy
restricts or prevents access to devices that are integral to the system. Device policy is
enforced in the kernel. Device allocation restricts or prevents access to peripheral
devices. Device allocation is enforced at user allocation time.

Device policy uses privileges to protect selected devices in the kernel. For example, the
device policy on network interfaces such as hme requires all privileges for reading or
writing.

Device allocation uses authorizations to protect peripheral devices, such as printers or
microphones. By default, device allocation is not enabled. Once enabled, device
allocation can be configured to prevent the use of a device or to require authorization
for access to the device. When a device is allocated for use, no other user can access
the device until the current user deallocates it.

A Solaris system can be configured in several areas to control access to devices:

44 System Administration Guide: Security Services • January 2005

� Set device policy – In the Solaris 10 release, you can require that the process that is
accessing a particular device be running with a set of privileges. Processes without
those privileges cannot use the device. At boot time, Solaris software configures
device policy. Third-party drivers can be configured with device policy during
installation. After installation, you, as the system administrator can add device
policy to a device.

� Make devices allocatable – When you enable device allocation, you can restrict the
use of a device to one user at a time. You can further require that the user fulfill
some security requirements. For example, you can require that the user be
authorized to use the device.

� Prevent devices from being used – You can prevent the use of a device, such as a
microphone, by any user on a computer system. A computer kiosk might be a good
candidate for making certain devices unavailable for use.

� Confine a device to a particular zone – You can assign the use of a device to a
non-global zone. For more information, see “Device Use in Non-Global Zones” in
System Administration Guide: Solaris Containers—Resource Management and Solaris
Zones. For a more general discussion of devices and zones, see “Configured
Devices in Zones” in System Administration Guide: Solaris Containers—Resource
Management and Solaris Zones.

Device Policy (Overview)
The device policy mechanism enables you to specify that processes that open a device
require certain privileges. Devices that are protected by device policy can only be
accessed by processes that are running with the privileges that the device policy
specifies. The Solaris OS provides default device policy. For example, network
interfaces such as hme0 require that the processes that access the interface be running
with the net_rawaccess privilege. The requirement is enforced in the kernel. For
more information about privileges, see “Privileges (Overview)” on page 186.

In earlier Solaris OS releases, device nodes were protected by file permissions alone.
For example, devices owned by group sys could be opened only by members of
group sys. In the Solaris 10 release, file permissions do not predict who can open a
device. Instead, devices are protected with file permissions and with device policy. For
example, the /dev/ip file has 666 permissions. However, the device can only be
opened by a process with the appropriate privileges.

The configuration of device policy can be audited. The AUE_MODDEVPLCY audit event
records changes in device policy.

For more information about device policy, see the following:

� “Configuring Device Policy (Task Map)” on page 78
� “Device Policy Commands” on page 91
� “Privileges and Devices” on page 193

Chapter 2 • Managing Machine Security (Overview) 45

Device Allocation (Overview)
The device allocation mechanism enables you to restrict access to a peripheral device,
such as a CD-ROM. You manage the mechanism locally. If device allocation is not
enabled, peripheral devices are protected only by file permissions. For example, by
default, peripheral devices are available for the following uses:

� Any user can read and write to a diskette or CD-ROM.
� Any user can attach a microphone.
� Any user can access an attached printer.

Device allocation can restrict a device to authorized users. Device allocation can also
prevent a device from being accessed at all. A user who allocates a device has
exclusive use of that device until the user deallocates the device. When a device is
deallocated, device-clean scripts erase any leftover data. You can write a device-clean
script to purge information from devices that do not have a script. For an example, see
“Writing New Device-Clean Scripts” on page 98.

Attempts to allocate a device, deallocate a device, and list allocatable devices can be
audited. The audit events are part of the ot audit class.

For more information on device allocation, see the following:

� “Managing Device Allocation (Task Map)” on page 81
� “Device Allocation” on page 92
� “Device Allocation Commands” on page 93

Controlling Access to Machine Resources
As system administrator, you can control and monitor system activity. You can set
limits on who can use what resources. You can log resource use, and you can monitor
who is using the resources. You can also set up your machines to minimize improper
use of resources.

Limiting and Monitoring Superuser
Your system requires a root password for superuser access. In the default
configuration, a user cannot remotely log in to a system as root. When logging in
remotely, a user must log in with the user’s user name and then use the su command
to become root. You can monitor who has been using the su command, especially
those users who are trying to gain superuser access. For procedures that monitor
superuser and limit access to superuser, see “Monitoring and Restricting Superuser
(Task Map)” on page 72.

46 System Administration Guide: Security Services • January 2005

Configuring Role-Based Access Control to Replace
Superuser
Role-based access control, or RBAC, is designed to limit the capabilities of superuser.
Superuser, the root user, has access to every resource in the system. With RBAC, you
can replace root with a set of roles with discrete powers. For example, you can set up
one role to handle user account creation, and another role to handle system file
modification. When you have established a role to handle a function or set of
functions, you can remove those functions from root’s capabilities.

Each role requires that a known user log in with their user name and password. After
logging in, the user then assumes the role with a specific role password. As a
consequence, someone who learns the root password has limited ability to damage
your system. For more on RBAC, see “Role-Based Access Control (Overview)”
on page 177.

Preventing Unintentional Misuse of Machine
Resources
You can prevent you and your users from making unintentional errors in the
following ways:

� You can keep from running a Trojan horse by correctly setting the PATH variable.

� You can assign a restricted shell to users. A restricted shell prevents user error by
steering users to those parts of the system that the users need for their jobs. In fact,
through careful setup, you can ensure that users access only those parts of the
system that help the users work efficiently.

� You can set restrictive permissions on files that users do not need to access.

Setting the PATH Variable
You should take care to correctly set the PATH variable. Otherwise, you can
accidentally run a program that was introduced by someone else. The intruding
program can corrupt your data or harm your system. This kind of program, which
creates a security hazard, is referred to as a Trojan horse. For example, a substitute su
program could be placed in a public directory where you, as system administrator,
might run the substitute program. Such a script would look just like the regular su
command. Because the script removes itself after execution, you would have little
evidence to show that you have actually run a Trojan horse.

The PATH variable is automatically set at login time. The path is set through the
startup files: .login, .profile, and .cshrc. When you set up the user search path
so that the current directory (.) comes last, you are protected from running this type
of Trojan horse. The PATH variable for superuser should not include the current
directory at all.

Chapter 2 • Managing Machine Security (Overview) 47

The Automated Security Enhancement Tool (ASET) examines the startup files to
ensure that the PATH variable is set up correctly. ASET also ensures that the PATH
variable does not contain a dot (.) entry.

Assigning a Restricted Shell to Users
The standard shell allows a user to open files, execute commands, and so on. The
restricted shell limits the ability of a user to change directories and to execute
commands. The restricted shell is invoked with the /usr/lib/rsh command. Note
that the restricted shell is not the remote shell, which is /usr/sbin/rsh. The
restricted shell differs from the standard shell in the following ways:

� The user is limited to the user’s home directory, so the user cannot use the cd
command to change directories. Therefore, the user cannot browse system files.

� The user cannot change the PATH variable, so the user can use only commands in
the path that is set by the system administrator. The user also cannot execute
commands or scripts by using a complete path name.

� The user cannot redirect output with > or >>.

The restricted shell enables you to limit a user’s ability to stray into system files. The
shell creates a limited environment for a user who needs to perform specific tasks. The
restricted shell is not completely secure, however, and is only intended to keep
unskilled users from inadvertently doing damage.

For information about the restricted shell, use the man -s1m rsh command to see the
rsh(1M) man page.

A more secure alternative to the restricted shell is the ssh command in Solaris Secure
Shell. Solaris Secure Shell enables users to securely access a remote host over an
unsecured network. For information about using Solaris Secure Shell, see Chapter 19.

Restricting Access to Data in Files
Because the Solaris OS is a multiuser environment, file system security is the most
basic security risk on a system. You can use traditional UNIX file protections to protect
your files. You can also use the more secure access control lists (ACLs).

You might want to allow some users to read some files, and give other users
permission to change or delete some files. You might have some data that you do not
want anyone else to see. Chapter 6 discusses how to set file permissions.

48 System Administration Guide: Security Services • January 2005

Restricting setuid Executable Files
Executable files can be security risks. Many executable programs have to be run as
root, that is, as superuser, to work properly. These setuid programs run with the
user ID set to 0. Anyone who is running these programs runs the programs with the
root ID. A program that runs with the root ID creates a potential security problem if
the program was not written with security in mind.

Except for the executables that Sun ships with the setuid bit set to root, you should
disallow the use of setuid programs. If you cannot disallow the use of setuid
programs, then you should at least restrict their use. Secure administration requires
few setuid programs.

For more information, see “Preventing Executable Files From Compromising Security”
on page 132. For procedures, see “Protecting Against Programs With Security Risk
(Task Map)” on page 145.

Using the Automated Security Enhancement Tool
The ASET security package provides automated administration tools that enable you
to control and monitor your system’s security. ASET provides three security levels:
low, medium, and high. You specify an ASET security level. At each higher level,
ASET’s file-control functions increase to reduce file access and tighten your system’s
security. For more information, see Chapter 7.

Using the Solaris Security Toolkit
While ASET can be used to make a small number of security changes to a system, the
Solaris Security Toolkit provides a flexible and extensible mechanism to minimize,
harden, and secure a Solaris system. The Solaris Security Toolkit, informally known as
the JASS toolkit, is a tool that enables the user to perform security modifications to a
system. The tool can provide a report on the security status of a system. The tool also
has the ability to undo previous runs of the tool. The JASS toolkit can be downloaded
from the Sun web site, http://wwws.sun.com/security/jass. The web site
contains pointers to online documentation.

The toolkit is described in detail in Securing Systems with the Solaris Security Toolkit, by
Alex Noordergraaf and Glenn Brunette, ISBN 0-13-141071-7, June 2003. The book is
part of the Sun BluePrints Series, which is published by Sun Microsystems Press.

Chapter 2 • Managing Machine Security (Overview) 49

http://wwws.sun.com/security/jass

Using Solaris Resource Management Features
Solaris software provides sophisticated resource management features. Using these
features, you can allocate, schedule, monitor, and cap resource use by applications in a
server consolidation environment. The resource controls framework enables you to set
constraints on system resources that are consumed by processes. Such constraints help
to prevent denial-of-service attacks by a script that attempts to flood a system’s
resources.

With Solaris resource management features, you can designate resources for particular
projects. You can also dynamically adjust the resources that are available. For more
information, see Part I, “Resource Management,” in System Administration Guide:
Solaris Containers—Resource Management and Solaris Zones.

Using Solaris Zones
Solaris zones provide an application execution environment in which processes are
isolated from the rest of the system within a single instance of the Solaris OS. This
isolation prevents processes that are running in one zone from monitoring or affecting
processes that are running in other zones. Even a process running with superuser
capabilities cannot view or affect activity in other zones.

Solaris zones are ideal for environments that place several applications on a single
server. For more information, see Part II, “Zones,” in System Administration Guide:
Solaris Containers—Resource Management and Solaris Zones.

Monitoring Use of Machine Resources
As a system administrator, you need to monitor system activity. You need to be aware
of all aspects of your machines, including the following:

� What is the normal load?
� Who has access to the system?
� When do individuals access the system?
� What programs normally run on the system?

With this kind of knowledge, you can use the available tools to audit system use and
monitor the activities of individual users. Monitoring is very useful when a breach in
security is suspected. For more information on the auditing service, see Chapter 27.

Monitoring File Integrity
As a system administrator, you need assurance that the files that were installed on the
systems that you administer have not changed in unexpected ways. In large
installations, a comparison and reporting tool about the software stack on each of your
systems enables you to track your systems. The Basic Audit Reporting Tool (BART)

50 System Administration Guide: Security Services • January 2005

enables you to comprehensively validate systems by performing file-level checks of
one or more systems over time. Changes in a BART manifest across systems, or for one
system over time, can validate the integrity of your systems. BART provides manifest
creation, manifest comparison, and rules for scripting reports. For more information,
see Chapter 5.

Controlling Access to Files
The Solaris OS is a multiuser environment. In a multiuser environment, all the users
who are logged in to a system can read files that belong to other users. With the
appropriate file permissions, users can also use files that belong to other users. For
more discussion, see Chapter 6. For step-by-step instructions on setting appropriate
permissions on files, see “Protecting Files (Task Map)” on page 133.

Protecting Files With Encryption
You can keep a file secure by making the file inaccessible to other users. For example, a
file with permissions of 600 cannot be read except by its owner and by superuser. A
directory with permissions of 700 is similarly inaccessible. However, someone who
guesses your password or who discovers the root password can access that file. Also,
the otherwise inaccessible file is preserved on a backup tape every time that the
system files are backed up to offline media.

The Solaris cryptographic framework provides digest, mac, and encrypt
commands to protect files. For more information, see Chapter 13.

Using Access Control Lists
ACLs, pronounced “ackkls,” can provide greater control over file permissions. You
add ACLs when traditional UNIX file protections are not sufficient. Traditional UNIX
file protections provide read, write, and execute permissions for the three user classes:
owner, group, and other. An ACL provides finer-grained file security. ACLs enable you
to define the following file permissions:

� Owner file permissions
� File permissions for the owner’s group
� File permissions for other users who are outside the owner’s group
� File permissions for specific users
� File permissions for specific groups
� Default permissions for each of the previous categories

Chapter 2 • Managing Machine Security (Overview) 51

For more information about using ACLs, see “Using Access Control Lists to Protect
Files” on page 130.

Sharing Files Across Machines
A network file server can control which files are available for sharing. A network file
server can also control which clients have access to the files, and what type of access is
permitted for those clients. In general, the file server can grant read-write access or
read-only access either to all clients or to specific clients. Access control is specified
when resources are made available with the share command.

The /etc/dfs/dfstab file on the file server lists the file systems that the server
makes available to clients on the network. For more information about sharing file
systems, see “Automatic File-System Sharing” in System Administration Guide: Network
Services.

Restricting root Access to Shared Files
In general, superuser is not allowed root access to file systems that are shared across
the network. The NFS system prevents root access to mounted file systems by
changing the user of the requester to the user nobody with the user ID 60001. The
access rights of user nobody are the same as those access rights that are given to the
public. The user nobody has the access rights of a user without credentials. For
example, if the public has only execute permission for a file, then user nobody can
only execute that file.

An NFS server can grant superuser capabilities on a shared file system on a per-host
basis. To grant these privileges, use the root=hostname option to the share
command. You should use this option with care. For a discussion of security options
with NFS, see Chapter 6, “Accessing Network File Systems (Reference),” in System
Administration Guide: Network Services.

Controlling Network Access
Computers are often part of a configuration of computers. This configuration is called
a network. A network allows connected computers to exchange information.
Networked computers can access data and other resources from other computers on
the network. Computer networks create a powerful and sophisticated computing
environment. However, networks also complicate computer security.

52 System Administration Guide: Security Services • January 2005

For example, within a network of computers, individual machines allow the sharing of
information. Unauthorized access is a security risk. Because many people have access
to a network, unauthorized access is more likely, especially through user error. A poor
use of passwords can also allow unauthorized access.

Network Security Mechanisms
Network security is usually based on limiting or blocking operations from remote
systems. The following figure describes the security restrictions that you can impose
on remote operations.

Authorization

Authentication

Firewall

The firewall restricts the
types of remote operations
that the systems at a particular
site can perform with systems
that are outside the firewall.

Remote systems use
authentication to restrict
access to specific users.

Remote systems use
authorization to restrict
authenticated users from
performing operations
on their file systems.

Can I log in?

Depends . . .
who are you?

Can I copy
that file?

Sure,
go ahead.

Local system Remote system

Local file
system

Remote
file system

FIGURE 2–1 Security Restrictions for Remote Operations

Chapter 2 • Managing Machine Security (Overview) 53

Authentication and Authorization for Remote
Access
Authentication is a way to restrict access to specific users when these users access a
remote system. Authentication can be set up at both the system level and the network
level. After a user has gained access to a remote system, authorization is a way to
restrict operations that the user can perform. The following table lists the services that
provide authentication and authorization.

TABLE 2–3 Authentication and Authorization Services for Remote Access

Service Description For More Information

IPsec IPsec provides host-based and certificate-based
authentication and network traffic encryption.

Chapter 18, “IP Security Architecture
(Overview),” in System Administration
Guide: IP Services

Kerberos Kerberos uses encryption to authenticate and
authorize a user who is logging in to the system.

For an example, see “How the Kerberos
Service Works” on page 362.

LDAP and NIS+ The LDAP directory service and the NIS+ name
service can provide both authentication and
authorization at the network level.

System Administration Guide: Naming and
Directory Services (DNS, NIS, and LDAP)
and System Administration Guide: Naming
and Directory Services (NIS+)

Remote login
commands

The remote login commands enable users to log in
to a remote system over the network and use its
resources. Some of the remote login commands are
rlogin, rcp, and ftp. If you are a “trusted host,”
authentication is automatic. Otherwise, you are
asked to authenticate yourself.

Chapter 29, “Accessing Remote Systems
(Tasks),” in System Administration Guide:
Network Services

SASL The Simple Authentication and Security Layer
(SASL) is a framework that provides authentication
and optional security services to network protocols.
Plugins enable you to choose an appropriate
authentication protocol.

“SASL (Overview)” on page 317

Secure RPC Secure RPC improves the security of network
environments by authenticating users who make
requests on remote machines. You can use either
the UNIX, DES, or Kerberos authentication system
for Secure RPC.

“Overview of Secure RPC” on page 293

Secure RPC can also be used to provide additional
security in an NFS environment. An NFS
environment with secure RPC is called Secure NFS.
Secure NFS uses Diffie-Hellman authentication for
public keys.

“NFS Services and Secure RPC” on page
293

54 System Administration Guide: Security Services • January 2005

TABLE 2–3 Authentication and Authorization Services for Remote Access (Continued)
Service Description For More Information

Solaris Secure
Shell

Solaris Secure Shell encrypts network traffic over
an unsecured network. Solaris Secure Shell
provides authentication by the use of passwords,
public keys, or both. Solaris Secure Shell uses RSA
and DSA authentication for public keys.

“Solaris Secure Shell (Overview)”
on page 321

A possible substitute for Secure RPC is the Solaris privileged port mechanism. A
privileged port is assigned a port number less than 1024. After a client system has
authenticated the client’s credential, the client builds a connection to the server by
using the privileged port. The server then verifies the client credential by examining
the connection’s port number.

Clients that are not running Solaris software might be unable to communicate by
using the privileged port. If the clients cannot communicate over the port, you see an
error message that is similar to the following:

“Weak Authentication

NFS request from unprivileged port”

Firewall Systems
You can set up a firewall system to protect the resources in your network from outside
access. A firewall system is a secure host that acts as a barrier between your internal
network and outside networks. The internal network treats every other network as
untrusted. You should consider this setup as mandatory between your internal
network and any external networks, such as the Internet, with which you
communicate.

A firewall acts as a gateway and as a barrier. A firewall acts as a gateway that passes
data between the networks. A firewall acts as a barrier that blocks the free passage of
data to and from the network. The firewall requires a user on the internal network to
log in to the firewall system to access hosts on remote networks. Similarly, a user on an
outside network must first log in to the firewall system before being granted access to
a host on the internal network.

A firewall can also be useful between some internal networks. For example, you can
set up a firewall or a secure gateway computer to restrict the transfer of packets. The
gateway can forbid packet exchange between two networks, unless the gateway
computer is the source address or the destination address of the packet. A firewall
should also be set up to forward packets for particular protocols only. For example,
you can allow packets for transferring mail, but not allow packets for the telnet or
the rlogin command. ASET, when run at high security, disables the forwarding of
Internet Protocol (IP) packets.

Chapter 2 • Managing Machine Security (Overview) 55

In addition, all electronic mail that is sent from the internal network is first sent to the
firewall system. The firewall then transfers the mail to a host on an external network.
The firewall system also receives all incoming electronic mail, and distributes the mail
to the hosts on the internal network.

Caution – A firewall prevents unauthorized users from accessing the hosts on your
network. You should maintain strict and rigidly enforced security on the firewall, but
security on other hosts on the network can be more relaxed. However, an intruder
who can break into your firewall system can then gain access to all the other hosts on
the internal network.

A firewall system should not have any trusted hosts. A trusted host is a host from
which a user can log in without being required to supply a password. A firewall
system should not share any of its file systems, or mount any file systems from other
servers.

The following technologies can be used to harden a system into a firewall:

� ASET enforces high security on a firewall system, as described in Chapter 7.
� The Solaris Security Toolkit, informally known as the JASS toolkit, can harden a

Solaris system into a firewall. The toolkit can be downloaded from the Sun web
site, http://wwws.sun.com/security/jass.

� IPsec and Solaris IP filter can provide firewall protection. For more information on
protecting network traffic, see Part IV, “IP Security,” in System Administration Guide:
IP Services.

Encryption and Firewall Systems
Most local area networks transmit data between computers in blocks that are called
packets. Through a procedure that is called packet smashing, unauthorized users from
outside the network can corrupt or destroy data.

Packet smashing involves capturing the packets before the packets reach their
destination. The intruder then injects arbitrary data into the contents, and sends the
packets back on their original course. On a local area network, packet smashing is
impossible because packets reach all systems, including the server, at the same time.
Packet smashing is possible on a gateway, however, so make sure that all gateways on
the network are protected.

The most dangerous attacks affect the integrity of the data. Such attacks involve
changing the contents of the packets or impersonating a user. Attacks that involve
eavesdropping do not compromise data integrity. An eavesdropper records
conversations for later replay. An eavesdropper does not impersonate a user. Although
eavesdropping attacks do not attack data integrity, the attacks do affect privacy. You
can protect the privacy of sensitive information by encrypting data that goes over the
network.

56 System Administration Guide: Security Services • January 2005

http://wwws.sun.com/security/jass

� To encrypt remote operations over an insecure network, see Chapter 18.

� To encrypt and authenticate data across a network, see Chapter 20.

� To encrypt IP datagrams, see Chapter 18, “IP Security Architecture (Overview),” in
System Administration Guide: IP Services.

Reporting Security Problems
If you experience a suspected security breach, you can contact the Computer
Emergency Response Team/Coordination Center (CERT/CC). CERT/CC is a Defense
Advanced Research Projects Agency (DARPA) funded project that is located at the
Software Engineering Institute at Carnegie Mellon University. This agency can assist
you with any security problems you are having. This agency can also direct you to
other Computer Emergency Response Teams that might be more appropriate for your
particular needs. You can call CERT/CC at its 24-hour hotline: (412) 268-7090. Or,
contact the team by email at cert@cert.sei.cmu.edu.

Chapter 2 • Managing Machine Security (Overview) 57

58 System Administration Guide: Security Services • January 2005

CHAPTER 3

Controlling Access to Systems (Tasks)

This chapter describes the procedures for controlling who can access Solaris systems.
The following is a list of the information in this chapter.

� “Controlling System Access (Task Map)” on page 59
� “Securing Logins and Passwords (Task Map)” on page 60
� “Changing the Password Algorithm (Task Map)” on page 67
� “Monitoring and Restricting Superuser (Task Map)” on page 72
� “SPARC: Controlling Access to System Hardware (Task Map)” on page 75

For overview information about system security, see Chapter 2.

Controlling System Access (Task Map)
A computer is as secure as its weakest point of entry. The following task map shows
the areas that you should monitor and secure.

Task Description For Instructions

Monitor, permit, and deny
user login

Monitors unusual login activity. Prevents
logins temporarily. Manages dial-up logins.

“Securing Logins and Passwords
(Task Map)” on page 60

Provide strong password
encryption

Specifies algorithms to encrypt user
passwords. Installs additional algorithms.

“Changing the Password Algorithm
(Task Map)” on page 67

Monitor and restrict
superuser activities

Regularly monitors superuser activity.
Prevents remote login by a root user.

“Monitoring and Restricting
Superuser (Task Map)” on page 72

59

Task Description For Instructions

Prevent access to hardware
settings

Keeps ordinary users away from the PROM. “SPARC: Controlling Access to
System Hardware (Task Map)”
on page 75

Securing Logins and Passwords (Task
Map)
The following task map points to procedures that monitor user logins and that disable
user logins.

Task Description For Instructions

Display a user’s login
status

Lists extensive information about a user’s
login account, such as full name and
password aging information.

“How to Display a User’s Login
Status” on page 61

Find users who do not
have passwords

Finds only those users whose accounts do not
require a password.

“How to Display Users Without
Passwords” on page 62

Disable logins temporarily Denies user logins to a machine as part of
system shutdown or routine maintenance.

“How to Temporarily Disable User
Logins” on page 62

Save failed login attempts Creates a log of users who failed to provide
the correct password after five attempts.

“How to Monitor Failed Login
Attempts” on page 63

Save all failed login
attempts

Creates a log of failed attempts to log in. “How to Monitor All Failed Login
Attempts” on page 64

Create a dial-up password Requires an additional password for users
who log in remotely through a modem or
dial-up port.

“How to Create a Dial-Up
Password” on page 65

Disable dial-up logins
temporarily

Prevents users from dialing in remotely
through a modem or port.

“How to Temporarily Disable
Dial-Up Logins” on page 67

Securing Logins and Passwords
You can limit remote logins and require users to have passwords. You can also
monitor failed access attempts and disable logins temporarily.

60 System Administration Guide: Security Services • January 2005

� How to Display a User’s Login Status

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Display a user’s login status by using the logins command.

logins -x -l username

-x Displays an extended set of login status information.

-l username Displays the login status for the specified user. The variable
username is a user’s login name. Multiple login names must be
specified in a comma-separated list.

The logins command uses the appropriate password database to obtain a user’s
login status. The database can be the local /etc/passwd file, or a password
database for the name service. For more information, see the logins(1M) man
page.

Displaying a User’s Login Status

In the following example, the login status for the user rimmer is displayed.

logins -x -l rimmer
rimmer 500 staff 10 Annalee J. Rimmer

/export/home/rimmer
/bin/sh

PS 010103 10 7 -1

rimmer Identifies the user’s login name.

500 Identifies the user ID (UID).

staff Identifies the user’s primary group.

10 Identifies the group ID (GID).

Annalee J. Rimmer Identifies the comment.

/export/home/rimmer Identifies the user’s home directory.

/bin/sh Identifies the login shell.

PS 010170 10 7 -1 Specifies the password aging information:

� Last date that the password was changed
� Number of days that are required between changes
� Number of days before a change is required
� Warning period

Steps

Example 3–1

Chapter 3 • Controlling Access to Systems (Tasks) 61

� How to Display Users Without Passwords

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Display all users who have no passwords by using the logins command.

logins -p

The -p option displays a list of users with no passwords. The logins command
uses the password database from the local system unless a name service is enabled.

Displaying Users Without Passwords

In the following example, the user pmorph does not have a password.

logins -p
pmorph 501 other 1 Polly Morph

#

� How to Temporarily Disable User Logins
Temporarily disable user logins during system shutdown or routine maintenance.
Superuser logins are not affected. For more information, see the nologin(4) man
page.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Create the /etc/nologin file in a text editor.

vi /etc/nologin

3. Include a message about system availability.

4. Close and save the file.

Disabling User Logins

In this example, users are notified of system unavailability.

Steps

Example 3–2

Steps

Example 3–3

62 System Administration Guide: Security Services • January 2005

vi /etc/nologin
(Add system message here)

cat /etc/nologin
No logins permitted.

The system will be unavailable until 12 noon.

You can also bring the system to run level 0, single-user mode, to disable logins. For
information on bringing the system to single-user mode, see Chapter 10, “Shutting
Down a System (Tasks),” in System Administration Guide: Basic Administration.

� How to Monitor Failed Login Attempts
This procedure captures failed login attempts from terminal windows. This procedure
does not capture failed logins from a CDE or GNOME login attempt.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Create the loginlog file in the /var/adm directory.

touch /var/adm/loginlog

3. Set read-and-write permissions for root user on the loginlog file.

chmod 600 /var/adm/loginlog

4. Change group membership to sys on the loginlog file.

chgrp sys /var/adm/loginlog

5. Verify that the log works.

For example, log in to the system five times with the wrong password. Then,
display the /var/adm/loginlog file.

more /var/adm/loginlog
jdoe:/dev/pts/2:Tue Nov 4 10:21:10 2003
jdoe:/dev/pts/2:Tue Nov 4 10:21:21 2003
jdoe:/dev/pts/2:Tue Nov 4 10:21:30 2003
jdoe:/dev/pts/2:Tue Nov 4 10:21:40 2003
jdoe:/dev/pts/2:Tue Nov 4 10:21:49 2003

#

Steps

Chapter 3 • Controlling Access to Systems (Tasks) 63

The loginlog file contains one entry for each failed attempt. Each entry contains
the user’s login name, tty device, and time of the failed attempt. If a person makes
fewer than five unsuccessful attempts, no failed attempts are logged.

A growing loginlog file can indicate an attempt to break into the computer
system. Therefore, check and clear the contents of this file regularly. For more
information, see the loginlog(4) man page.

� How to Monitor All Failed Login Attempts
This procedure captures in a syslog file all failed login attempts.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Set up the /etc/default/login file with the desired values for SYSLOG and
SYSLOG_FAILED_LOGINS

Edit the /etc/default/login file to change the entry. Make sure that
SYSLOG=YES is uncommented.

grep SYSLOG /etc/default/login
SYSLOG determines whether the syslog(3) LOG_AUTH facility
should be used
SYSLOG=YES
...
SYSLOG_FAILED_LOGINS=0

#

3. Create a file with the correct permissions to hold the logging information.

a. Create the authlog file in the /var/adm directory.

touch /var/adm/authlog

b. Set read-and-write permissions for root user on the authlog file.

chmod 600 /var/adm/authlog

c. Change group membership to sys on the authlog file.

chgrp sys /var/adm/authlog

4. Edit the syslog.conf file to log failed password attempts.

The failures should be sent to the authlog file.

a. Type the following entry into the syslog.conf file.

Steps

64 System Administration Guide: Security Services • January 2005

Fields on the same line in syslog.conf are separated by tabs.

auth.notice <Press Tab> /var/adm/authlog

b. Refresh the configuration information for the syslog daemon.

svcadm refresh system/system-log

5. Verify that the log works.

For example, as an ordinary user, log in to the system with the wrong password.
Then, in the Primary Administrator role or as superuser, display the
/var/adm/authlog file.

more /var/adm/authlog
Nov 4 14:46:11 example1 login: [ID 143248 auth.notice]
Login failure on /dev/pts/8 from example2, stacey

#

6. Monitor the /var/adm/authlog file on a regular basis.

Logging Access Attempts After Three Login Failures

Follow the preceding procedure, except set the value of SYSLOG_FAILED_LOGINS to
3 in the /etc/default/login file.

Closing Connection After Three Login Failures

Uncomment the RETRIES entry in the /etc/default/login file, then set the value
of RETRIES to 3. Your edits take effect immediately. After three login retries in one
session, the system closes the connection.

� How to Create a Dial-Up Password

Caution – When you first establish a dial-up password, be sure to remain logged in to
at least one port. Test the password on a different port. If you log off to test the new
password, you might not be able to log back in. If you are still logged in to another
port, you can go back and fix your mistake.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

Example 3–4

Example 3–5

Steps

Chapter 3 • Controlling Access to Systems (Tasks) 65

2. Create an /etc/dialups file that contains a list of serial devices.

Include all the ports that are being protected with dial-up passwords. The
/etc/dialups file should appear similar to the following:

/dev/term/a
/dev/term/b

/dev/term/c

3. Create an /etc/d_passwd file that contains the login programs that you are
requiring to have a dial-up password.

Include shell programs that a user could be running at login, for example, uucico,
sh, ksh, and csh. The /etc/d_passwd file should appear similar to the
following:

/usr/lib/uucp/uucico:encrypted-password:
/usr/bin/csh:encrypted-password:
/usr/bin/ksh:encrypted-password:
/usr/bin/sh:encrypted-password:

Later in the procedure, you are going to add the encrypted password for each login
program.

4. Set ownership to root on the two files.

chown root /etc/dialups /etc/d_passwd

5. Set group ownership to root on the two files.

chgrp root /etc/dialups /etc/d_passwd

6. Set read-and-write permissions for root on the two files.

chmod 600 /etc/dialups /etc/d_passwd

7. Create the encrypted passwords.

a. Create a temporary user.

useradd username

b. Create a password for the temporary user.

passwd username
New Password: <Type password>
Re-enter new Password: <Retype password>
passwd: password successfully changed for username

c. Capture the encrypted password.

grep username /etc/shadow > username.temp

d. Edit the username.temp file.

Delete all fields except the encrypted password. The second field holds the
encrypted password.

66 System Administration Guide: Security Services • January 2005

For example, in the following line, the encrypted password is U9gp9SyA/JlSk.

temp:U9gp9SyA/JlSk:7967:::::7988:

e. Delete the temporary user.

userdel username

8. Copy the encrypted password from username.temp file into the /etc/d_passwd
file.

You can create a different password for each login shell. Alternatively, use the same
password for each login shell.

9. Inform your dial-up users of the password.

You should ensure that your means of informing the users cannot be tampered
with.

� How to Temporarily Disable Dial-Up Logins

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Put the following single-line entry into the /etc/d_passwd file:

/usr/bin/sh:*:

Changing the Password Algorithm (Task
Map)
The following task map points to procedures to administer password algorithms.

Task For Instructions

Provide strong password encryption “How to Specify an Algorithm for Password Encryption”
on page 68

Steps

Chapter 3 • Controlling Access to Systems (Tasks) 67

Task For Instructions

Provide strong password encryption with a
name service

“How to Specify a New Password Algorithm for an NIS
Domain” on page 69

“How to Specify a New Password Algorithm for an NIS+
Domain” on page 70

“How to Specify a New Password Algorithm for an LDAP
Domain” on page 70

Add new password encryption module “How to Install a Password Encryption Module From a Third
Party” on page 71

Changing the Default Algorithm for
Password Encryption
By default, user passwords are encrypted with the crypt_unix algorithm. You can
use a stronger encryption algorithm, such as MD5 or Blowfish, by changing the
default password encryption algorithm.

� How to Specify an Algorithm for Password
Encryption
In this procedure, the BSD-Linux version of the MD5 algorithm is the default
encryption algorithm that is used when users change their passwords. This algorithm
is suitable for a mixed network of machines that run the Solaris, BSD, and Linux
versions of UNIX. For a list of password encryption algorithms and algorithm
identifiers, see Table 2–1.

1. Assume the Primary Administrator role, or become superuser.
The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Specify the identifier for your chosen encryption algorithm.
Type the identifier as the value for the CRYPT_DEFAULT variable in the
/etc/security/policy.conf file.
You might want to comment the file to explain your choice.

cat /etc/security/policy.conf
...

Steps

68 System Administration Guide: Security Services • January 2005

CRYPT_ALGORITHMS_ALLOW=1,2a,md5
#
Use the version of MD5 that works with Linux and BSD systems.
Passwords previously encrypted with __unix__ will be encrypted with MD5
when users change their passwords.
#
#
CRYPT_DEFAULT=__unix__

CRYPT_DEFAULT=1

In this example, the algorithms configuration ensures that the weakest algorithm,
crypt_unix, is never used to encrypt a password. Users whose passwords were
encrypted with the crypt_unix module get a crypt_bsdmd5-encrypted
password when they change their passwords.

For more information on configuring the algorithm choices, see the
policy.conf(4) man page.

Using the Blowfish Algorithm for Password Encryption

In this example, the identifier for the Blowfish algorithm, 2a, is specified as the value
for the CRYPT_DEFAULT variable in the policy.conf file:

CRYPT_ALGORITHMS_ALLOW=1,2a,md5
#CRYPT_ALGORITHMS_DEPRECATE=__unix__

CRYPT_DEFAULT=2a

This configuration is compatible with BSD systems that use the Blowfish algorithm.

� How to Specify a New Password Algorithm for an
NIS Domain
When users in an NIS domain change their passwords, the NIS client consults its local
algorithms configuration in the /etc/security/policy.conf file. The NIS client
machine encrypts the password.

1. Specify the password encryption algorithm in the
/etc/security/policy.conf file on the NIS client.

2. Copy the modified /etc/security/policy.conf file to every client machine
in the NIS domain.

3. To minimize confusion, copy the modified /etc/security/policy.conf file
to the NIS root server and to the slave servers.

Example 3–6

Steps

Chapter 3 • Controlling Access to Systems (Tasks) 69

� How to Specify a New Password Algorithm for an
NIS+ Domain
When users in an NIS+ domain change their passwords, the NIS+ name service
consults the algorithms configuration in the /etc/security/policy.conf file on
the NIS+ master. The NIS+ master, which is running the rpc.nispasswd daemon,
creates the encrypted password.

1. Specify the password encryption algorithm in the
/etc/security/policy.conf file on the NIS+ master.

2. To minimize confusion, copy the NIS+ master’s /etc/security/policy.conf
file to every host in the NIS+ domain.

� How to Specify a New Password Algorithm for an
LDAP Domain
When the LDAP client is properly configured, the LDAP client can use the new
password algorithms. The LDAP client behaves just as an NIS client behaves.

1. Specify a password encryption algorithm in the /etc/security/policy.conf
file on the LDAP client.

2. Copy the modified policy.conf file to every client machine in the LDAP
domain.

3. Ensure that the client’s /etc/pam.conf file does not use a pam_ldap module.

Ensure that a comment sign (#) precedes entries that include pam_ldap.so.1.
Also, do not use the new server_policy option with the
pam_authtok_store.so.1 module.

The PAM entries in the client’s pam.conf file enable the password to be encrypted
according to the local algorithms configuration. The PAM entries also enable the
password to be authenticated.

When users in the LDAP domain change their passwords, the LDAP client consults
its local algorithms configuration in the /etc/security/policy.conf file. The
LDAP client machine encrypts the password. Then, the client sends the encrypted
password, with a {crypt} tag, to the server. The tag tells the server that the
password is already encrypted. The password is then stored, as is, on the server.
For authentication, the client retrieves the stored password from the server. The
client then compares the stored password with the encrypted version that the client
has just generated from the user’s typed password.

Steps

Steps

70 System Administration Guide: Security Services • January 2005

Note – To take advantage of password policy controls on the LDAP server, use the
server_policy option with the pam_authtok_store entries in the pam.conf
file. Passwords are then encrypted on the server by using the Sun Java™ System
Directory Server’s cryptographic mechanism. For the procedure, see Chapter 11,
“Setting Up Sun Java System Directory Server With LDAP Clients (Tasks),” in
System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP).

� How to Install a Password Encryption Module
From a Third Party
A third-party password encryption algorithm is typically delivered as a module in a
software package. When you run the pkgadd command, scripts from the vendor
should modify the /etc/security/crypt.conf file. You then modify the
/etc/security/policy.conf file to include the new module and its identifier.

1. Add the software by using the pkgadd command.

For detailed instructions on how to add software, see “Adding or Removing a
Software Package (pkgadd)” in System Administration Guide: Basic Administration.

2. Confirm that the new module and module identifier have been added.

Read the list of encryption algorithms in the /etc/security/crypt.conf file.
For example, the following lines show that a module that implements the
crypt_rot13 algorithm has been installed.

crypt.conf
#
md5 /usr/lib/security/$ISA/crypt_md5.so
rot13 /usr/lib/security/$ISA/crypt_rot13.so

For *BSD - Linux compatibility
1 is MD5, 2a is Blowfish
1 /usr/lib/security/$ISA/crypt_bsdmd5.so

2a /usr/lib/security/$ISA/crypt_bsdbf.so

3. Add the identifier of the newly installed algorithm to the
/etc/security/policy.conf file.

The following lines show excerpts from the policy.conf file that would need to
be modified to add the rot13 identifier.

Copyright 1999-2002 Sun Microsystems, Inc. All rights reserved.
...
#ident "@(#)policy.conf 1.6 02/06/07 SMI"
...
crypt(3c) Algorithms Configuration
CRYPT_ALGORITHMS_ALLOW=1,2a,md5,rot13

Steps

Chapter 3 • Controlling Access to Systems (Tasks) 71

#CRYPT_ALGORITHMS_DEPRECATE=__unix__

CRYPT_DEFAULT=md5

In this example, the rot13 algorithm is used if the current password was
encrypted with the crypt_rot13 algorithm. New user passwords are encrypted
with the crypt_sunmd5 algorithm. This algorithms configuration works on
Solaris-only networks.

Monitoring and Restricting Superuser
(Task Map)
The following task map describes how to monitor and restrict the root user login.

Task Description For Instructions

Monitor who is using the
su command

Scans the sulog file on a regular basis. “How to Monitor Who Is Using the su
Command” on page 72

Display superuser activity
on the console

Monitors superuser access attempts. “How to Display Superuser (root)
Access Attempts to the Console” on page
73

Prevent remote access to
the console as superuser

Requires remote users to log in with their
user name and then become root.

“How to Prevent Remote Login by
Superuser (root)” on page 74

Monitoring and Restricting Superuser
An alternative to using the superuser account is to set up role-based access control.
Role-based access control is called RBAC. For overview information on RBAC, see
“Role-Based Access Control (Overview)” on page 177. To set up RBAC, see Chapter 9.

� How to Monitor Who Is Using the su Command
The sulog file lists every use of the su command, not only the su attempts that are
used to switch from user to superuser.

� Monitor the contents of the /var/adm/sulog file on a regular basis.

more /var/adm/sulog
SU 12/20 16:26 + pts/0 stacey-root

Step

72 System Administration Guide: Security Services • January 2005

SU 12/21 10:59 + pts/0 stacey-root
SU 01/12 11:11 + pts/0 root-rimmer
SU 01/12 14:56 + pts/0 pmorph-root

SU 01/12 14:57 + pts/0 pmorph-root

The entries display the following information:

� The date and time that the command was entered.

� If the attempt was successful. A plus sign (+) indicates a successful attempt. A
minus sign (-) indicates an unsuccessful attempt.

� The port from which the command was issued.

� The name of the user and the name of the switched identity.

The su logging in this file is enabled by default through the following entry in the
/etc/default/su file:

SULOG=/var/adm/sulog

� How to Display Superuser (root) Access Attempts
to the Console

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Edit the /etc/default/su file.

3. Uncomment the following line:

CONSOLE=/dev/console

4. Use the su command to become superuser.

Verify that a message is printed on the system console.

This method immediately detects someone who is trying to gain superuser access
to the system that you are on.

Steps

Chapter 3 • Controlling Access to Systems (Tasks) 73

� How to Prevent Remote Login by Superuser
(root)

Note – When you install the Solaris release, superuser login is restricted to the console
by default.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Edit the /etc/default/login file.

3. Uncomment the following line:

CONSOLE=/dev/console

When superuser access is restricted to the console, you can log in to a system as
superuser only from the console. Any users who try to remotely log in to this
system must first log in with their user login. After logging in with their user
name, users then use the su command to become superuser.

4. Attempt to log in remotely as superuser to this system, and verify that the
operation fails.

Preventing Direct root Login to the Console

In this example, superuser cannot directly log in to the console device. Users must log
in with their user name, and then use the su command to become superuser.

cat /etc/default/login

CONSOLE=

Steps

Example 3–7

74 System Administration Guide: Security Services • January 2005

SPARC: Controlling Access to System
Hardware (Task Map)
The following task map describes how to protect the PROM from unwanted access.

Task Description For Instructions

Prevent users from
changing system hardware
settings

Requires a password to modify PROM
settings.

“How to Require a Password for
Hardware Access” on page 75

Disable the abort sequence Prevents users from accessing the PROM. “How to Disable a System’s Abort
Sequence” on page 76

Controlling Access to System Hardware
You can protect the physical machine by requiring a password to gain access to the
hardware settings. You can also protect the machine by preventing a user from using
the abort sequence to leave the windowing system.

� How to Require a Password for Hardware Access
On an x86 system, the equivalent to protecting the PROM is to protect the BIOS. Refer
to your machine’s manuals for how to protect the BIOS.

1. Become superuser or assume a role that includes the Device Security profile, the
Maintenance and Repair profile, or the System Administrator profile.

The System Administrator profile includes the Maintenance and Repair profile. To
create a role that includes the System Administrator profile and to assign the role
to a user, see “Configuring RBAC (Task Map)” on page 196.

2. In a terminal window, type the PROM security mode.

eeprom security-mode=command

Changing PROM password:
New password: <Type password>
Retype new password: <Retype password>

Choose the value command or full. For more details, see the eeprom(1M) man
page.

Steps

Chapter 3 • Controlling Access to Systems (Tasks) 75

If, when you type the preceding command, you are not prompted for a PROM
password, the system already has a PROM password.

3. (Optional) To change the PROM password, type the following command:

eeprom security-password= Press Return
Changing PROM password:
New password: <Type password>
Retype new password: <Retype password>

The new PROM security mode and password are in effect immediately. However,
they are most likely to be noticed at the next boot.

Caution – Do not forget the PROM password. The hardware is unusable without
this password.

� How to Disable a System’s Abort Sequence
Some server systems have a key switch. When the key switch is set in the secure
position, the switch overrides the software keyboard abort settings. So, any changes
that you make with the following procedure might not be implemented.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Change the value of KEYBOARD_ABORT to disable.

Comment out the enable line in the /etc/default/kbd file. Then, add a
disable line:

cat /etc/default/kbd
...
KEYBOARD_ABORT affects the default behavior of the keyboard abort
sequence, see kbd(1) for details. The default value is "enable".
The optional value is "disable". Any other value is ignored.
...
#KEYBOARD_ABORT=enable

KEYBOARD_ABORT=disable

3. Update the keyboard defaults.

kbd -i

Steps

76 System Administration Guide: Security Services • January 2005

CHAPTER 4

Controlling Access to Devices (Tasks)

This chapter provides step-by-step instructions for protecting devices, in addition to a
reference section. The following is a list of the information in this chapter.

� “Configuring Devices (Task Map)” on page 77
� “Configuring Device Policy (Task Map)” on page 78
� “Managing Device Allocation (Task Map)” on page 81
� “Allocating Devices (Task Map)” on page 87
� “Device Protection (Reference)” on page 91

For overview information about device protection, see “Controlling Access to Devices”
on page 44.

Configuring Devices (Task Map)
The following task map points to tasks for managing access to devices.

Task For Instructions

Manage device policy “Configuring Device Policy (Task Map)” on page 78

Manage device allocation “Managing Device Allocation (Task Map)” on page 81

Use device allocation “Allocating Devices (Task Map)” on page 87

77

Configuring Device Policy (Task Map)
The following task map points to device configuration procedures that are related to
device policy.

Task Description For Instructions

View the device policy for the
devices on your system

Lists the devices and their device policy. “How to View Device Policy”
on page 78

Require privilege for device use Uses privileges to protect a device. “How to Change the Device Policy
on an Existing Device” on page 79

Remove privilege requirements
from a device

Removes or lessens the privileges that
are required to access a device.

Example 4–3

Audit changes in device policy Records changes in device policy in the
audit trail

“How to Audit Changes in Device
Policy” on page 80

Access /dev/arp Gets Solaris IP MIB-II information. “How to Retrieve IP MIB-II
Information From a /dev/* Device”
on page 81

Configuring Device Policy
Device policy restricts or prevents access to devices that are integral to the system. The
policy is enforced in the kernel.

� How to View Device Policy

� Display the device policy for all devices on your system.

% getdevpolicy | more
DEFAULT

read_priv_set=none
write_priv_set=none

ip:*
read_priv_set=net_rawaccess
write_priv_set=net_rawaccess

...

Step

78 System Administration Guide: Security Services • January 2005

Viewing the Device Policy for a Specific Device
In this example, the device policy for three devices is displayed.

% getdevpolicy /dev/allkmem /dev/ipsecesp /dev/hme
/dev/allkmem

read_priv_set=all
write_priv_set=all

/dev/ipsecesp
read_priv_set=sys_net_config
write_priv_set=sys_net_config

/dev/hme
read_priv_set=net_rawaccess

write_priv_set=net_rawaccess

� How to Change the Device Policy on an Existing
Device

1. Assume a role that includes the Device Security rights profile, or become
superuser.

The Primary Administrator role includes the Device Security rights profile. You can
also assign the Device Security rights profile to a role that you create. To create the
role and assign the role to a user, see Example 9–3.

2. Add policy to a device.

update_drv -a -p policy device-driver

-a Specifies a policy for device-driver.

-p policy Is the device policy for device-driver. Device policy specifies two
sets of privileges. One set is required to read the device. The other
set is required to write to the device.

device-driver Is the device driver.

For more information, see the update_drv(1M) man page.

Adding Policy to an Existing Device

In the following example, device policy is added to the ipnat device.

getdevpolicy /dev/ipnat
/dev/ipnat

read_priv_set=none
write_priv_set=none

update_drv -a \
-p ’read_priv_set=net_rawaccess write_priv_set=net_rawaccess’ ipnat
getdevpolicy /dev/ipnat
/dev/ipnat

Example 4–1

Steps

Example 4–2

Chapter 4 • Controlling Access to Devices (Tasks) 79

read_priv_set=net_rawaccess

write_priv_set=net_rawaccess

Removing Policy From a Device

In the following example, the read set of privileges is removed from the device policy
for the ipnat device.

getdevpolicy /dev/ipnat
/dev/ipnat

read_priv_set=net_rawaccess
write_priv_set=net_rawaccess

update_drv -a -p write_priv_set=net_rawaccess ipnat
getdevpolicy /dev/ipnat
/dev/ipnat

read_priv_set=none

write_priv_set=net_rawaccess

� How to Audit Changes in Device Policy
By default, the as audit class includes the AUE_MODDEVPLCY audit event.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Preselect the audit class that includes AUE_MODDEVPLCY audit event.

Add the as class to the flags line of the audit_control file. The file would
appear similar to the following:

audit_control file
dir:/var/audit
flags:lo,as
minfree:20

naflags:lo

For detailed instructions, see “How to Modify the audit_control File” on page
551.

Example 4–3

Steps

80 System Administration Guide: Security Services • January 2005

� How to Retrieve IP MIB-II Information From a
/dev/* Device
Applications that retrieve Solaris IP MIB-II information should open /dev/arp, not
/dev/ip.

1. Determine the device policy on /dev/ip and /dev/arp.

% getdevpolicy /dev/ip /dev/arp
/dev/ip

read_priv_set=net_rawaccess
write_priv_set=net_rawaccess

/dev/arp
read_priv_set=none

write_priv_set=none

Note that the net_rawaccess privilege is required for reading and writing to
/dev/ip. No privileges are required for /dev/arp.

2. Open /dev/arp and push the tcp and udp modules.

No privileges are required. This method is equivalent to opening /dev/ip and
pushing the arp, tcp and udp modules. Because opening /dev/ip now requires
a privilege, the /dev/arp method is preferred.

Managing Device Allocation (Task Map)
The following task map points to procedures that enable and configure device
allocation. Device allocation is not enabled by default. After device allocation is
enabled, see “Allocating Devices (Task Map)” on page 87.

Task Description For Instructions

Make a device allocatable Enables a device to be allocated to one
user at a time.

“How to Make a Device Allocatable”
on page 82

Authorize users to allocate a
device

Assigns device allocation authorizations to
users.

“How to Authorize Users to Allocate
a Device” on page 83

View the allocatable devices
on your system

Lists the devices that are allocatable, and
the state of the device.

“How to View Allocation
Information About a Device”
on page 84

Forcibly allocate a device Allocates a device to a user who has an
immediate need

“Forcibly Allocating a Device”
on page 84

Steps

Chapter 4 • Controlling Access to Devices (Tasks) 81

Task Description For Instructions

Forcibly deallocate a device Deallocates a device that is currently
allocated to a user

“Forcibly Deallocating a Device”
on page 85

Change the allocation
properties of a device

Changes the requirements for allocating a
device

“How to Change Which Devices Can
Be Allocated” on page 85

Create a device-clean script Purges data from a physical device. “Writing New Device-Clean Scripts”
on page 98

Disable device allocation Removes allocation restrictions from all
devices.

“How to Disable Auditing” on page
567

Audit device allocation Records device allocation in the audit trail “How to Audit Device Allocation”
on page 86

Managing Device Allocation
Device allocation restricts or prevents access to peripheral devices. Restrictions are
enforced at user allocation time. By default, users must have authorization to access
allocatable devices.

� How to Make a Device Allocatable
If you have already run the bsmconv command to enable auditing, then device
allocation is already enabled on your system. For more information, see the
bsmconv(1M) man page.

1. Assume a role that includes the Audit Control rights profile, or become
superuser.

The Primary Administrator role includes the Audit Control rights profile. You can
also assign the Audit Control rights profile to a role that you create. To create the
role and assign the role to a user, see Example 9–3.

2. Enable device allocation.

bsmconv
This script is used to enable the Basic Security Module (BSM).
Shall we continue with the conversion now? [y/n] y
bsmconv: INFO: checking startup file.
bsmconv: INFO: move aside /etc/rc3.d/S81volmgt.
bsmconv: INFO: turning on audit module.
bsmconv: INFO: initializing device allocation files.

Steps

82 System Administration Guide: Security Services • January 2005

The Basic Security Module is ready.
If there were any errors, please fix them now.
Configure BSM by editing files located in /etc/security.

Reboot this system now to come up with BSM enabled.

Note – The Volume Management daemon (/etc/rc3.d/S81volmgt) is disabled
by this command.

� How to Authorize Users to Allocate a Device

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Create a rights profile that contains the appropriate authorization and
commands.

Typically, you would create a rights profile that includes the
solaris.device.allocate authorization. Follow the instructions in “How to
Create or Change a Rights Profile” on page 215. Give the rights profile appropriate
properties, such as the following:

� Rights profile name: Device Allocation

� Granted authorizations: solaris.device.allocate
� Commands with security attributes: mount with the sys_mount privilege, and

umount with the sys_mount privilege

3. Create a role for the rights profile.

Follow the instructions in “How to Create and Assign a Role By Using the GUI”
on page 199. Use the following role properties as a guide:

� Role name: devicealloc
� Role full name: Device Allocator

� Role description: Allocates and mounts allocated devices

� Rights profile: Device Allocation

This rights profile must be at the top of the list of profiles that are included in
the role.

4. Assign the role to every user who is permitted to allocate a device.

5. Teach the users how to use device allocation.

For examples of allocating removable media, see “How to Allocate a Device”
on page 87.

Steps

Chapter 4 • Controlling Access to Devices (Tasks) 83

Because the Volume Management daemon (vold) is not running, removable media
are not automatically mounted. For examples of mounting a device that has been
allocated, see “How to Mount an Allocated Device” on page 88.

� How to View Allocation Information About a
Device
Device allocation must be enabled for this procedure to succeed. To enable device
allocation, see “How to Make a Device Allocatable” on page 82.

1. Assume a role that includes the Device Security rights profile, or become
superuser.

The Primary Administrator role includes the Device Security rights profile. You can
also assign the Device Security rights profile to a role that you create. To create the
role and assign the role to a user, see Example 9–3.

2. Display information about allocatable devices on your system.

list_devices device-name

where device-name is one of the following:

� audio[n] – Is a microphone and speaker.
� fd[n] – Is a diskette drive.
� sr[n] – Is a CD-ROM drive.
� st[n] – Is a tape drive.

If the list_devices command returns an error message similar to the following,
then either device allocation is not enabled, or you do not have sufficient permissions
to retrieve the information.

list_devices: No device maps file entry for specified device.

For the command to succeed, enable device allocation and assume a role with the
solaris.device.revoke authorization.

� Forcibly Allocating a Device
Forcible allocation is used when someone has forgotten to deallocate a device. Forcible
allocation can also be used when a user has an immediate need for a device.

The user or role must have the solaris.device.revoke authorization.

Before You
Begin

Steps

Troubleshooting

Before You
Begin

84 System Administration Guide: Security Services • January 2005

1. Determine if you have the appropriate authorizations in your role.

$ auths

solaris.device.allocate solaris.device.revoke

2. Forcibly allocate the device to the user who needs the device.

In this example, the tape drive is forcibly allocated to the user jdoe.

$ allocate -U jdoe

� Forcibly Deallocating a Device
Devices that a user has allocated are not automatically deallocated when the process
terminates or when the user logs out. Forcible deallocation is used when a user has
forgotten to deallocate a device.

The user or role must have the solaris.device.revoke authorization.

1. Determine if you have the appropriate authorizations in your role.

$ auths

solaris.device.allocate solaris.device.revoke

2. Forcibly deallocate the device.

In this example, the printer is forcibly deallocated. The printer is now available for
allocation by another user.

$ deallocate -F /dev/lp/printer-1

� How to Change Which Devices Can Be Allocated

1. Assume a role that includes the Device Security rights profile, or become
superuser.

The Primary Administrator role includes the Device Security rights profile. You can
also assign the Device Security rights profile to a role that you create. To create the
role and assign the role to a user, see Example 9–3.

2. Specify if authorization is required, or specify the solaris.device.allocate
authorization.

Change the fifth field in the device entry in the device_allocate file.

audio;audio;reserved;reserved;solaris.device.allocate;/etc/security/lib/audio_clean
fd0;fd;reserved;reserved;solaris.device.allocate;/etc/security/lib/fd_clean

sr0;sr;reserved;reserved;solaris.device.allocate;/etc/security/lib/sr_clean

where solaris.device.allocate indicates that a user must have the
solaris.device.allocate authorization to use the device.

Steps

Before You
Begin

Steps

Steps

Chapter 4 • Controlling Access to Devices (Tasks) 85

Permitting Any User to Allocate a Device

In the following example, any user on the system can allocate any device. The fifth
field in every device entry in the device_allocate file has been changed to an at
sign (@).

$ whoami
devicesec
$ vi /etc/security/device_allocate
audio;audio;reserved;reserved;@;/etc/security/lib/audio_clean
fd0;fd;reserved;reserved;@;/etc/security/lib/fd_clean
sr0;sr;reserved;reserved;@;/etc/security/lib/sr_clean

...

Preventing Some Peripheral Devices From Being Used

In the following example, the audio device cannot be used. The fifth field in the audio
device entry in the device_allocate file has been changed to an asterisk (*).

$ whoami
devicesec
$ vi /etc/security/device_allocate
audio;audio;reserved;reserved;*;/etc/security/lib/audio_clean
fd0;fd;reserved;reserved;solaris device.allocate;/etc/security/lib/fd_clean
sr0;sr;reserved;reserved;solaris device.allocate;/etc/security/lib/sr_clean

...

Preventing All Peripheral Devices From Being Used

In the following example, no peripheral device can be used. The fifth field in every
device entry in the device_allocate file has been changed to an asterisk (*).

$ whoami
devicesec
$ vi /etc/security/device_allocate
audio;audio;reserved;reserved;*;/etc/security/lib/audio_clean
fd0;fd;reserved;reserved;*;/etc/security/lib/fd_clean
sr0;sr;reserved;reserved;*;/etc/security/lib/sr_clean

...

� How to Audit Device Allocation
By default, the device allocation commands are in the other audit class.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

Example 4–4

Example 4–5

Example 4–6

Steps

86 System Administration Guide: Security Services • January 2005

2. Preselect the ot class for auditing.

Add the ot class to the flags line of the audit_control file. The file would
appear similar to the following:

audit_control file
dir:/var/audit
flags:lo,ot
minfree:20

naflags:lo

For detailed instructions, see “How to Modify the audit_control File” on page
551.

Allocating Devices (Task Map)
The following task map points to procedures that show users how to allocate devices.

Task Description For Instructions

Allocate a device Enables a user to use a device, while
preventing any other user from using the
device.

“How to Allocate a Device” on page
87

Mount an allocated device Enables a user to view a device that
requires mounting, such as a CD-ROM or
a diskette.

“How to Mount an Allocated
Device” on page 88

Deallocate a device Makes an allocatable device available for
use by another user.

“How to Deallocate a Device”
on page 90

Allocating Devices
Device allocation reserves the use of a device to one user at a time. Devices that
require a mount point must be mounted.

� How to Allocate a Device
Device allocation must be enabled, as described in “How to Make a Device
Allocatable” on page 82. If authorization is required, the user must have the
authorization.

Before You
Begin

Chapter 4 • Controlling Access to Devices (Tasks) 87

1. Allocate the device.
Specify the device by device name.

% allocate device-name

2. Verify that the device is allocated.
Run the identical command.

% allocate device-name
allocate. Device already allocated.

Allocating a Microphone
In this example, the user jdoe allocates a microphone, audio.

% whoami
jdoe
% allocate audio

Allocating a Printer
In this example, a user allocates a printer. No one else can print to printer-1 until
the user deallocates it, or until the printer is forcibly allocated to another user.

% allocate /dev/lp/printer-1

For an example of forcible deallocation, see “Forcibly Deallocating a Device” on page
85.

Allocating a Tape Drive
In this example, the user jdoe allocates a tape drive, st0.

% whoami
jdoe

% allocate st0

If the allocate command cannot allocate the device, an error message is displayed
in the console window. For a list of allocation error messages, see the allocate(1)
man page.

� How to Mount an Allocated Device
The user or role has allocated the device. To mount a device, the user or role must
have the privileges that are required for mounting the device. To give the required
privileges, see “How to Authorize Users to Allocate a Device” on page 83.

1. Assume a role that can allocate and mount a device.

% su role-name
Password: <Type role-name password>

Steps

Example 4–7

Example 4–8

Example 4–9

Troubleshooting

Before You
Begin

Steps

88 System Administration Guide: Security Services • January 2005

$

2. Create and protect a mount point in the role’s home directory.

You only need to do this step the first time you need a mount point.

$ mkdir mount-point ; chmod 700 mount-point

3. List the allocatable devices.

$ list_devices -l

List of allocatable devices

4. Allocate the device.

Specify the device by device name.

$ allocate device-name

5. Mount the device.

$ mount -o ro -F filesystem-type device-path mount-point

where

-o ro Indicates that the device is to be mounted read-only.
Use-o rw to indicate that you should be able to write to the
device.

-F filesystem-type Indicates the file system format of the device. Typically, a
CD-ROM is formatted with an HSFS file system. A diskette is
typically formatted with a PCFS file system.

device-path Indicates the path to the device. The output of the
list_devices -l command includes the device-path.

mount-point Indicates the mount point that you created in Step 2.

Allocating a Diskette Drive

In this example, a user assumes a role that can allocate and mount a diskette drive,
fd0. The diskette is formatted with a PCFS file system.

% roles
devicealloc
% su devicealloc
Password: <Type devicealloc password>
$ mkdir /home/devicealloc/mymnt
$ chmod 700 /home/devicealloc/mymnt
$ list_devices -l
...
device: fd0 type: fd files: /dev/diskette /dev/rdiskette /dev/fd0a
...
$ allocate fd0
$ mount -o ro -F pcfs /dev/diskette /home/devicealloc/mymnt
$ ls /home/devicealloc/mymnt

Example 4–10

Chapter 4 • Controlling Access to Devices (Tasks) 89

List of the contents of diskette

Allocating a CD-ROM Drive

In this example, a user assumes a role that can allocate and mount a CD-ROM drive,
sr0. The drive is formatted as an HSFS file system.

% roles
devicealloc
% su devicealloc
Password: <Type devicealloc password>
$ mkdir /home/devicealloc/mymnt
$ chmod 700 /home/devicealloc/mymnt
$ list_devices -l
...
device: sr0 type: sr files: /dev/sr0 /dev/rsr0 /dev/dsk/c0t2d0s0 ...
...
$ allocate sr0
$ mount -o ro -F hsfs /dev/sr0 /home/devicealloc/mymnt
$ cd /home/devicealloc/mymnt ; ls

List of the contents of CD-ROM

If the mount command cannot mount the device, an error message is displayed:
mount: insufficient privileges. Check the following:

� Make sure that you are executing the mount command in a profile shell. If you
have assumed a role, the role has a profile shell. If you are a user who has been
assigned a profile with the mount command, you must create a profile shell. The
commands pfsh, pfksh, and pfcsh create a profile shell.

� Make sure that you own the specified mount point. You should have read, write,
and execute access to the mount point.

Contact your administrator if you still cannot mount the allocated device.

� How to Deallocate a Device
Deallocation enables other users to allocate and use the device when you are finished.

You must have allocated the device.

1. If the device is mounted, unmount the device.

$ cd $HOME

$ umount mount-point

Example 4–11

Troubleshooting

Before You
Begin

Steps

90 System Administration Guide: Security Services • January 2005

2. Deallocate the device.

$ deallocate device-name

Deallocating a Microphone

In this example, the user jdoe deallocates the microphone, audio.

% whoami
jdoe

% deallocate audio

Deallocating a CD-ROM Drive

In this example, the Device Allocator role deallocates a CD-ROM drive. After the
message is printed, the CD-ROM is ejected.

$ whoami
devicealloc
$ cd /home/devicealloc
$ umount /home/devicealloc/mymnt
$ ls /home/devicealloc/mymnt
$
$ deallocate sr0
/dev/sr0: 326o
/dev/rsr0: 326o
...

sr_clean: Media in sr0 is ready. Please, label and store safely.

Device Protection (Reference)
Devices in the Solaris OS are protected by device policy. Peripheral devices can be
protected by device allocation. Device policy is enforced by the kernel. Device
allocation is optionally enabled, and is enforced at the user level.

Device Policy Commands
Device management commands administer the device policy on local files. Device
policy can include privilege requirements. Only superuser or a role of equivalent
capabilities can manage devices.

The following table lists the device management commands.

Example 4–12

Example 4–13

Chapter 4 • Controlling Access to Devices (Tasks) 91

TABLE 4–1 Device Management Commands

Command Purpose Man Page

devfsadm Administers devices and device drivers on a
running system. Also loads device policy.

The devfsadm command enables the cleanup of
dangling /dev links to disk, tape, port, audio,
and pseudo devices. Devices for a named driver
can also be reconfigured.

devfsadm(1M)

getdevpolicy Displays the policy associated with one or more
devices. This command can be run by any user.

getdevpolicy(1M)

add_drv Adds a new device driver to a running system.
Contains options to add device policy to the new
device. Typically, this command is called in a
script when a device driver is being installed.

add_drv(1M)

update_drv Updates the attributes of an existing device
driver. Contains options to update the device
policy for the device. Typically, this command is
called in a script when a device driver is being
installed.

update_drv(1M)

rem_drv Removes a device or device driver. rem_drv(1M)

Device Allocation
Device allocation can protect your site from loss of data, computer viruses, and other
security breaches. Unlike device policy, device allocation is optional. Devices are not
allocatable until the bsmconv script is run. Device allocation uses authorizations to
limit access to allocatable devices.

Components of Device Allocation
The components of the device allocation mechanism are as follows:

� The allocate, deallocate, dminfo, and list_devices commands. For more
information, see “Device Allocation Commands” on page 93.

� Device-clean scripts for each allocatable device.

These commands and scripts use the following local files to implement device
allocation:

� The /etc/security/device_allocate file. For more information, see the
device_allocate(4) man page.

� The /etc/security/device_maps file. For more information, see the
device_maps(4) man page.

92 System Administration Guide: Security Services • January 2005

� A lock file, in the /etc/security/dev directory, for each allocatable device.

� The changed attributes of the lock files that are associated with each allocatable
device.

Note – The /etc/security/dev directory might not be supported in future releases
of the Solaris OS.

Device Allocation Commands
With uppercase options, the allocate, deallocate, and list_devices
commands are administrative commands. Otherwise, these commands are user
commands. The following table lists the device allocation commands.

TABLE 4–2 Device Allocation Commands

Command Purpose Man Page

bsmconv Creates databases to handle device allocation. Also
enables the auditing service.You must be superuser or
in the Primary Administrator role.

bsmconv(1M)

dminfo Searches for an allocatable device by device type, by
device name, and by full path name.

dminfo(1M)

list_devices Lists the status of allocatable devices.

Lists all the device-special files that are associated
with any device that is listed in the device_maps
file.

list_devices(1)

list_devices -U Lists the devices that are allocatable or allocated to
the specified user ID. This option allows you to check
which devices are allocatable or allocated to another
user. You must have the solaris.device.revoke
authorization.

allocate Reserves an allocatable device for use by one user.

By default, a user must have the
solaris.device.allocate authorization to
allocate a device. You can modify the
device_allocate file to not require user
authorization. Then, any user on the system can
request the device to be allocated for use.

allocate(1)

deallocate Removes the allocation reservation from a device. deallocate(1)

Chapter 4 • Controlling Access to Devices (Tasks) 93

Authorizations for the Allocation Commands

By default, users must have the solaris.device.allocate authorization to
reserve an allocatable device. To create a rights profile to include the
solaris.device.allocate authorization, see “How to Authorize Users to
Allocate a Device” on page 83.

Administrators must have the solaris.device.revoke authorization to change
the allocation state of any device. For example, the -U option to the allocate and
list_devices commands, and the -F option to the deallocate command require
the solaris.device.revoke authorization.

For more information, see “Commands That Require Authorizations” on page 237.

Allocate Error State
A device is put in an allocate error state when the deallocate command fails to
deallocate, or when the allocate command fails to allocate. When an allocatable
device is in an allocate error state, then the device must be forcibly deallocated. Only
superuser or a role with the Device Management rights profile or the Device Security
rights profile can handle an allocate error state.

The deallocate command with the -F option forces deallocation. Or, you can use
allocate -U to assign the device to a user. Once the device is allocated, you can
investigate any error messages that appear. After any problems with the device are
corrected, you can forcibly deallocate it.

device_maps File
Device maps are created when you set up device allocation. A default
/etc/security/device_maps file is created by the bsmconv command when the
auditing service is enabled. This initial device_maps file can be customized for your
site. The device_maps file includes the device names, device types, and
device-special files that are associated with each allocatable device.

The device_maps file defines the device-special file mappings for each device, which
in many cases is not intuitive. This file allows programs to discover which
device-special files map to which devices. You can use the dminfo command, for
example, to retrieve the device name, the device type, and the device-special files to
specify when you set up an allocatable device. The dminfo command uses the
device_maps file to report this information.

Each device is represented by a one-line entry of the form:

device-name:device-type:device-list

EXAMPLE 4–14 Sample device_maps Entry

The following is an example of an entry in a device_maps file for a diskette drive,
fd0:

94 System Administration Guide: Security Services • January 2005

EXAMPLE 4–14 Sample device_maps Entry (Continued)

fd0:\
fd:\
/dev/diskette /dev/rdiskette /dev/fd0a /dev/rfd0a \

/dev/fd0b /dev/rfd0b /dev/fd0c /dev/fd0 /dev/rfd0c /dev/rfd0:\

Lines in the device_maps file can end with a backslash (\) to continue an entry on
the next line. Comments can also be included. A pound sign (#) comments all
subsequent text until the next newline that is not immediately preceded by a
backslash. Leading and trailing blanks are allowed in any field. The fields are defined
as follows:

device-name Specifies the name of the device. For a list of current device names, see
“How to View Allocation Information About a Device” on page 84.

device-type Specifies the generic device type. The generic name is the name for the
class of devices, such as st, fd, or audio. The device-type field
logically groups related devices.

device-list Lists the device-special files that are associated with the physical
device. The device-list must contain all of the special files that allow
access to a particular device. If the list is incomplete, a malevolent user
can still obtain or modify private information. Valid entries for the
device-list field reflect the device files that are located in the /dev
directory.

device_allocate File
An initial /etc/security/device_allocate file is created by the bsmconv
command when the auditing service is enabled. This initial device_allocate file
can be used as a starting point. You can modify the device_allocate file to change
devices from allocatable to nonallocatable, or to add new devices. A sample
device_allocate file follows.

st0;st;;;;/etc/security/lib/st_clean
fd0;fd;;;;/etc/security/lib/fd_clean
sr0;sr;;;;/etc/security/lib/sr_clean

audio;audio;;;*;/etc/security/lib/audio_clean

An entry in the device_allocate file does not mean that the device is allocatable,
unless the entry specifically states that the device is allocatable. In the sample
device_allocate file, note the asterisk (*) in the fifth field of the audio device
entry. An asterisk in the fifth field indicates to the system that the device is not
allocatable. Therefore, the device cannot be used. Other values or no value in this field
indicates that the device can be used.

Chapter 4 • Controlling Access to Devices (Tasks) 95

In the device_allocate file, each device is represented by a one-line entry of the
form:

device-name;device-type;reserved;reserved;auths;device-exec

Lines in the device_allocate file can end with a backslash (\) to continue an entry
on the next line. Comments can also be included. A pound sign (#) comments all
subsequent text until the next newline that is not immediately preceded by a
backslash. Leading and trailing blanks are allowed in any field. The fields are defined
as follows:

device-name Specifies the name of the device. For a list of current device names, see
“How to View Allocation Information About a Device” on page 84.

device-type Specifies the generic device type. The generic name is the name for the
class of devices, such as st, fd, and sr. The device-type field logically
groups related devices. When you make a device allocatable, retrieve
the device name from the device-type field in the device_maps file.

reserved Sun reserves the two fields that are marked reserved for future use.

auths Specifies whether the device is allocatable. An asterisk (*) in this field
indicates that the device is not allocatable. An authorization string, or
an empty field, indicates that the device is allocatable. For example, the
string solaris.device.allocate in the auths field indicates that
the solaris.device.allocate authorization is required to allocate
the device. An at sign (@) in this file indicates that the device is
allocatable by any user.

device-exec Supplies the path name of a script to be invoked for special handling,
such as cleanup and object-reuse protection during the allocation
process. The device-exec script is run any time that the device is acted
on by the deallocate command.

For example, the following entry for the sr0 device indicates that the CD-ROM drive
is allocatable by a user with the solaris.device.allocate authorization:

sr0;sr;reserved;reserved;solaris.device.allocate;/etc/security/lib/sr_clean

You can decide to accept the default devices and their defined characteristics. After
you install a new device, you can modify the entries. Any device that needs to be
allocated before use must be defined in the device_allocate and device_maps
files for that device’s system. Currently, cartridge tape drives, diskette drives,
CD-ROM drives, and audio chips are considered allocatable. These device types have
device-clean scripts.

96 System Administration Guide: Security Services • January 2005

Note – Xylogics™ tape drives or Archive tape drives also use the st_clean script that
is supplied for SCSI devices. You need to create your own device-clean scripts for
other devices, such as modems, terminals, graphics tablets, and other allocatable
devices. The script must fulfill object-reuse requirements for that type of device.

Device-Clean Scripts
Device allocation satisfies part of what is called the object reuse requirement. The
device-clean scripts address the security requirement that all usable data be purged
from a physical device before reuse. The data is cleared before the device is allocatable
by another user. By default, cartridge tape drives, diskette drives, CD-ROM drives,
and audio devices require device-clean scripts. The Solaris OS provides the scripts.
This section describes what device-clean scripts do.

Device-Clean Script for Tapes

The st_clean device-clean script supports three tape devices:

� SCSI ¼-inch tape
� Archive ¼-inch tape
� Open-reel ½-inch tape

The st_clean script uses the rewoffl option to the mt command to clean up the
device. For more information, see the mt(1) man page. If the script runs during system
boot, the script queries the device to determine if the device is online. If the device is
online, the script determines if the device has media in it. The ¼-inch tape devices that
have media in them are placed in the allocate error state. The allocate error state forces
the administrator to manually clean up the device.

During normal system operation, when the deallocate command is executed in
interactive mode, the user is prompted to remove the media. Deallocation is delayed
until the media is removed from the device.

Device-Clean Scripts for Diskettes and CD-ROM Drives

The following device-clean scripts are provided for diskettes and CD-ROM drives:

� fd_clean script – Is a device-clean script for diskettes.
� sr_clean script – Is a device-clean script for CD-ROM drives.

The scripts use the eject command to remove the media from the drive. If the eject
command fails, the device is placed in the allocate error state. For more information,
see the eject(1) man page.

Chapter 4 • Controlling Access to Devices (Tasks) 97

Device-Clean Script for Audio

Audio devices are cleaned up with an audio_clean script. The script performs an
AUDIO_GETINFO ioctl system call to read the device. The script then performs an
AUDIO_SETINFO ioctl system call to reset the device configuration to the default.

Writing New Device-Clean Scripts

If you add more allocatable devices to the system, you might need to create your own
device-clean scripts. The deallocate command passes a parameter to the
device-clean scripts. The parameter, which is shown here, is a string that contains the
device name. For more information, see the device_allocate(4) man page.

clean-script -[I|i|F|S] device-name

Device-clean scripts must return “0” for success and greater than “0” for failure. The
options -I, -F, and -S determine the running mode of the script:

-I Is needed during system boot only. All output must go to the system console.
Failure or inability to forcibly eject the media must put the device in the
allocate error state.

-i Similar to the -I option, except that output is suppressed.

-F Is for forced cleanup. The option is interactive and assumes that the user is
available to respond to prompts. A script with this option must attempt to
complete the cleanup if one part of the cleanup fails.

-S Is for standard cleanup. The option is interactive and assumes that the user is
available to respond to prompts.

98 System Administration Guide: Security Services • January 2005

CHAPTER 5

Using the Basic Audit Reporting Tool
(Tasks)

This chapter describes how to create a manifest of the files on a system and how to use
that manifest to check the integrity of the system. The Basic Audit Reporting Tool
(BART) enables you to comprehensively validate systems by performing file-level
checks of a system over time.

The following is a list of the information in this chapter:

� “Using BART (Task Map)” on page 102
� “Basic Audit Reporting Tool (Overview)” on page 99
� “Using BART (Tasks)” on page 103
� “BART Manifest, Rules File, and Reporting (Reference)” on page 117

Basic Audit Reporting Tool (Overview)
BART is a file tracking tool that operates entirely at the file system level. Using BART
gives you the ability to quickly, easily, and reliably gather information about the
components of the software stack that is installed on deployed systems. Using BART
can greatly reduce the costs of administering a network of systems by simplifying
time-consuming administrative tasks.

BART enables you to determine what file-level changes have occurred on a system,
relative to a known baseline. You use BART to create a baseline or control manifest
from a fully installed and configured system. You can then compare this baseline with
a snapshot of the system at a later time, generating a report that lists file-level changes
that have occurred on the system since it was installed.

The bart command is a standard UNIX command. You can redirect the output of the
bart command to a file for later processing.

99

BART Features
BART has been designed with an emphasis on a simple syntax that is both powerful
and flexible. The tool enables you to generate manifests of a given system over time.
Then, when the system’s files need to be validated, you can generate a report by
comparing the old and new manifests. Another way to use BART is to generate
manifests of several similar systems and run system-to-system comparisons. The main
difference between BART and existing auditing tools is that BART is flexible, both in
terms of what information is tracked and what information is reported.

Additional benefits and uses of BART include the following:

� Provides an efficient and easy method for cataloging a system that is running the
Solaris software at the file level.

� Enables you to define which files to monitor and gives you the ability to modify
profiles when necessary. This flexibility allows you to monitor local customizations
and enables you to reconfigure software easily and efficiently.

� Ensures that systems are running reliable software.

� Allows you to monitor file-level changes of a system over time, which can help you
locate corrupted or unusual files.

� Helps you troubleshoot system performance issues.

BART Components
BART has two main components and one optional component:

� BART Manifest
� BART Report
� BART Rules File

BART Manifest
You use the bart create command to take a file-level snapshot of a system at a
particular time. The output is a catalog of files and file attributes called a manifest. The
manifest lists information about all the files or specific files on a system. It contains
information about attributes of files, which can include some uniquely identifying
information, such as an MD5 checksum. For more information about the MD5
checksum, see the md5(3EXT) man page. A manifest can be stored and transferred
between client and server systems.

100 System Administration Guide: Security Services • January 2005

Note – BART does not cross file system boundaries, with the exception of file systems
of the same type. This constraint makes the output of the bart create command
more predictable. For example, without arguments, the bart create command
catalogs all UFS file systems under the root (/) directory. However, no NFS or TMPFS
file systems or mounted CD-ROMs would be cataloged. When creating a manifest, do
not attempt to audit file systems on a network. Note that using BART to monitor
networked file systems can consume large resources to generate manifests that will
have little value.

For more information about BART manifests, see “BART Manifest File Format”
on page 117.

BART Report
The report tool has three inputs: the two manifests to be compared and an optional
user-provided rules file that indicates which discrepancies are to be flagged.

You use the bart compare command to compare two manifests, a control manifest
and a test manifest. These manifests must be prepared with the same file systems,
options, and rules file that you use with the bart create command.

The output of the bart compare command is a report that lists per-file discrepancies
between the two manifests. A discrepancy is a change to any attribute for a given file
that is cataloged for both manifests. Additions or deletions of file entries between the
two manifests are also considered discrepancies.

There are two levels of control when reporting discrepancies:

� When generating a manifest
� When producing reports

These levels of control are intentional, since generating a manifest is more costly than
reporting discrepancies between two manifests. Once you have created manifests, you
have the ability to compare manifests from different perspectives by running the bart
compare command with different rules files.

For more information about BART reports, see “BART Reporting” on page 119.

BART Rules File
The rules file is a text file that you can optionally use as input to the bart command.
This file uses inclusion and exclusion rules. A rules file is used to create custom
manifests and reports. A rules file enables you to express in a concise syntax which
sets of files you want to catalog, as well as which attributes to monitor for any given
set of files. When you compare manifests, the rules file aids in flagging discrepancies
between the manifests. Using a rules file is an effective way to gather specific
information about files on a system.

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 101

You create a rules file by using a text editor. With a rules file, you can perform the
following tasks:

� Use the bart create command to create a manifest that lists information about
all or specific files on a system.

� Use the bart compare command to generate a report that monitors specific
attributes of a file system.

Note – You can create several rules files for different purposes. However, if you create a
manifest by using a rules file, you must use the same rules file when you compare the
manifests. If you do not use the same rules file when comparing manifests that were
created with a rules file, the output of the bart compare command will list many
invalid discrepancies.

A rules file can also contain syntax errors and other ambiguous information as a result
of user error. If a rules file does contain misinformation, these errors will also be
reported.

Using a rules file to monitor specific files and file attributes on a system requires
planning. Before you create a rules file, decide which files and file attributes on the
system you want to monitor. Depending on what you are trying to accomplish, you
might use a rules file to create manifests, compare manifests, or for purposes.

For more information about the BART rules file, see “BART Rules File Format”
on page 118 and the bart_rules(4) man page.

Using BART (Task Map)

Task Description For Instructions

Create a manifest. Obtain a manifest that lists information about
every file that is installed on a system.

“How to Create a Manifest”
on page 104

Create a custom manifest. Obtain a manifest that lists information about
specific files that are installed on a system in
one of the following ways:
� By specifying a subtree
� By specifying a file name
� By using a rules file

“How to Customize a Manifest”
on page 106

102 System Administration Guide: Security Services • January 2005

Task Description For Instructions

Compare manifests for the
same system over time. Or,
compare manifests for
different systems with a
control system manifest.

Obtain a report that compares changes to a
system over time. Or, obtain a report that
compares one or several systems to control
system.

“How to Compare Manifests for
the Same System Over Time”
on page 109

“How to Compare Manifests
From a Different System With the
Manifest of a Control System”
on page 112

(Optional) Customize a BART
report.

Obtain a custom BART report in one of the
following ways:
� By specifying attributes.
� By using a rules file.

“How to Customize a BART
Report by Specifying File
Attributes” on page 114

“How to Customize a BART
Report by Using a Rules File”
on page 115

Using BART (Tasks)
You can run the bart command as a regular user, superuser, or a user who has
assumed the Primary Administrator role. If you run the bart command as a regular
user, you will only be able to catalog and monitor files that you have permission to
access, for example, information about files in your home directory. The advantage of
becoming superuser when you run the bart command is that the manifests you
create will contain information about hidden and private files that you might want to
monitor. If you need to catalog and monitor information about files that have
restricted permissions, for example, the /etc/passwd or /etc/shadow file, run the
bart command as superuser or assume an equivalent role. For more information
about using role-based access control, see “Configuring RBAC (Task Map)” on page
196.

BART Security Considerations
Running the bart command as superuser makes the output readable by anyone. This
output might contain file names that are intended to be private. If you become
superuser when you run the bart command, take appropriate measures to protect the
output. For example, use options that generate output files with restrictive
permissions.

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 103

Note – The procedures and examples in this chapter show the bart command run by
superuser. Unless otherwise specified, running the bart command as superuser is
optional.

� How to Create a Manifest
You can create a manifest of a system immediately after an initial Solaris software
installation. This type of manifest will provide you with a baseline for comparing
changes to the same system over time. Or, you can use this manifest to compare with
the manifests for different systems. For example, if you take a snapshot of each system
on your network, and then compare each test manifest with the control manifest, you
can quickly determine what you need to do to synchronize the test system with the
baseline configuration.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. After installing the Solaris software, create a control manifest and redirect the
output to a file.

bart create options > control-manifest

-R Specifies the root directory for the manifest. All paths specified by the rules
will be interpreted relative to this directory. All paths reported in the
manifest will be relative to this directory.

-I Accepts a list of individual files to be cataloged, either on the command line
or read from standard input.

-r Is the name of the rules file for this manifest. Note that –, when used with
the -r option, will be read the rules file from standard input.

-n Turns off content signatures for all regular files in the file list. This option
can be used to improve performance. Or, you can use this option if the
contents of the file list are expected to change, as in the case of system log
files.

3. Examine the contents of the manifest.

4. Save the manifest for future use.

Choose a meaningful name for the manifest. For example, use the system name
and date that the manifest was created.

Steps

104 System Administration Guide: Security Services • January 2005

Creating a Manifest That Lists Information About Every File on a
System

If you run the bart create command without any options, information about every
file that is installed on the system will be cataloged. Use this type of manifest as a
baseline when you are installing many systems from a central image. Or, use this type
of manifest to run comparisons when you want to ensure that the installations are
identical.

For example:

bart create
! Version 1.0
! Thursday, December 04, 2003 (16:17:39)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/ D 1024 40755 user::rwx,group::r-x,mask:r-x,other:r-x 3fd9ea47 0 0
/.java D 512 40755 user::rwx,group::r-x,mask:r-x,other:r-x 3f8dc04d 0 10
/.java/.userPrefs D 512 40700 user::rwx,group::---,mask:---
other:--- 3f8dc06b 010
/.java/.userPrefs/.user.lock.root F 0 100600 user::rw-
group::---,mask:---,other:--- 3f8dc06b 0 10 -
/.java/.userPrefs/.userRootModFile.root F 0 100600 user::rw-,
group::---,mask:---,other:--- 3f8dc0a1 0 10 -
/.smc.properties F 1389 100644 user::rw-,group::r--,mask:r--
other:r-- 3f8dca0c0 10
.
.
.
/var/sadm/pkg/SUNWdtmad/install/depend F 932 100644 user::rw-,
group::r--,mask:r--,other:r-- 3c23a19e 0 0 -
/var/sadm/pkg/SUNWdtmad/pkginfo F 594 100644 user::rw-
group::r--,mask:r--,other:r-- 3f81e416 0 0 -
/var/sadm/pkg/SUNWdtmad/save D 512 40755 user::rwx,group::r-x
mask:r-x,other:r-x 3f81e416 0 0
/var/sadm/pkg/SUNWdtmaz D 512 40755 user::rwx,group::r-x
mask:r-x,other:r-x 3f81e41b 0 0
/var/sadm/pkg/TSIpgxw/save D 512 40755 user::rwx
group::r-x,mask:r-x,other:r-x 3f81e892 0 0
.
.

.

Example 5–1

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 105

Each manifest consists of a header and entries. Each manifest file entry is a single line,
depending on the file type. For example, for each manifest entry in the preceding
output, type F specifies a file and type D specifies a directory. Also listed is information
about size, content, user ID, group ID, and permissions. File entries in the output are
sorted by the encoded versions of the file names to correctly handle special characters.
All entries are sorted in ascending order by file name. All nonstandard file names,
such as those that contain embedded newline or tab characters, have the nonstandard
characters quoted before being sorted.

Lines that begin with ! supply metadata about the manifest. The manifest version line
indicates the manifest specification version. The date line shows the date on which the
manifest was created, in date form. See the date(1) man page. Some lines are ignored
by the manifest comparison tool. Ignored lines include blank lines, lines that consist
only of white space, and comments that begin with #.

� How to Customize a Manifest
You can customize a manifest in one of the following ways:

� By specifying a subtree

Creating a manifest for an individual subtree on a system is an efficient way to
monitor changes to specific files, rather than the entire contents of a large directory.
You can create a baseline manifest of a specific subtree on your system, then
periodically create test manifests of the same subtree. Use the bart compare
command to compare the control manifest with the test manifest. By using this
option, you are able to efficiently monitor important file systems to determine
whether any files have been compromised by an intruder.

� By specifying a file name

Since creating a manifest that catalogs the entire system is more time-consuming,
takes up more space, and is more costly, you might choose to use this option of the
bart command when you want to only list information about a specific file or files
on a system.

� By using a rules file

You use a rules file to create custom manifests that list information about specific
files and specific subtrees on a given system. You can also use a rules file to
monitor specific file attributes. Using a rules file to create and compare manifests
gives you the flexibility to specify multiple attributes for more than one file or
subtree. Whereas, from the command line, you can only specify a global attribute
definition that applies to all files for each manifest you create or report you
generate.

1. Determine which files you want to catalog and monitor.

2. Assume the Primary Administrator role, or become superuser.

Steps

106 System Administration Guide: Security Services • January 2005

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

3. After installing the Solaris software, create a custom manifest by using one of
the following options:

� By specifying a subtree:

bart create -R root-directory

� By specifying a file name or file names:

bart create -I filename...

For example:

bart create -I /etc/system /etc/passwd /etc/shadow

� By using a rules file:

bart create -r rules-file

4. Examine the contents of the manifest.

5. Save the manifest for future use.

Creating a Manifest by Specifying a Subtree

This example shows how to create a manifest that contains information about the files
in the /etc/ssh subtree only.

bart create -R /etc/ssh
! Version 1.0
! Saturday, November 29, 2003 (14:05:36)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/ D 512 40755 user::rwx,group::r-x,mask:r-x,other:r-x 3f81eab9 0 3
/ssh_config F 861 100644 user::rw-,group::r--,mask:r--,
other:r-- 3f81e504 0 3 422453ca0e2348cd9981820935600395
/ssh_host_dsa_key F 668 100600 user::rw-,group::---,mask:---,
other:--- 3f81eab9 0 0 5cc28cdc97e833069fd41ef89e4d9834
/ssh_host_dsa_key.pub F 602 100644 user::rw-,group::r--,mask:r--,
other:r-- 3f81eab9 0 0 16118c736995a4e4754f5ab4f28cf917
/ssh_host_rsa_key F 883 100600 user::rw-,group::---,mask:---,
other:--- 3f81eaa2 0 0 6ff17aa968ecb20321c448c89a8840a9
/ssh_host_rsa_key.pub F 222 100644 user::rw-,group::r--,mask:r--,

Example 5–2

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 107

other:r-- 3f81eaa2 0 0 9ea27617efc76058cb97aa2caa6dd65a
.
.

.

Customizing a Manifest by Specifying a File Name

This example shows how to create a manifest that lists only information about the
/etc/passwd and /etc/shadow files on a system.

bart create -I /etc/passwd /etc/shadow
! Version 1.0
! Monday, December 15, 2003 (16:28:55)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/etc/passwd F 542 100444 user::r--,group::r--,mask:r--,
other:r-- 3fcfd45b 0 3 d6
84554f85d1de06219d80543174ad1a
/etc/shadow F 294 100400 user::r--,group::---,mask:---,
other:--- 3f8dc5a0 0 3 fd

c3931c1ae5ee40341f3567b7cf15e2

By comparison, the following is the standard output of the ls -al command for the
/etc/passwd and the /etc/shadow files on the same system.

ls -al /etc/passwd

-r--r--r-- 1 root sys 542 Dec 4 17:42 /etc/passwd

ls -al /etc/shadow

-r-------- 1 root sys 294 Oct 15 16:09 /etc/shadow

Customizing a Manifest by Using a Rules File

This example shows how to create a manifest by using a rules file to catalog only those
files in the /etc directory. The same rules file includes directives to be used by the
bart compare command for monitoring changes to the acl attribute of the
/etc/system file.

� Use a text editor to create a rules file that catalogs only those files in the /etc
directory.

List information about all the files in the /etc directory.

CHECK all
/etc

Example 5–3

Example 5–4

108 System Administration Guide: Security Services • January 2005

Check only acl changes in the /etc/system file

IGNORE all
CHECK acl

/etc/system

For more information about creating a rules file, see “BART Rules File” on page
101.

� Create a control manifest by using the rules file you created.

bart create -r etc.rules-file > etc.system.control-manifest
! Version 1.0
! Thursday, December 11, 2003 (21:51:32)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/etc/system F 1883 100644 user::rw-,group::r--,mask:r--,

other:r-- 3f81db61 0 3

� Create a test manifest whenever you want to monitor changes to the system.
Prepare the test manifest identically to the control manifest by using the same
bart options and the same rules file.

� Compare manifests by using the same rules file.

� How to Compare Manifests for the Same System
Over Time
Use this procedure when you want to monitor file-level changes to the same system
over time. This type of manifest can assist you in locating corrupted or unusual files,
detecting security breaches, or in troubleshooting performance issues on a system.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. After installing the Solaris software, create a control manifest of the files that
you want to monitor on the system.

bart create -R /etc > control-manifest

Steps

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 109

3. Create a test manifest that is prepared identically to the control manifest
whenever you want monitor changes to the system.

bart create -R /etc > test-manifest

4. Compare the control manifest with the test manifest.

bart compare options control-manifest test-manifest > bart-report

-r Is the name of the rules file for this comparison. Using the -r
option with the – means that the directives will be read from
standard input.

-i Allows the user to set global IGNORE directives from the
command line.

-p Is the programmatic mode that generates standard
non-localized output for programmatic parsing.

control-manifest Is the output from the bart create command for the control
system.

test-manifest Is the output from the bart create command of the test
system.

5. Examine the BART report for oddities.

Comparing Manifests for the Same System Over Time

This example shows how to monitor changes that have occurred in the /etc directory
between two points in time. This type of comparison enables you to quickly determine
whether important files on the system have been compromised.

� Create a control manifest.

bart create -R /etc > system1.control.121203
! Version 1.0
! Friday, December 12, 2003 (08:34:51)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/ D 4096 40755 user::rwx,group::r-x,mask:r-x,other:r-x 3fd9dfb4 0 3
/.cpr_config F 2236 100644 user::rw-,group::r--,mask:r--,other:r--
3fd9991f 0 0
67cfa2c830b4ce3e112f38c5e33c56a2
/.group.lock F 0 100600 user::rw-,group::---,mask:---,other:--- 3f81f14d
0 1 d41
d8cd98f00b204e9800998ecf8427e
/.java D 512 40755 user::rwx,group::r-x,mask:r-x,other:r-x 3f81dcb5 0 2

Example 5–5

110 System Administration Guide: Security Services • January 2005

/.java/.systemPrefs D 512 40755 user::rwx,group::r-x,mask:r-x,
other:r-x 3f81dcb7
.
.

.

� Create a test manifest when you want to monitor changes to the /etc directory.

bart create -R /etc > system1.test.121503
Version 1.0
! Monday, December 15, 2003 (08:35:28)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/ D 4096 40755 user::rwx,group::r-x,mask:r-x,other:r-x 3fd9dfb4 0 3
/.cpr_config F 2236 100644 user::rw-,group::r--,mask:r--,other:r--
3fd9991f 0 0
67cfa2c830b4ce3e112f38c5e33c56a2
/.group.lock F 0 100600 user::rw-,group::---,mask:---,other:---
3f81f14d 0 1 d41d8cd98f00b204e9800998ecf8427e
/.java D 512 40755 user::rwx,group::r-x,mask:r-x,other:r-x 3f81dcb5 0 2
/.java/.systemPrefs D 512 40755 user::rwx,group::r-x,mask:r-x,
other:r-x 3f81dcb70 2
/.java/.systemPrefs/.system.lock F 0 100644 user::rw-,group::r--
,mask:r--,other:
r-- 3f81dcb5 0 2 d41d8cd98f00b204e9800998ecf8427e
/.java/.systemPrefs/.systemRootModFile F 0 100644 user::rw-,
group::r--,mask:r--,
other:r-- 3f81dd0b 0 2 d41d8cd98f00b204e9800998ecf8427e
.
.

.

� Compare the control manifest with the test manifest.

bart compare system1.control.121203 system1.test.121503
/vfstab:
mode control:100644 test:100777
acl control:user::rw-,group::r--,mask:r--,other:r-- test:user::rwx,

group::rwx,mask:rwx,other:rwx

The preceding output indicates permissions on the vfstab file have changed since
the control manifest was created. This report can be used to investigate whether
ownership, date, content, or any other file attributes have changed. Having this type
of information readily available can assist you in tracking down who might have
tampered with the file and when the change might have occurred.

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 111

� How to Compare Manifests From a Different
System With the Manifest of a Control System
You can run system to system comparisons, thereby enabling you to quickly
determine whether there are any file-level differences between a baseline system and
the other systems. For example, if you have installed a particular version of the Solaris
software on a baseline system, and you want to know whether other systems have
identical packages installed, you can create manifests for those systems and then
compare the test manifests with the control manifest. This type of comparison will list
any discrepancies in the file contents for each test system that you compare with the
control system.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. After installing the Solaris software, create a control manifest.

bart create options > control-manifest

3. Save the control manifest.

4. On the test system, use the same bart options to create a manifest, and redirect
the output to a file.

bart create options > test1-manifest

Choose a distinct and meaningful name for the test manifest.

5. Save the test manifest to a central location on the system until you are ready to
compare manifests.

6. When you want to compare manifests, copy the control manifest to the location
of the test manifest. Or, copy the test manifest to the control system.

For example:

cp control-manifest /net/test-server/bart/manifests

If the test system is not an NFS-mounted system, use FTP or some other reliable
means to copy the control manifest to the test system.

7. Compare the control manifest with the test manifest and redirect the output to a
file.

bart compare control-manifest test1-manifest > test1.report

8. Examine the BART report for oddities.

Steps

112 System Administration Guide: Security Services • January 2005

9. Repeat Step 4 through Step 9 for each test manifest that you want to compare
with the control manifest.

Use the same bart options for each test system.

Comparing Manifests From Different Systems With the Manifest of a
Control System

This example describes how to monitor changes to the contents of the /usr/bin
directory by comparing a control manifest with a test manifest from a different system.

� Create a control manifest.

bart create -R /usr/bin > control-manifest.121203
!Version 1.0
! Friday, December 12, 2003 (09:19:00)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/ D 13312 40755 user::rwx,group::r-x,mask:r-x,other:r-x 3fd9e925 0 2
/.s F 14200 104711 user::rwx,group::--x,mask:--x,other:--x
3f8dbfd6 0 1 8ec7e52d8a35ba3b054a6394cbf71cf6
/ControlPanel L 28 120777 - 3f81dc71 0 1 jre/bin/ControlPanel
/HtmlConverter L 25 120777 - 3f81dcdc 0 1 bin/HtmlConverter
/acctcom F 28300 100555 user::r-x,group::r-x,mask:r-x,other:r-x
3f6b5750 0 2 d6e99b19c847ab4ec084d9088c7c7608
/activation-client F 9172 100755 user::rwx,group::r-x,mask:r-x,
other:r-x 3f5cb907 0 1 b3836ad1a656324a6e1bd01edcba28f0
/adb F 9712 100555 user::r-x,group::r-x,mask:r-x,other:r-x
3f6b5736 0 2 5e026413175f65fb239ee628a8870eda
/addbib F 11080 100555 user::r-x,group::r-x,mask:r-x,other:r-x
3f6b5803 0 2 a350836c36049febf185f78350f27510
.
.

.

� Create a test manifest for each system that you want to compare with the control
system.

bart create -R /usr/bin > system2-manifest.121503
! Version 1.0
! Friday, December 15, 2003 (13:30:58)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode

Example 5–6

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 113

#fname C size mode acl mtime uid gid devnode
/ D 13312 40755 user::rwx,group::r-x,mask:r-x,other:r-x 3fd9ea9c 0 2
/.s F 14200 104711 user::rwx,group::--x,mask:--x,other:--x
3f8dbfd6 0 1 8ec7e52d8a35ba3b054a6394cbf71cf6
/ControlPanel L 28 120777 - 3f81dc71 0 1 jre/bin/ControlPanel
/HtmlConverter L 25 120777 - 3f81dcdc 0 1 bin/HtmlConverter
/acctcom F 28300 100555 user::r-x,group::r-x,mask:r-x,other:
r-x 3f6b5750 0 2 d6e99b19c847ab4ec084d9088c7c7608
.
.

.

� When you want to compare manifests, copy the manifests to the same location.

cp control-manifest /net/system2.central/bart/manifests

� Compare the control manifest with the test manifest.

bart compare control-manifest system2.test > system2.report
/su:
gid control:3 test:1

/ypcat:

mtime control:3fd72511 test:3fd9eb23

The previous output indicates that the group ID of the su file in the /usr/bin
directory is not the same as that of the control system. This information can be helpful
in determining whether a different version of the software was installed on the test
system or if possibly someone has tampered with the file.

� How to Customize a BART Report by Specifying
File Attributes
This procedure is optional and explains how to customize a BART report by specifying
file attributes from the command line. If you create a baseline manifest that lists
information about all the files or specific on your system, you can run the bart
compare command, specifying different attributes, whenever you need to monitor
changes to a particular directory, subdirectory, file or files. You can run different types
of comparisons for the same manifests by specifying different file attributes from the
command line.

1. Determine which file attributes you want to monitor.

2. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

Steps

114 System Administration Guide: Security Services • January 2005

3. After installing the Solaris software, create a control manifest.

4. Create a test manifest when you want to monitor changes.

Prepare the test manifest identically to the control manifest.

5. Compare the manifests.

For example:

bart compare -i dirmtime,lnmtime,mtime control-manifest.121503 \

test-manifest.010504 > bart.report.010504

Note that a comma separates each attribute you specify in the command-line
syntax.

6. Examine the BART report for oddities.

� How to Customize a BART Report by Using a
Rules File
This procedure is also optional and explains how to customize a BART report by using
a rules file as input to the bart compare command. By using a rules file, you can
customize a BART report, which allows you the flexibility of specifying multiple
attributes for more than one file or subtree. You can run different comparisons for the
same manifests by using different rules files.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Determine which files and file attributes you want to monitor.

3. Use a text editor to create a rules file with the appropriate directives.

4. After installing the Solaris software, create a control manifest by using the rules
file you created.

bart create -r rules-file > control-manifest

5. Create a test manifest that is prepared identically to the control manifest.

bart create -r rules-file > test-manifest

6. Compare the control manifest with the test manifest by using the same rules file.

bart compare -r rules-file control-manifest test-manifest > bart.report

Steps

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 115

7. Examine the BART report for oddities.

Customizing a BART Report by Using a Rules File

The following rules file includes directives for both the bart create and the bart
compare commands. The rules file directs the bart create command to list
information about the contents of the /usr/bin directory. In addition, the rules file
directs the bart compare command to track only size and content changes in the
same directory.

Check size and content changes in the /usr/bin directory.
This rules file only checks size and content changes.
See rules file example.

IGNORE all
CHECK size contents

/usr/bin

� Create a control manifest by using the rules file you created.

bart create -r bartrules.txt > usr_bin.control-manifest.121003

� Create a test manifest whenever you want to monitor changes to the /usr/bin
directory.

bart create -r bartrules.txt > usr_bin.test-manifest.121103

� Compare the manifests by using the same rules file.

bart compare -r bartrules.txt usr_bin.control-manifest \

usr_bin.test-manifest

� Examine the output of the bart compare command.

/usr/bin/gunzip: add
/usr/bin/ypcat:

delete

In the preceding output, the bart compare command reported a discrepancy in the
/usr/bin directory. This output indicates that /usr/bin/ypcat file was deleted,
and the /usr/bin/gunzip file was added.

Example 5–7

116 System Administration Guide: Security Services • January 2005

BART Manifest, Rules File, and
Reporting (Reference)
This section includes the following reference information:

� “BART Manifest File Format” on page 117
� “BART Rules File Format” on page 118
� “BART Reporting” on page 119

BART Manifest File Format
Each manifest file entry is a single line, depending on the file type. Each entry begins
with fname, which is the name of the file. To prevent parsing problems that are caused
by special characters embedded in file names, the file names are encoded. For more
information, see “BART Rules File Format” on page 118.

Subsequent fields represent the following file attributes:

type Type of file with the following possible values:

� B for a block device node
� C for a character device node
� D for a directory
� F for a file
� L for a symbolic link
� P for a pipe
� S for a socket

size File size in bytes.

mode Octal number that represents the permissions of the file.

acl ACL attributes for the file. For a file with ACL attributes, this contains the
output from acltotext().

uid Numerical user ID of the owner of this entry.

gid Numerical group ID of the owner of this entry.

dirmtime Last modification time, in seconds, since 00:00:00 UTC, January 1, 1970,
for directories.

lnmtime Last modification time, in seconds, since 00:00:00 UTC, January 1, 1970,
for links.

mtime Last modification time, in seconds, since 00:00:00 UTC January 1, 1970, for
files.

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 117

contents Checksum value of the file. This attribute is only specified for regular
files. If you turn off context checking, or if checksums cannot be
computed, the value of this field is –.

dest Destination of a symbolic link.

devnode Value of the device node. This attribute is for character device files and
block device files only.

For more information about BART manifests, see the bart_manifest(4) man page.

BART Rules File Format
The input files to the bart command are text files. These files consist of lines that
specify which files are to be included in the manifest and which file attributes are to be
included the report. The same input file can be used across both pieces of BART
functionality. Lines that begin with #, blank lines, and lines that contain white space
are ignored by the tool.

The input files have three types of directives:

� Subtree directive, with optional pattern matching modifiers
� CHECK directive
� IGNORE directive

EXAMPLE 5–8 Rules File Format

<Global CHECK/IGNORE Directives>
<subtree1> [pattern1..]
<IGNORE/CHECK Directives for subtree1>

<subtree2> [pattern2..]
subtree3> [pattern3..]
subtree4> [pattern4..]

<IGNORE/CHECK Directives for subtree2, subtree3, subtree4>

Note – All directives are read in order, with later directives possibly overriding earlier
directives.

There is one subtree directive per line. The directive must begin with an absolute
pathname, followed by zero or more pattern matching statements.

118 System Administration Guide: Security Services • January 2005

Rules File Attributes
The bart command uses CHECK and IGNORE statements to define which attributes to
track or ignore. Each attribute has an associated keyword.

The attribute keywords are as follows:

� acl
� all
� contents
� dest
� devnode
� dirmtime
� gid
� lnmtime
� mode
� mtime
� size
� type
� uid

The all keyword refers to all file attributes.

Quoting Syntax
The rules file specification language that BART uses is the standard UNIX quoting
syntax for representing nonstandard file names. Embedded tab, space, newline, or
special characters are encoded in their octal forms to enable the tool to read file names.
This nonuniform quoting syntax prevents certain file names, such as those containing
an embedded carriage return, from being processed correctly in a command pipeline.
The rules specification language allows the expression of complex file name filtering
criteria that would be difficult and inefficient to describe by using shell syntax alone.

For more information about the BART rules file or the quoting syntax used by BART,
see the bart_rules(4) man page.

BART Reporting
In default mode, the bart compare command, as shown in the following example,
will check all the files installed on the system, with the exception of modified directory
timestamps (dirmtime):

CHECK all

IGNORE dirmtime

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 119

If you supply a rules file, then the global directives of CHECK all and IGNORE
dirmtime, in that order, are automatically prepended to the rules file.

BART Output
The following exit values are returned:

0 Success

1 Nonfatal error when processing files, such as permission problems

>1 Fatal error, such as an invalid command-line option

The reporting mechanism provides two types of output: verbose and programmatic:

� Verbose output is the default output and is localized and presented on multiple
lines. Verbose output is internationalized and is human-readable. When the bart
compare command compares two system manifests, a list of file differences is
generated.

For example:

filename attribute control:xxxx test:yyyy

filename Name of the file that differs between the control manifest and the test
manifest.

attribute Name of the file attribute that differs between the manifests that are
compared. xxxx is the attribute value from the control manifest, and
yyyy is the attribute value from the test manifest. When discrepancies
for multiple attributes occur in the same file, each difference is noted
on a separate line.

Following is an example of the default output for the bart compare command.
The attribute differences are for the /etc/passwd file. The output indicates that
the size, mtime, and contents attributes have changed.

/etc/passwd:
size control:74 test:81
mtime control:3c165879 test:3c165979
contents control:daca28ae0de97afd7a6b91fde8d57afa

test:84b2b32c4165887355317207b48a6ec7

� Programmatic output is generated if you use the -p option when you run the bart
compare command. This output is generated in a form that is suitable for
programmatic manipulation. Programmatic output can be easily parsed by other
programs and is designed to be used as input for other tools.

For example:

filename attribute control-val test-val [attribute control-val test-val]*

filename Same as the filename attribute in the default format

120 System Administration Guide: Security Services • January 2005

attribute control-val test-val A description of the file attributes that differ between
the control and test manifests for each file

For a list of attributes that are supported by the bart command, see “Rules File
Attributes” on page 119.

For more information about BART, see the bart(1M) man page.

Chapter 5 • Using the Basic Audit Reporting Tool (Tasks) 121

122 System Administration Guide: Security Services • January 2005

CHAPTER 6

Controlling Access to Files (Tasks)

This chapter describes how to protect files in the Solaris Operating System (Solaris
OS). The chapter also describes how to protect against files whose permissions could
compromise the system.

The following is a list of the information in this chapter.

� “Using UNIX Permissions to Protect Files” on page 123
� “Using Access Control Lists to Protect Files” on page 130
� “Preventing Executable Files From Compromising Security” on page 132
� “Protecting Files (Task Map)” on page 133
� “Protecting Files With UNIX Permissions (Task Map)” on page 134
� “Protecting Files With ACLs (Task Map)” on page 140
� “Protecting Against Programs With Security Risk (Task Map)” on page 145

Using UNIX Permissions to Protect Files
Files can be secured through UNIX file permissions and through ACLs. Files with
sticky bits, and files that are executable, require special security measures.

Commands for Viewing and Securing Files
This table describes the commands for monitoring and securing files and directories.

123

TABLE 6–1 Commands for Securing Files and Directories

Command Description Man Page

ls Lists the files in a directory and information about the files. ls(1)

chown Changes the ownership of a file. chown(1)

chgrp Changes the group ownership of a file. chgrp(1)

chmod Changes permissions on a file. You can use either symbolic
mode, which uses letters and symbols, or absolute mode, which
uses octal numbers, to change permissions on a file.

chmod(1)

File and Directory Ownership
Traditional UNIX file permissions can assign ownership to three classes of users:

� user – The file or directory owner, which is usually the user who created the file.
The owner of a file can decide who has the right to read the file, to write to the file
(make changes to it), or, if the file is a command, to execute the file.

� group – Members of a group of users.

� others – All other users who are not the file owner and are not members of the
group.

The owner of the file can usually assign or modify file permissions. Additionally, users
or roles with administrative capabilities, such as superuser or the Primary
Administrator role, can change a file’s ownership. To override system policy, see
Example 6–2.

A file can be one of seven types. Each type is displayed by a symbol:

- (Minus symbol) Text or program

b Block special file

c Character special file

d Directory

l Symbolic link

s Socket

D Door

P Named pipe (FIFO)

124 System Administration Guide: Security Services • January 2005

UNIX File Permissions
The following table lists and describes the permissions that you can give to each class
of user for a file or directory.

TABLE 6–2 File and Directory Permissions

Symbol Permission Object Description

r Read File Designated users can open and read the contents of a file.

Directory Designated users can list files in the directory.

w Write File Designated users can modify the contents of the file or delete
the file.

Directory Designated users can add files or add links in the directory.
They can also remove files or remove links in the directory.

x Execute File Designated users can execute the file, if it is a program or shell
script. They also can run the program with one of the
exec(2) system calls.

Directory Designated users can open files or execute files in the
directory. They also can make the directory and the directories
beneath it current.

- Denied File and
Directory

Designated users cannot read, write, or execute the file.

These file permissions apply to regular files, and to special files such as devices,
sockets, and named pipes (FIFOs).

For a symbolic link, the permissions that apply are the permissions of the file that the
link points to.

You can protect the files in a directory and its subdirectories by setting restrictive file
permissions on that directory. Note, however, that superuser has access to all files and
directories on the system.

Special File Permissions (setuid, setgid and
Sticky Bit)
Three special types of permissions are available for executable files and public
directories: setuid, setgid, and sticky bit. When these permissions are set, any user
who runs that executable file assumes the ID of the owner (or group) of the executable
file.

Chapter 6 • Controlling Access to Files (Tasks) 125

You must be extremely careful when you set special permissions, because special
permissions constitute a security risk. For example, a user can gain superuser
capabilities by executing a program that sets the user ID (UID) to 0, which is the UID
of root. Also, all users can set special permissions for files that they own, which
constitutes another security concern.

You should monitor your system for any unauthorized use of the setuid permission
and the setgid permission to gain superuser capabilities. A suspicious permission
grants ownership of an administrative program to a user rather than to root or bin.
To search for and list all files that use this special permission, see “How to Find Files
With Special File Permissions” on page 146.

setuid Permission
When setuid permission is set on an executable file, a process that runs this file is
granted access on the basis of the owner of the file. The access is not based on the user
who is running the executable file. This special permission allows a user to access files
and directories that are normally available only to the owner.

For example, the setuid permission on the passwd command makes it possible for
users to change passwords. A passwd command with setuid permission would
resemble the following:

-r-sr-sr-x 3 root sys 28144 Jun 17 12:02 /usr/bin/passwd

This special permission presents a security risk. Some determined users can find a
way to maintain the permissions that are granted to them by the setuid process even
after the process has finished executing.

Note – The use of setuid permissions with the reserved UIDs (0–100) from a program
might not set the effective UID correctly. Use a shell script, or avoid using the reserved
UIDs with setuid permissions.

setgid Permission
The setgid permission is similar to the setuid permission. The process’s effective
group ID (GID) is changed to the group that owns the file, and a user is granted access
based on the permissions that are granted to that group. The /usr/bin/mail
command has setgid permissions:

-r-x--s--x 1 root mail 67504 Jun 17 12:01 /usr/bin/mail

When the setgid permission is applied to a directory, files that were created in this
directory belong to the group to which the directory belongs. The files do not belong
to the group to which the creating process belongs. Any user who has write and
execute permissions in the directory can create a file there. However, the file belongs
to the group that owns the directory, not to the group that the user belongs to.

126 System Administration Guide: Security Services • January 2005

You should monitor your system for any unauthorized use of the setgid permission
to gain superuser capabilities. A suspicious permission grants group access to such a
program to an unusual group rather than to root or bin. To search for and list all
files that use this permission, see “How to Find Files With Special File Permissions”
on page 146.

Sticky Bit
The sticky bit is a permission bit that protects the files within a directory. If the
directory has the sticky bit set, a file can be deleted only by the file owner, the
directory owner, or by a privileged user. The root user and the Primary
Administrator role are examples of privileged users. The sticky bit prevents a user
from deleting other users’ files from public directories such as /tmp:

drwxrwxrwt 7 root sys 400 Sep 3 13:37 tmp

Be sure to set the sticky bit manually when you set up a public directory on a TMPFS
file system. For instructions, see Example 6–5.

Default umask Value
When you create a file or directory, you create it with a default set of permissions. The
system defaults are open. A text file has 666 permissions, which grants read and write
permission to everyone. A directory and an executable file have 777 permissions,
which grants read, write, and execute permission to everyone. Typically, users
override the system defaults in their /etc/profile file, .cshrc file, or .login file.

The value assigned by the umask command is subtracted from the default. This
process has the effect of denying permissions in the same way that the chmod
command grants them. For example, the chmod 022 command grants write
permission to group and others. The umask 022 command denies write permission to
group and others.

The following table shows some typical umask settings and their effect on an
executable file.

TABLE 6–3 umask Settings for Different Security Levels

Level of Security umask Setting Permissions Disallowed

Permissive (744) 022 w for group and others

Moderate (740) 027 w for group, rwx for others

Moderate (741) 026 w for group, rw for others

Chapter 6 • Controlling Access to Files (Tasks) 127

TABLE 6–3 umask Settings for Different Security Levels (Continued)
Level of Security umask Setting Permissions Disallowed

Severe (700) 077 rwx for group and others

For more information on setting the umask value, see the umask(1) man page.

File Permission Modes
The chmod command enables you to change the permissions on a file. You must be
superuser or the owner of a file or directory to change its permissions.

You can use the chmod command to set permissions in either of two modes:

� Absolute Mode – Use numbers to represent file permissions. When you change
permissions by using the absolute mode, you represent permissions for each triplet
by an octal mode number. Absolute mode is the method most commonly used to
set permissions.

� Symbolic Mode – Use combinations of letters and symbols to add permissions or
remove permissions.

The following table lists the octal values for setting file permissions in absolute mode.
You use these numbers in sets of three to set permissions for owner, group, and other,
in that order. For example, the value 644 sets read and write permissions for owner,
and read-only permissions for group and other.

TABLE 6–4 Setting File Permissions in Absolute Mode

Octal Value File Permissions Set Permissions Description

0 --- No permissions

1 --x Execute permission only

2 -w- Write permission only

3 -wx Write and execute permissions

4 r-- Read permission only

5 r-x Read and execute permissions

6 rw- Read and write permissions

7 rwx Read, write, and execute permissions

The following table lists the symbols for setting file permissions in symbolic mode.
Symbols can specify whose permissions are to be set or changed, the operation to be
performed, and the permissions that are being assigned or changed.

128 System Administration Guide: Security Services • January 2005

TABLE 6–5 Setting File Permissions in Symbolic Mode

Symbol Function Description

u who User (owner)

g who Group

o who Others

a who All

= operator Assign

+ operator Add

- operator Remove

r permissions Read

w permissions Write

x permissions Execute

l permissions Mandatory locking, setgid bit is on, group execution bit
is off

s permissions setuid or setgid bit is on

t permissions Sticky bit is on, execution bit for others is on

The who operator permissions designations in the function column specify the symbols
that change the permissions on the file or directory.

who Specifies whose permissions are to be changed.

operator Specifies the operation to be performed.

permissions Specifies what permissions are to be changed.

You can set special permissions on a file in absolute mode or symbolic mode.
However, you must use symbolic mode to set or remove setuid permissions on a
directory. In absolute mode, you set special permissions by adding a new octal value
to the left of the permission triplet. The following table lists the octal values for setting
special permissions on a file.

TABLE 6–6 Setting Special File Permissions in Absolute Mode

Octal Value Special File Permissions

1 Sticky bit

2 setgid

4 setuid

Chapter 6 • Controlling Access to Files (Tasks) 129

Using Access Control Lists to Protect
Files
Traditional UNIX file protection provides read, write, and execute permissions for the
three user classes: file owner, file group, and other. An access control list (ACL)
provides better file security by enabling you to do the following:

� Define file permissions for the file owner, the group, other, specific users and
groups

� Define default permissions for each of the preceding categories

For example, if you want everyone in a group to be able to read a file, you can simply
grant group read permissions on that file. Now, assume that you want only one person
in the group to be able to write to that file. Standard UNIX does not provide that level
of file security. However, an ACL provides this level of file security.

ACL entries define an ACL on a file. The entries are set through the setfacl
command. ACL entries consist of the following fields separated by colons:

entry-type:[uid|gid]:perms

entry-type Is the type of ACL entry on which to set file permissions. For example,
entry-type can be user (the owner of a file) or mask (the ACL mask). For
a listing of ACL entries, see Table 6–7 and Table 6–8.

uid Is the user name or user ID (UID).

gid Is the group name or group ID (GID).

perms Represents the permissions that are set on entry-type. perms can be
indicated by the symbolic characters rwx or an octal number. These are
the same numbers that are used with the chmod command.

In the following example, an ACL entry sets read and write permissions for the user
stacey.

user:stacey:rw-

Caution – UFS file system attributes such as ACLs are supported in UFS file systems
only. Thus, if you restore or copy files with ACL entries into the /tmp directory, which
is usually mounted as a TMPFS file system, the ACL entries will be lost. Use the
/var/tmp directory for temporary storage of UFS files.

130 System Administration Guide: Security Services • January 2005

ACL Entries for Files
The following table lists the valid ACL entries that you might use when setting ACLs
on files. The first three ACL entries provide the basic UNIX file protection.

TABLE 6–7 ACL Entries for Files

ACL Entry Description

u[ser]::perms File owner permissions.

g[roup]::perms File group permissions.

o[ther]:perms Permissions for users other than the file owner or members of the file
group.

m[ask]:perms The ACL mask. The mask entry indicates the maximum permissions that
are allowed for users (other than the owner) and for groups. The mask is
a quick way to change permissions on all the users and groups.

For example, the mask:r-- mask entry indicates that users and groups
cannot have more than read permissions, even though they might have
write and execute permissions.

u[ser]:uid:perms Permissions for a specific user. For uid, you can specify either a user name
or a numeric UID.

g[roup]:gid:perms Permissions for a specific group. For gid, you can specify either a group
name or a numeric GID.

ACL Entries for Directories
In addition to the ACL entries that are described in Table 6–7, you can set default ACL
entries on a directory. Files or directories created in a directory that has default ACL
entries will have the same ACL entries as the default ACL entries. Table 6–8 lists the
default ACL entries for directories.

When you set default ACL entries for specific users and groups on a directory for the
first time, you must also set default ACL entries for the file owner, file group, others,
and the ACL mask. These entries are required. They are the first four default ACL
entries in the following table.

TABLE 6–8 Default ACL Entries for Directories

Default ACL Entry Description

d[efault]:u[ser]::perms Default file owner permissions.

d[efault]:g[roup]::perms Default file group permissions.

Chapter 6 • Controlling Access to Files (Tasks) 131

TABLE 6–8 Default ACL Entries for Directories (Continued)
Default ACL Entry Description

d[efault]:o[ther]:perms Default permissions for users other than the file owner or
members of the file group.

d[efault]:m[ask]:perms Default ACL mask.

d[efault]:u[ser]:uid:perms Default permissions for a specific user. For uid, you can
specify either a user name or a numeric UID.

d[efault]:g[roup]:gid:perms Default permissions for a specific group. For gid, you can
specify either a group name or a numeric GID.

Commands for Administering ACLs
The following commands administer ACLs on files or directories.

setfacl command Sets, adds, modifies, and deletes ACL entries. For more
information, see the setfacl(1) man page.

getfacl command Displays ACL entries. For more information, see the
getfacl(1) man page.

Preventing Executable Files From
Compromising Security
A number of security bugs are related to default executable stacks when their
permissions are set to read, write, and execute. While stacks with execute permissions
are allowed, most programs can function correctly without using executable stacks.

The noexec_user_stack variable enables you to specify whether stack mappings
are executable. The variable is available as of the Solaris 2.6 release. By default, the
variable is set to zero, except on 64-bit applications, which provides ABI-compliant
behavior. If the variable is set to a non-zero value, the system marks the stack of every
process in the system as readable and writable, but not executable.

Once this variable is set, programs that attempt to execute code on their stack are sent
a SIGSEGV signal. This signal usually results in the program terminating with a core
dump. Such programs also generate a warning message that includes the name of the
offending program, the process ID, and the real UID of the user who ran the program.
For example:

a.out[347] attempt to execute code on stack by uid 555

132 System Administration Guide: Security Services • January 2005

The message is logged by the syslog daemon when the syslog kern facility is set
to notice level. This logging is set by default in the syslog.conf file, which means
that the message is sent to both the console and the /var/adm/messages file. For
more information, see the syslogd(1M) and syslog.conf(4) man pages.

The syslog message is useful for observing potential security problems. The message
also identifies valid programs that depend upon executable stacks that have been
prevented from correct operation by setting this variable. If you do not want any
messages logged, then set the noexec_user_stack_log variable to zero in the
/etc/system file. Even though messages are not being logged, the SIGSEGV signal
can continue to cause the executing program to terminate with a core dump.

You can use the mprotect() function if you want programs to explicitly mark their
stack as executable. For more information, see the mprotect(2) man page.

Because of hardware limitations, the capability of catching and reporting executable
stack problems is not available on most x86 based systems. Systems in the AMD64
product family can catch and report executable stack problems.

Protecting Files (Task Map)
The following task map points to sets of procedures for protecting files.

Task Description For Instructions

Use UNIX permissions to
protect files

Views UNIX permissions on files. Protects files
with UNIX permissions.

“Protecting Files With UNIX
Permissions (Task Map)”
on page 134

Use ACLs to protect files Adds ACLs to protect files at a more granular
level than UNIX permissions can.

“Protecting Files With ACLs
(Task Map)” on page 140

Protect system from files that
pose a security risk

Finds executable files that have suspicious
ownership. Disables files that can damage the
system.

“Protecting Against Programs
With Security Risk (Task Map)”
on page 145

Chapter 6 • Controlling Access to Files (Tasks) 133

Protecting Files With UNIX Permissions
(Task Map)
The following task map points to procedures that list file permissions, change file
permissions, and protect files with special file permissions.

Task For Instructions

Display file information “How to Display File Information” on page 134

Change file ownership “How to Change the Owner of a File” on page 135

“How to Change Group Ownership of a File” on page 136

Change file permissions “How to Change File Permissions in Symbolic Mode” on page 137

“How to Change File Permissions in Absolute Mode” on page 137

“How to Change Special File Permissions in Absolute Mode” on page 139

� How to Display File Information
Display information about all the files in a directory by using the ls command.

� Type the following command to display a long listing of all files in the current
directory.

% ls -la

-l Displays the long format that includes user ownership, group ownership,
and file permissions.

-a Displays all files, including hidden files that begin with a dot (.).

Displaying File Information

In the following example, a partial list of the files in the /sbin directory is displayed.

% cd /sbin
% ls -la
total 13456
drwxr-xr-x 2 root sys 512 Sep 1 14:11 .
drwxr-xr-x 29 root root 1024 Sep 1 15:40 ..
-r-xr-xr-x 1 root bin 218188 Aug 18 15:17 autopush
lrwxrwxrwx 1 root root 21 Sep 1 14:11 bpgetfile -> ...
-r-xr-xr-x 1 root bin 505556 Aug 20 13:24 dhcpagent
-r-xr-xr-x 1 root bin 456064 Aug 20 13:25 dhcpinfo

Step

Example 6–1

134 System Administration Guide: Security Services • January 2005

-r-xr-xr-x 1 root bin 272360 Aug 18 15:19 fdisk
-r-xr-xr-x 1 root bin 824728 Aug 20 13:29 hostconfig
-r-xr-xr-x 1 root bin 603528 Aug 20 13:21 ifconfig
-r-xr-xr-x 1 root sys 556008 Aug 20 13:21 init
-r-xr-xr-x 2 root root 274020 Aug 18 15:28 jsh
-r-xr-xr-x 1 root bin 238736 Aug 21 19:46 mount
-r-xr-xr-x 1 root sys 7696 Aug 18 15:20 mountall

.

.

.

Each line displays information about a file in the following order:

� Type of file – For example, d. For list of file types, see “File and Directory
Ownership” on page 124.

� Permissions – For example, r-xr-xr-x. For description, see “File and Directory
Ownership” on page 124.

� Number of hard links – For example, 2.

� Owner of the file – For example, root.

� Group of the file – For example, bin.

� Size of the file, in bytes – For example, 7696.

� Date the file was created or the last date that the file was changed – For example,
Aug 18 15:20.

� Name of the file – For example, mountall.

� How to Change the Owner of a File
The file owner, the Primary Administrator role, or superuser can change any file’s
ownership.

1. Display the permissions on a file.

% ls -l example-file

-rw-r--r-- 1 janedoe staff 112640 May 24 10:49 example-file

2. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

3. Change the owner of the file.

chown stacey example-file

Steps

Chapter 6 • Controlling Access to Files (Tasks) 135

4. Verify that the owner of the file has changed.

ls -l example-file

-rw-r--r-- 1 stacey staff 112640 May 26 08:50 example-file

Enabling Users to Change the Ownership of Files That Others Own

Security Consideration – You should have good reason to override system security
policy by changing the setting of the rstchown variable to zero. Any user who
accesses the system can change the ownership of any file on the system.

In this example, the value of the rstchown variable is set to zero in the
/etc/system file. This setting enables the owner of a file to use the chown command
to change the file’s ownership to another user. This setting also enables the owner to
use the chgrp command to set the group ownership of a file to a group that the owner
does not belong to. The change goes into effect when the system is rebooted.

set rstchown = 0

For more information, see the chown(1) and chgrp(1) man pages.

Also, be aware that NFS-mounted file systems have further restrictions on changing
ownership and groups. For more information on restricting access to NFS-mounted
systems, see Chapter 6, “Accessing Network File Systems (Reference),” in System
Administration Guide: Network Services.

� How to Change Group Ownership of a File

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Change the group ownership of a file.

$ chgrp scifi example-file

For information on setting up groups, see Chapter 4, “Managing User Accounts
and Groups (Overview),” in System Administration Guide: Basic Administration.

3. Verify that the group ownership of the file has changed.

$ ls -l example-file

-rw-r--r-- 1 stacey scifi 112640 June 20 08:55 example-file

Also see Example 6–2.

Example 6–2

Steps

136 System Administration Guide: Security Services • January 2005

� How to Change File Permissions in Symbolic Mode

1. If you are not the owner of the file or directory, become superuser or assume an
equivalent role.

Only the current owner or superuser can use the chmod command to change file
permissions on a file or directory.

2. Change permissions in symbolic mode.

% chmod who operator permissions filename

who Specifies whose permissions are to be changed.

operator Specifies the operation to be performed.

permissions Specifies what permissions are to be changed. For the list of valid
symbols, see Table 6–5.

filename Specifies the file or directory.

3. Verify that the permissions of the file have changed.

% ls -l filename

Changing Permissions in Symbolic Mode

In the following example, read permission is taken away from others.

% chmod o-r example-file1

In the following example, read and execute permissions are added for user, group, and
others.

$ chmod a+rx example-file2

In the following example, read, write, and execute permissions are assigned to group.

$ chmod g=rwx example-file3

� How to Change File Permissions in Absolute Mode

1. If you are not the owner of the file or directory, become superuser or assume an
equivalent role.

Only the current owner or superuser can use the chmod command to change file
permissions on a file or directory.

Steps

Example 6–3

Steps

Chapter 6 • Controlling Access to Files (Tasks) 137

2. Change permissions in absolute mode.

% chmod nnn filename

nnn Specifies the octal values that represent the permissions for the file
owner, file group, and others, in that order. For the list of valid octal
values, see Table 6–4.

filename Specifies the file or directory.

Note – When you use the chmod command to change the file group permissions on
a file with ACL entries, both the file group permissions and the ACL mask are
changed to the new permissions. Be aware that the new ACL mask permissions can
change the permissions for other users and groups who have ACL entries on the
file. Use the getfacl command to make sure that the appropriate permissions are
set for all ACL entries. For more information, see the getfacl(1) man page.

3. Verify that the permissions of the file have changed.

% ls -l filename

Changing Permissions in Absolute Mode

In the following example, the permissions of a public directory are changed from 744
(read, write, execute; read-only; and read-only) to 755 (read, write, execute; read and
execute; and read and execute).

ls -ld public_dir
drwxr--r-- 1 ignatz staff 6023 Aug 5 12:06 public_dir
chmod 755 public_dir
ls -ld public_dir

drwxr-xr-x 1 ignatz staff 6023 Aug 5 12:06 public_dir

In the following example, the permissions of an executable shell script are changed
from read and write to read, write, and execute.

% ls -l my_script
-rw------- 1 ignatz staff 6023 Aug 5 12:06 my_script
% chmod 700 my_script
% ls -l my_script

-rwx------ 1 ignatz staff 6023 Aug 5 12:06 my_script

Example 6–4

138 System Administration Guide: Security Services • January 2005

� How to Change Special File Permissions in
Absolute Mode

1. If you are not the owner of the file or directory, become superuser or assume an
equivalent role.

Only the current owner or a user with superuser capabilities can use the chmod
command to change the special permissions on a file or directory.

2. Change special permissions in absolute mode.

% chmod nnnn filename

nnnn Specifies the octal values that change the permissions on the file or
directory. The leftmost octal value sets the special permissions on the
file. For the list of valid octal values for special permissions, see Table
6–6.

filename Specifies the file or directory.

Note – When you use the chmod command to change the file group permissions on
a file with ACL entries, both the file group permissions and the ACL mask are
changed to the new permissions. Be aware that the new ACL mask permissions can
change the permissions for additional users and groups who have ACL entries on
the file. Use the getfacl command to make sure that the appropriate permissions
are set for all ACL entries. For more information, see the getfacl(1) man page.

3. Verify that the permissions of the file have changed.

% ls -l filename

Setting Special File Permissions in Absolute Mode

In the following example, the setuid permission is set on the dbprog file.

chmod 4555 dbprog
ls -l dbprog

-r-sr-xr-x 1 db staff 12095 May 6 09:29 dbprog

In the following example, the setgid permission is set on the dbprog2 file.

chmod 2551 dbprog2
ls -l dbprog2

-r-xr-s--x 1 db staff 24576 May 6 09:30 dbprog2

In the following example, the sticky bit permission is set on the public_dir
directory.

Steps

Example 6–5

Chapter 6 • Controlling Access to Files (Tasks) 139

chmod 1777 public_dir
ls -ld public_dir

drwxrwxrwt 2 ignatz staff 512 May 15 15:27 public_dir

Protecting Files With ACLs (Task Map)
The following task map points to procedures that list the ACLs on a file, change the
ACLs, and copy the ACLs to another file.

Task For Instructions

Determine if a file has an ACL “How to Check if a File Has an ACL” on page 140

Add an ACL to a file “How to Add ACL Entries to a File” on page 141

Copy an ACL “How to Copy an ACL” on page 142

Modify an ACL “How to Change ACL Entries on a File” on page 143

Remove ACLs from a file “How to Delete ACL Entries From a File” on page 143

Display the ACLs on a file “How to Display ACL Entries for a File” on page 144

� How to Check if a File Has an ACL

� Check if a file has an ACL.

% ls -l filename

where filename specifies the file or directory.

In the output, a plus sign (+) to the right of the mode field indicates that the file has
an ACL.

Note – Unless you have added ACL entries that extend UNIX file permissions, a file
is considered to have a “trivial” ACL and the plus sign (+) does not display.

Checking if a File Has an ACL

In the following example, the ch1.sgm file has an ACL. The ACL is indicated by the
plus sign (+) to the right of the mode field.

% ls -l ch1.sgm

-rwxr-----+ 1 stacey techpubs 167 Nov 11 11:13 ch1.sgm

Step

Example 6–6

140 System Administration Guide: Security Services • January 2005

� How to Add ACL Entries to a File

1. Set an ACL on a file by using the setfacl command.

% setfacl -s user::perms,group::perms,other:perms,mask:perms,acl-entry-list filename ...

-s Sets an ACL on the file. If a file already has an ACL, it is replaced.
This option requires at least the user::, group::, and other::
entries.

user::perms Specifies the file owner permissions.

group::perms Specifies the group ownership permissions.

other:perms Specifies the permissions for users other than the file owner or
members of the group.

mask:perms Specifies the permissions for the ACL mask. The mask indicates the
maximum permissions that are allowed for users (other than the
owner) and for groups.

acl-entry-list Specifies the list of one or more ACL entries to set for specific users
and groups on the file or directory. You can also set default ACL
entries on a directory. Table 6–7 and Table 6–8 show the valid ACL
entries.

filename ... Specifies one or more files or directories on which to set the ACL.
Multiple filenames are separated by spaces.

Caution – If an ACL already exists on the file, the -s option replaces the entire ACL
with the new ACL.

For more information, see the setfacl(1) man page.

2. Verify that the ACL entries were set on the file.

% getfacl filename

For more information, see “How to Check if a File Has an ACL” on page 140.

Setting an ACL on a File

In the following example, the file owner permissions are set to read and write, file
group permissions are set to read only, and other permissions are set to none on the
ch1.sgm file. In addition, the user anusha is given read and write permissions on the
file. The ACL mask permissions are set to read and write, which means that no user or
group can have execute permissions.

Steps

Example 6–7

Chapter 6 • Controlling Access to Files (Tasks) 141

% setfacl -s user::rw-,group::r--,other:---,mask:rw-,user:anusha:rw- ch1.sgm
% ls -l
total 124
-rw-r-----+ 1 stacey techpubs 34816 Nov 11 14:16 ch1.sgm
-rw-r--r-- 1 stacey techpubs 20167 Nov 11 14:16 ch2.sgm
-rw-r--r-- 1 stacey techpubs 8192 Nov 11 14:16 notes
% getfacl ch1.sgm
file: ch1.sgm
owner: stacey
group: techpubs
user::rw-
user:anusha:rw- #effective:rw-
group::r-- #effective:r--
mask:rw-

other:---

In the following example, the file owner permissions are set to read, write, and
execute, file group permissions are set to read only, other permissions are set to none.
In addition, the ACL mask permissions are set to read on the ch2.sgm file. Finally, the
user anusha is given read and write permissions. However, due to the ACL mask, the
permissions for anusha are read only.

% setfacl -s u::7,g::4,o:0,m:4,u:anusha:7 ch2.sgm
% getfacl ch2.sgm
file: ch2.sgm
owner: stacey
group: techpubs
user::rwx
user:anusha:rwx #effective:r--
group::r-- #effective:r--
mask:r--

other:---

� How to Copy an ACL

� Copy a file’s ACL to another file by redirecting the getfacl output.

% getfacl filename1 | setfacl -f - filename2

filename1 Specifies the file from which to copy the ACL.

filename2 Specifies the file on which to set the copied ACL.

Copying an ACL

In the following example, the ACL on ch2.sgm is copied to ch3.sgm.

% getfacl ch2.sgm | setfacl -f - ch3.sgm

Step

Example 6–8

142 System Administration Guide: Security Services • January 2005

� How to Change ACL Entries on a File

1. Modify ACL entries on a file by using the setfacl command.

% setfacl -m acl-entry-list filename ...

-m Modifies the existing ACL entry.

acl-entry-list Specifies the list of one or more ACL entries to modify on the file or
directory. You can also modify default ACL entries on a directory.
Table 6–7 and Table 6–8 show the valid ACL entries.

filename ... Specifies one or more files or directories, separated by a space.

2. Verify that the ACL entries were modified on the file.

% getfacl filename

Modifying ACL Entries on a File

In the following example, the permissions for the user anusha are modified to read
and write.

% setfacl -m user:anusha:6 ch3.sgm
% getfacl ch3.sgm
file: ch3.sgm
owner: stacey
group: techpubs
user::rw-
user::anusha:rw- #effective:r--
group::r- #effective:r--
mask:r--

other:r-

In the following example, the default permissions for the group staff are modified to
read on the book directory. In addition, the default ACL mask permissions are
modified to read and write.

% setfacl -m default:group:staff:4,default:mask:6 book

� How to Delete ACL Entries From a File

1. Delete ACL entries from a file.

% setfacl -d acl-entry-list filename ...

-d Deletes the specified ACL entries.

Steps

Example 6–9

Steps

Chapter 6 • Controlling Access to Files (Tasks) 143

acl-entry-list Specifies the list of ACL entries (without specifying the
permissions) to delete from the file or directory. You can only
delete ACL entries and default ACL entries for specific users and
groups. Table 6–7 and Table 6–8 show the valid ACL entries.

filename ... Specifies one or more files or directories, separated by a space.

Alternatively, you can use the setfacl -s command to delete all the ACL entries
on a file and replace them with the new ACL entries that are specified.

2. Verify that the ACL entries were deleted from the file.

% getfacl filename

Deleting ACL Entries on a File

In the following example, the user anusha is deleted from the ch4.sgm file.

% setfacl -d user:anusha ch4.sgm

� How to Display ACL Entries for a File

� Display ACL entries for a file by using the getfacl command.

% getfacl [-a | -d] filename ...

-a Displays the file name, file owner, file group, and ACL entries for the
specified file or directory.

-d Displays the file name, file owner, file group, and the default ACL
entries, if they exist, for the specified directory.

filename ... Specifies one or more files or directories, separated by a space.

If you specify multiple file names on the command line, the ACL entries are
displayed with a blank line between each entry.

Displaying ACL Entries for a File

In the following example, all the ACL entries for the ch1.sgm file are displayed. The
#effective: note beside the user and group entries indicates what the permissions
are after being modified by the ACL mask.

% getfacl ch1.sgm

file: ch1.sgm
owner: stacey
group: techpubs
user::rw-
user:anusha:r- #effective:r--

Example 6–10

Step

Example 6–11

144 System Administration Guide: Security Services • January 2005

group::rw- #effective:rw-
mask:rw-

other:---

In the following example, the default ACL entries for the book directory are
displayed.

% getfacl -d book

file: book
owner: stacey
group: techpubs
user::rwx
user:anusha:r-x #effective:r-x
group::rwx #effective:rwx
mask:rwx
other:---
default:user::rw-
default:user:anusha:r--
default:group::rw-
default:mask:rw-

default:other:---

Protecting Against Programs With
Security Risk (Task Map)
The following task map points to procedures that find risky executables on the system,
and that prevent programs from exploiting an executable stack.

Task Description For Instructions

Find files with special
permissions

Locates files with the setuid bit set, but that
are not owned by the root user.

“How to Find Files With Special
File Permissions” on page 146

Prevent executable stack from
overflowing

Prevents programs from exploiting an
executable stack.

“How to Disable Programs From
Using Executable Stacks”
on page 147

Prevent logging of executable
stack messages

Turns off logging of executable stack messages. Example 6–13

Chapter 6 • Controlling Access to Files (Tasks) 145

� How to Find Files With Special File Permissions
You should monitor your system for any unauthorized use of the setuid and
setgid permissions on programs. The setuid and setgid permissions enable
ordinary users to gain superuser capabilities. A suspicious executable file grants
ownership to a user rather than to root or bin.

1. Assume the Primary Administrator role, or become superuser.
The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Find files with setuid permissions by using the find command.

find directory -user root -perm -4000 -exec ls -ldb {} \; >/tmp/filename

find directory Checks all mounted paths starting at the specified directory,
which can be root (/), sys, bin, or mail.

-user root Displays files owned only by root.

-perm -4000 Displays files only with permissions set to 4000.

-exec ls -ldb Displays the output of the find command in ls -ldb format.

>/tmp/filename Is the file that contains the results of the find command.

3. Display the results in /tmp/filename.

more /tmp/filename

For background information on setuid permissions, see “setuid Permission”
on page 126.

Finding Files With setuid Permissions

The output from the following example shows that a user named rar has made a
personal copy of /usr/bin/sh, and has set the permissions as setuid to root. As a
result, the /usr/rar/bin/sh program runs with root permissions.

This output was saved for future reference by moving the file out of the /tmp
directory.

find / -user root -perm -4000 -exec ls -ldb {} \; > /var/tmp/ckprm
cat /var/tmp/ckprm
-r-sr-xr-x 1 root bin 38836 Aug 10 16:16 /usr/bin/at
-r-sr-xr-x 1 root bin 19812 Aug 10 16:16 /usr/bin/crontab
---s--x--x 1 root sys 46040 Aug 10 15:18 /usr/bin/ct
-r-sr-xr-x 1 root sys 12092 Aug 11 01:29 /usr/lib/mv_dir
-r-sr-sr-x 1 root bin 33208 Aug 10 15:55 /usr/lib/lpadmin
-r-sr-sr-x 1 root bin 38696 Aug 10 15:55 /usr/lib/lpsched
---s--x--- 1 root rar 45376 Aug 18 15:11 /usr/rar/bin/sh

Steps

Example 6–12

146 System Administration Guide: Security Services • January 2005

-r-sr-xr-x 1 root bin 12524 Aug 11 01:27 /usr/bin/df
-rwsr-xr-x 1 root sys 21780 Aug 11 01:27 /usr/bin/newgrp
-r-sr-sr-x 1 root sys 23000 Aug 11 01:27 /usr/bin/passwd
-r-sr-xr-x 1 root sys 23824 Aug 11 01:27 /usr/bin/su

mv /var/tmp/ckprm /export/sysreports/ckprm

� How to Disable Programs From Using Executable
Stacks
For a description of the security risks of executable stacks, see “Preventing Executable
Files From Compromising Security” on page 132.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Edit the /etc/system file, and add the following line:

set noexec_user_stack=1

3. Reboot the system.

init 6

Disabling the Logging of Executable Stack Messages

In this example, the logging of executable stack messages is disabled, and then the
system is rebooted.

cat /etc/system
set noexec_user_stack=1
set noexec_user_stack_log=0

init 6

Steps

Example 6–13

Chapter 6 • Controlling Access to Files (Tasks) 147

148 System Administration Guide: Security Services • January 2005

CHAPTER 7

Using the Automated Security
Enhancement Tool (Tasks)

This chapter describes how to use the Automated Security Enhancement Tool (ASET)
to monitor or restrict access to system files and directories.

The following is a list of the step-by-step instructions in this chapter.

� “Automated Security Enhancement Tool (ASET)” on page 149
� “Running ASET (Task Map)” on page 167
� “Troubleshooting ASET Problems” on page 171

For a more comprehensive tool than ASET, use the Solaris Security Toolkit. The Solaris
Security Toolkit provides a framework for hardening and minimizing a Solaris system.
The kit includes a profiling tool, a reporting tool, and an undo capability. The toolkit is
free, and can be downloaded from the Sun web site,
http://wwws.sun.com/security/jass. The web site contains pointers to online
documentation.

The toolkit is described in detail in Securing Systems with the Solaris Security Toolkit, by
Alex Noordergraaf and Glenn Brunette, ISBN 0-13-141071-7, June 2003. The book is
part of the Sun BluePrints Series, which is published by Sun Microsystems Press.

Automated Security Enhancement Tool
(ASET)
The Solaris Operating System includes the Automated Security Enhancement Tool
(ASET). ASET helps you to monitor and to control system security by automatically
performing tasks that you would otherwise do manually.

149

http://wwws.sun.com/security/jass

The ASET security package provides automated administration tools that enable you
to control and monitor your system’s security. You specify a security level at which to
run ASET. The security levels are low, medium, and high. At each higher level, ASET’s
file-control functions increase to reduce file access and tighten your system security.

There are seven tasks that ASET runs. Each task performs specific checks and
adjustments to system files. The ASET tasks tighten file permissions, check the
contents of critical system files for security weaknesses, and monitor crucial areas.
ASET can also safeguard a network by applying the basic requirements of a firewall
system to a system that serves as a gateway system. See “Firewall Setup” on page 153.

ASET uses master files for configuration. Master files, reports, and other ASET files are
in the /usr/aset directory. These files can be changed to suit the particular
requirements of your site.

Each task generates a report. The report notes detected security weaknesses and any
changes that the task has made to the system files. When run at the highest security
level, ASET attempts to modify all system security weaknesses. If ASET cannot correct
a potential security problem, ASET reports the existence of the problem.

You can initiate an ASET session by using the /usr/aset/aset command
interactively. Or, you can set up ASET to run periodically by putting an entry into the
crontab file.

ASET tasks are disk-intensive. The tasks can interfere with regular activities. To
minimize the impact on system performance, schedule ASET to run when system
activity level is lowest. For example, run ASET once every 24 or 48 hours at midnight.

ASET Security Levels
ASET can be set to operate at one of three security levels: low, medium, or high. At
each higher level, ASET’s file-control functions increase to reduce file access and
heighten system security. These functions range from monitoring system security
without limiting users’ file access, to increasingly tightening access permissions until
the system is fully secured.

The following table outlines these three levels of security.

Security Level Description

Low Ensures that attributes of system files are set to standard release values. ASET
performs several checks, then reports potential security weaknesses. At this
level, ASET takes no action, so ASET does not affect system services.

150 System Administration Guide: Security Services • January 2005

Security Level Description

Medium Provides adequate security control for most environments. ASET modifies
some settings of system files and parameters. ASET restricts system access to
reduce the risks from security attacks. ASET reports security weaknesses and
any modifications that ASET has made to restrict access. At this level, ASET
does not affect system services.

High Renders a highly secure system. ASET adjusts many system files and
parameter settings to minimum access permissions. Most system applications
and commands continue to function normally. However, at this level, security
considerations take precedence over other system behavior.

Note – ASET does not change the permissions of a file to make the file less secure,
unless you downgrade the security level. You could also intentionally revert the
system to the settings that existed prior to running ASET.

ASET Task List
This section discusses what ASET does. You should understand each ASET task. By
understanding the objectives of ASET, the operations that ASET performs, and the
system components that ASET affects, you can interpret and use the reports effectively.

ASET report files contain messages that describe as specifically as possible any
problems that were discovered by each ASET task. These messages can help you
diagnose and correct these problems. However, successful use of ASET assumes that
you possess a general understanding of system administration and system
components. If you are a novice administrator, you can refer to other Solaris system
administration documentation. You can read related manual pages to prepare yourself
for ASET administration.

The taskstat utility identifies the tasks that have been completed. The utility also
identifies the tasks that are still running. Each completed task produces a report file.
For a complete description of the taskstat utility, refer to taskstat(1M).

System Files Permissions Tuning
This task sets the permissions on system files to the security level that you designate.
This task is run when the system is installed. If you decide later to alter the previously
established levels, then run this task again. At low security, permissions are set to
values that are appropriate for an open information-sharing environment. At medium
security, permissions are tightened to produce adequate security for most
environments. At high security, permissions are tightened to severely restrict access.

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 151

Any modifications that this task makes to system files permissions or parameter
settings are reported in the tune.rpt file. For an example of the files that ASET
consults when ASET sets permissions, see “Tune File Examples” on page 165.

System Files Checks
This task examines system files and compares each file with a description of that file in
a master file. The master file is created the first time ASET runs this task. The master
file contains the system file settings that are enforced by checklist for the specified
security level.

A list of directories whose files are to be checked is defined for each security level. You
can use the default list, or you can modify the list, specifying different directories for
each level.

For each file, the following criteria are checked:

� Owner and group
� Permission bits
� Size and checksum
� Number of links
� Last modification time

Any discrepancies that ASET finds are reported in the cklist.rpt file. This file
contains the results of comparing system file size, permission, and checksum values to
the master file.

User and Group Checks
This task checks the consistency and integrity of user accounts and groups. The task
uses the definitions in the passwd and group files. This task checks the local, and NIS
or NIS+ password files. Password file problems for NIS+ are reported but not
corrected. This task checks for the following violations:

� Duplicate names or IDs
� Entries in incorrect format
� Accounts without a password
� Invalid login directories
� The nobody account
� Null group password
� A plus sign (+) in the /etc/passwd file on an NIS server or an NIS+ server

Discrepancies are reported in the usrgrp.rpt file.

System Configuration Files Check
During this task, ASET checks various system tables, most of which are in the /etc
directory. These files are the following:

152 System Administration Guide: Security Services • January 2005

� /etc/default/login
� /etc/hosts.equiv
� /etc/inetd.conf
� /etc/aliases
� /var/adm/utmpx
� /.rhosts
� /etc/vfstab
� /etc/dfs/dfstab
� /etc/ftpd/ftpusers

ASET performs various checks and various modifications on these files. ASET reports
problems in the sysconf.rpt file.

Environment Variables Check
This task checks how the PATH and UMASK environment variables are set for root, and
for other users. The task checks the /.profile, /.login, and /.cshrc files.

The results of checking the environment for security are reported in the env.rpt file.

eeprom Check
This task checks the value of the eeprom security parameter to ensure that the
parameter is set to the appropriate security level. You can set the eeprom security
parameter to none, command, or full.

ASET does not change this setting, but reports its recommendations in the
eeprom.rpt file.

Firewall Setup
This task ensures that the system can be safely used as a network relay. This task
protects an internal network from external public networks by setting up a dedicated
system as a firewall, which is described in “Firewall Systems” on page 55. The firewall
system separates two networks. In this situation, each network approaches the other
network as untrusted. The firewall setup task disables the forwarding of Internet
Protocol (IP) packets. The firewall also hides routing information from the external
network.

The firewall task runs at all security levels, but takes action only at the highest level. If
you want to run ASET at high security, but find that your system does not require
firewall protection, you can eliminate the firewall task. You eliminate the task by
editing the asetenv file.

Any changes that are made are reported in the firewall.rpt file.

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 153

ASET Execution Log
ASET generates an execution log whether ASET runs interactively or in the
background. By default, ASET generates the log file on standard output. The execution
log confirms that ASET ran at the designated time, and also contains any execution
error messages. The aset -n command directs the log to be delivered by electronic
mail to a designated user. For a complete list of ASET options, see the aset(1M) man
page.

Example of an ASET Execution Log File
ASET running at security level low

Machine=example; Current time = 0325_08:00

aset: Using /usr/aset as working directory

Executing task list...
firewall
env
sysconfig
usrgrp
tune
cklist
eeprom

All tasks executed. Some background tasks may still be running.

Run /usr/aset/util/taskstat to check their status:
$/usr/aset/util/taskstat aset_dir

Where aset_dir is ASET’s operating directory, currently=/usr/aset

When the tasks complete, the reports can be found in:
/usr/aset/reports/latest/*.rpt

You can view them by:

more /usr/aset/reports/latest/*.rpt

The execution log first shows the system and time that ASET was run. Then, the
execution log lists each task as the task was started.

ASET invokes a background process for each of these tasks, which are described in
“ASET Task List” on page 151. The task is listed in the execution log when the task
starts. This listing does not indicate that the task completed. To check the status of the
background tasks, use the taskstat command.

ASET Reports
All report files that are generated from ASET tasks are stored in subdirectories under
the /usr/aset/reports directory. This section describes the structure of the
/usr/aset/reports directory, and provides guidelines on managing the report
files.

154 System Administration Guide: Security Services • January 2005

ASET places the report files in subdirectories that are named to reflect the time and
date when the reports are generated. This convention enables you to keep an orderly
trail of records that document the system status as the status varies between ASET
executions. You can monitor and compare these reports to determine the soundness of
your system’s security.

The following figure shows an example of the reports directory structure.

/usr/aset

reports

0125_01:00

util

latest

masters

0124_01:00

firewall.rpt sysconf.rpt usrgrp.rpt env.rpt

tune.rpt eeprom.rpt cklist.rpt

FIGURE 7–1 Structure of the ASET reports Directory

This example shows two report subdirectories.

� 0124_01:00
� 0125_01:00

The subdirectory names indicate the date and time that the reports were generated.
Each report subdirectory name has the following format:

monthdate_hour:minute

month, date, hour, and minute are all two-digit numbers. For example, 0125_01:00
represents January 25, at 1 a.m.

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 155

Each of the two report subdirectories contains a collection of reports that are generated
from one execution of ASET.

The latest directory is a symbolic link that always points to the subdirectory that
contains the latest reports. Therefore, to look at the latest reports that ASET has
generated, you can go to the /usr/aset/reports/latest directory. There is a
report file in this directory for each task that ASET performed during its most recent
execution.

Format of ASET Report Files
Each report file is named after the task that generates the report. The following table
lists tasks and their reports.

TABLE 7–1 ASET Tasks and Resulting Reports

Tasks Report

System files permissions tuning (tune) tune.rpt

System files checks (cklist) cklist.rpt

User and group checks (usrgrp) usrgrp.rpt

System configuration files check (sysconf) sysconf.rpt

Environment variables check (env) env.rpt

eeprom check (eeprom) eeprom.rpt

Firewall setup (firewall) firewall.rpt

Within each report file, messages are bracketed by a beginning and an ending banner
line. Sometimes, a task ends prematurely. For example, a task can end prematurely
when a component of ASET is accidentally removed or damaged. In such cases, the
report file usually contains a message near the end that indicates the reason for the
premature termination.

The following is a sample report file, usrgrp.rpt.

*** Begin User and Group Checking ***

Checking /etc/passwd ...
Warning! Password file, line 10, no passwd
:sync::1:1::/:/bin/sync
..end user check; starting group check ...
Checking /etc/group...

*** End User And group Checking ***

156 System Administration Guide: Security Services • January 2005

Examining ASET Report Files
After you initially run or reconfigure ASET, you should examine the report files
closely. Reconfiguration includes modifying the asetenv file or the master files in the
masters subdirectory, or changing the security level at which ASET operates.

The reports record any errors that were introduced when you reconfigured ASET. By
watching the reports closely, you can react to, and solve, problems as the problems
arise.

Comparing ASET Report Files
After you monitor the report files for a period during which there are no configuration
changes or system updates, you might find that the content of the reports begins to
stabilize. When the reports contain little unexpected information, you can use the
diff utility to compare reports.

ASET Master Files
ASET’s master files, tune.high, tune.low, tune.med, and uid_aliases, are
located in the /usr/aset/masters directory. ASET uses the master files to define
security levels. For more detail, see the asetmasters(4) man page.

Tune Files
The tune.low, tune.med, and tune.high master files define the available ASET
security levels. The files specify the attributes of system files at each level and are used
for comparison and reference purposes.

The uid_aliases File
The uid_aliases file contains a list of multiple user accounts that share the same
user ID (UID). Normally, ASET warns about such multiple user accounts because this
practice lessens accountability. You can allow for exceptions to this rule by listing the
exceptions in the uid_aliases file. ASET does not report entries in the passwd file
with duplicate UIDs if these entries are specified in the uid_aliases file.

Avoid having multiple user accounts share the same UID. You should consider other
methods of achieving your objective. For example, if you intend for several users to
share a set of permissions, you could create a group account. You could also create a
role. The sharing of UIDs should be your last resort, used only when other methods
cannot accomplish your objectives.

You can use the UID_ALIASES environment variable to specify an alternate aliases
file. The default file is /usr/aset/masters/uid_aliases.

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 157

The Checklist Files
The master files that are used by the system files checks are generated when you first
execute ASET. The master files are also generated when you run ASET after changing
the security level.

The following environment variables define the files that are checked by this task:

� CKLISTPATH_LOW
� CKLISTPATH_MED
� CKLISTPATH_HIGH

ASET Environment File (asetenv)
The environment file, asetenv, contains a list of environment variables that affect
ASET tasks. Some of these variables can be changed to modify ASET operation. For
details about the asetenv file, see asetenv(4).

Configuring ASET
This section discusses how ASET is configured. This section also discusses the
environment in which ASET operates.

ASET requires minimum administration and minimum configuration. In most cases,
you can run ASET with the default values. You can, however, fine-tune some of the
parameters that affect the operation and behavior of ASET to maximize its benefit.
Before you change the default values, you should understand how ASET works, and
how ASET affects the components of your system.

ASET relies on four configuration files to control the behavior of its tasks:

� /usr/aset/asetenv
� /usr/aset/masters/tune.low
� /usr/aset/masters/tune.med
� /usr/aset/masters/tune.high

Modifying the Environment File (asetenv)
The /usr/aset/asetenv file has two main sections:

� A user-configurable environment variables section
� An internal environment variables section

You can alter the user-configurable parameters section. However, the settings in the
internal environment variables section are for internal use only. These settings should
not be modified.

158 System Administration Guide: Security Services • January 2005

You can edit the entries in the user-configurable section to do the following:

� Choose which tasks to run
� Specify the directories for the system files checks task
� Schedule ASET execution
� Specify a UID aliases file
� Extend checks to NIS+ tables

Choosing Which Tasks to Run: TASKS
Each task that ASET performs monitors a particular area of system security. In most
system environments, all the tasks are necessary to provide balanced security
coverage. However, you might decide to eliminate one or more tasks.

For example, the firewall task runs at all security levels, but takes action only at the
high security level. You might want to run ASET at the high security level, but you do
not require firewall protection.

You can set up ASET to run at the high security level without the firewall feature. To
do so, edit the TASKS list of environment variables in the asetenv file. By default, the
TASKS list contains all of the ASET tasks. To delete a task, remove the task-related
environment variable from the file. In this case, you would delete the firewall
environment variable from the list. The next time ASET runs, the excluded task is not
performed.

In the following example, the TASKS list with all of the ASET tasks is displayed.

TASKS=”env sysconfig usrgrp tune cklist eeprom firewall”

Specifying Directories for System Files Checks Task:
CKLISTPATH

The system files check checks the attributes of files in selected system directories. You
define which directories to check by using the following environment variables.

The CKLISTPATH_LOW variable defines the directories to be checked at the low
security level. CKLISTPATH_MED and CKLISTPATH_HIGH environment variables
function similarly for the medium and high security levels.

The directory list that is defined by an environment variable at a lower security level
should be a subset of the directory list that is defined at the next higher level. For
example, all directories that are specified for CKLISTPATH_LOW should be included in
CKLISTPATH_MED. Similarly, all the directories that are specified for
CKLISTPATH_MED should be included in CKLISTPATH_HIGH.

Checks that are performed on these directories are not recursive. ASET only checks
those directories that are explicitly listed in the environment variable. ASET does not
check their subdirectories.

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 159

You can edit these environment variable definitions to add or delete directories that
you want ASET to check. Note that these checklists are useful only for system files that
do not normally change from day to day. A user’s home directory, for example, is
generally too dynamic to be a candidate for a checklist.

Scheduling ASET Execution: PERIODIC_SCHEDULE
You can start ASET interactively, or you can use the -p option to request that the ASET
tasks run at a scheduled time. You can run ASET periodically, at a time when system
demand is light. For example, ASET consults PERIODIC_SCHEDULE to determine how
frequently to execute the ASET tasks, and at what time to run the tasks. For detailed
instructions about setting up ASET to run periodically, see “How to Run ASET
Periodically” on page 168.

The format of PERIODIC_SCHEDULE follows the format of crontab entries. For
complete information, see crontab(1).

Specifying an Aliases File: UID_ALIASES
The UID_ALIASES variable specifies an aliases file that lists shared UIDs. The default
file is /usr/aset/masters/uid_aliases.

Extending Checks to NIS+ Tables: YPCHECK
The YPCHECK environment variable specifies whether ASET should also check system
configuration file tables. YPCHECK is a Boolean variable. You can specify only true or
false for YPCHECK. The default value is false, which disables NIS+ table checking.

To understand how this environment variable works, consider its effect on the passwd
file. When set to false, ASET checks the local passwd file. When set to true, the task
also checks the NIS+ passwd table for the domain of the system.

Note – Although ASET automatically repairs the local files, ASET only reports
potential problems in the NIS+ tables. ASET does not change the tables.

Modifying the Tune Files
ASET uses the three master tune files, tune.low, tune.med, and tune.high, to ease
or tighten access to critical system files. These master files are located in the
/usr/aset/masters directory. You can modify the files to suit your environment.
For examples, see “Tune File Examples” on page 165.

The tune.low file sets permissions to values that are appropriate for default system
settings. The tune.med file further restricts these permissions. The tune.med file also
includes entries that are not present in tune.low. The tune.high file restricts
permissions even further.

160 System Administration Guide: Security Services • January 2005

Note – Modify settings in the tune files by adding or deleting file entries. You cannot
effectively set a permission to a less restrictive value than the current setting. The
ASET tasks do not relax permissions unless you downgrade your system security to a
lower level.

Restoring System Files Modified by ASET
When ASET is executed for the first time, ASET saves and archives the original system
files. The aset.restore utility reinstates these files. This utility also deschedules
ASET, if ASET is currently scheduled for periodic execution. The aset.restore
command is located in /usr/aset, the ASET operating directory.

Changes that are made to system files are lost when you run the aset.restore
command.

You should use the aset.restore command in the following instances:

� When you want to remove ASET changes and to restore the original system.

If you want to deactivate ASET permanently, you can remove ASET from cron
scheduling if the aset command had previously been added to root’s crontab.
For instructions on how to use cron to remove automatic execution, see “How to
Stop Running ASET Periodically” on page 169.

� After a brief period of experimenting with ASET, to restore the original system
state.

� When some major system feature is not working properly, and you suspect that
ASET is causing the problem.

Network Operation With the NFS System
Generally, ASET is used in standalone mode, even on a system that is part of a
network. As system administrator for your standalone system, you are responsible for
the security of your system. Therefore, you are responsible for running and managing
ASET to protect your system.

You can also use ASET in the NFS distributed environment. As a network
administrator, you are responsible for installing, running, and managing various
administrative tasks for all your clients. To facilitate ASET management across several
client systems, you can make configuration changes that are applied globally to all
clients. By globally applying changes, you eliminate the need to log in to each system
to repeat the configuration changes.

When you are deciding how to set up ASET on your networked systems, you should
consider who you want to control security. You might want users to control some
security on their own systems. You might want to centralize responsibility for security
control.

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 161

Providing a Global Configuration for Each Security Level
A situation might arise where you want to set up more than one network
configuration. For example, you might want to set up one configuration for clients that
are designated with low security level. You might want to set up another configuration
for medium level clients, and yet another configuration with high level.

If you need to create a separate ASET network configuration for each security level,
you can create three ASET configurations on the server. You create one configuration
for each level. You would export each configuration to the clients with the appropriate
security level. Some ASET components that are common to all three configurations
could be shared by using links.

Collecting ASET Reports
Not only can you centralize the ASET components on a server, but you can also set up
a central directory on a server to collect all ASET reports. The server can be accessed
by clients with or without superuser privileges. For instructions on setting up a
collection mechanism, see “How to Collect ASET Reports on a Server” on page 169.

By setting up the collection of reports on a server, you can review reports for all clients
from one location. You can use this method whether or not a client has superuser
privileges. Alternatively, you can leave the reports directory on the local system when
you want users to monitor their own ASET reports.

ASET Environment Variables
The following is a list of the ASET environment variables and the values that the
variables specify.

ASETDIR Specifies the ASET working directory

ASETSECLEVEL Specifies the security level

PERIODIC_SCHEDULE Specifies the periodic schedule

TASKS Specifies which ASET tasks to run

UID_ALIASES Specifies an aliases file

YPCHECK Determines whether to extend checks to NIS maps and
NIS+ tables

CKLISTPATH_LOW Is the directory list for low security

CKLISTPATH_MED Is the directory for medium security

CKLISTPATH_HIGH Is the directory list for high security

162 System Administration Guide: Security Services • January 2005

The environment variables that are listed in the following sections are found in the
/usr/aset/asetenv file. The ASETDIR and ASETSECLEVEL variables are optional.
The variables can be set only through the shell by using the /usr/aset/aset
command. The other environment variables can be set by editing the file.

ASETDIR Environment Variable
ASETDIR specifies an ASET working directory.

From the C shell, type:

% setenv ASETDIR pathname

From the Bourne shell or the Korn shell, type:

$ ASETDIR=pathname
$ export ASETDIR

Set pathname to the full path name of the ASET working directory.

ASETSECLEVEL Environment Variable
The ASETSECLEVEL variable specifies a security level at which ASET tasks are
executed.

From the C shell, type:

% setenv ASETSECLEVEL level

From the Bourne shell or the Korn shell, type:

$ ASETSECLEVEL=level
$ export ASETSECLEVEL

In these commands, level can be set to one of the following:

low Low security level

med Medium security level

high High security level

PERIODIC_SCHEDULE Environment Variable
The value of PERIODIC_SCHEDULE follows the same format as the crontab file.
Specify the variable value as a string of five fields enclosed in double quotation marks,
with each field separated by a space:

"minutes hours day-of-month month day-of-week"

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 163

minutes hours Specifies start time in number of minutes (0-59) after the hour and
the hour (0-23).

day-of-month Specifies the day of the month when ASET should be run, with
values from 1-31.

month Specifies the month of the year when ASET should be run, with
values from 1-12.

day-of-week Specifies the day of the week when ASET should be run, with values
from 0-6. Sunday is day 0.

The following rules apply when creating a periodic schedule for ASET:

� You can specify a list of values, each delimited by a comma, for any field.

� You can specify a value as a number, or you can specify the value as a range. A
range is a pair of numbers that are joined by a hyphen. A range states that the
ASET tasks should be executed for every time that is included in the range.

� You can specify an asterisk (*) as the value of any field. An asterisk inclusively
specifies all possible values of the field.

The default entry for the PERIODIC_SCHEDULE variable causes ASET to execute at
12:00 midnight every day:

PERIODIC_SCHEDULE=”0 0 * * *”

TASKS Environment Variable
The TASKS variable lists the tasks that ASET performs. The default is to list all seven
tasks:

TASKS=”env sysconfig usrgrp tune cklist eeprom firewall”

UID_ALIASES Environment Variable
The UID_ALIASES variable specifies an aliases file. If present, ASET consults this file
for a list of permitted multiple aliases. The format is UID_ALIASES=pathname, where
pathname is the full path name of the aliases file.

The default is as follows:

UID_ALIASES=${ASETDIR}/masters/uid_aliases

164 System Administration Guide: Security Services • January 2005

YPCHECK Environment Variable
The YPCHECK variable extends the task of checking system tables to include NIS or
NIS+ tables. The YPCHECK variable is a Boolean variable, which can be set to either
true or false.

The default is false, which confines the checking to local system tables:

YPCHECK=false

CKLISTPATH_level Environment Variables
The three checklist path variables list the directories to be checked by the system files
checks task. The following definitions of the variables are set by default. The
definitions illustrate the relationship between the variables at different levels:

CKLISTPATH_LOW=${ASETDIR}/tasks:${ASETDIR}/util:${ASETDIR}/masters:/etc
CKLISTPATH_MED=${CKLISTPATH_LOW}:/usr/bin:/usr/ucb

CKLISTPATH_HIGH=${CKLISTPATH_MED}:/usr/lib:/sbin:/usr/sbin:/usr/ucblib

The values for the checklist path environment variables are similar to the values of the
shell path variables. Like the shell path variables, the checklist path environment
variables are lists of directory names. The directory names are separated by colons.
You use an equal sign (=) to connect the variable name to its value.

ASET File Examples
This section has examples of some ASET files, including the tune files and the aliases
file.

Tune File Examples
ASET maintains three tune files. Each entry in a tune file occupies one line. The fields
in an entry are in the following order:

pathname mode owner group type

pathname The full path name of the file

mode A five-digit number that represents the permission setting

owner The owner of the file

group The group owner of the file

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 165

type The type of file

The following rules apply when you edit the tune files:

� You can use regular shell wildcard characters, such as an asterisk (*) and a
question mark (?), in the path name for multiple references. For more information,
see sh(1).

� mode represents the least restrictive value. If the current setting is already more
restrictive than the specified value, ASET does not loosen the permission settings.
For example, if the specified value is 00777, the permission remains unchanged,
because 00777 is always less restrictive than whatever the current setting is.

This process is how ASET handles mode setting. The process is different if the
security level is being downgraded, or if you are removing ASET. When you
decrease the security level from the level in the previous execution, or when you
want to restore the system files to the state they were in before ASET was first
executed, ASET recognizes what you are doing and decreases the protection level.

� You must use names for owner and group instead of numeric IDs.

� You can use a question mark (?) in place of owner, group, and type to prevent ASET
from changing the existing values of these parameters.

� type can be symlink, directory, or file. A symlink is a symbolic link.

� Higher security level tune files reset file permissions to be at least as restrictive as
file permissions at lower levels. Also, at higher security levels, additional files are
added to the list.

� A file can match more than one tune file entry. For example, etc/passwd matches
the etc/pass* and /etc/* entries.

� Where two entries have different permissions, the file permission is set to the most
restrictive value. In the following example, the permission of the /etc/passwd
file is set to 00755, which is the more restrictive of 00755 and 00770.

/etc/pass* 00755 ? ? file

/etc/* 00770 ? ? file

� If two entries have different owner designations or group designations, the last entry
takes precedence. In the following example, the owner of /usr/sbin/chroot is
set to root.

/usr/sbin/chroot 00555 bin bin file

/usr/sbin/chroot 00555 root bin file

Aliases File Examples
The aliases file contains a list of aliases that share the same user ID.

Each entry is in this form:

uid=alias1=alias2=alias3=...

166 System Administration Guide: Security Services • January 2005

uid Shared UID.

aliasn User accounts that share a UID.

For example, the following entry lists the UID 0. The UID is being shared by the
sysadm and root accounts:

0=root=sysadm

Running ASET (Task Map)

Task Description For Instructions

Run ASET from the command
line

Protects the system at the ASET level that you
specify. Views the execution log to see the
changes.

“How to Run ASET
Interactively” on page 167

Run ASET in batch mode at
regular intervals

Sets up a cron job to ensure that ASET protects
the system.

“How to Run ASET Periodically”
on page 168

Stop running ASET in batch
mode

Removes the ASET cron job. “How to Stop Running ASET
Periodically” on page 169

Store ASET reports on a
server

Collects ASET reports from clients for
monitoring in a central location.

“How to Collect ASET Reports
on a Server” on page 169

To set the variables in ASET, see “ASET Environment Variables” on page 162. To
configure ASET, see “Configuring ASET” on page 158.

� How to Run ASET Interactively

1. Become superuser or assume an equivalent role.
Roles contain authorizations and privileged commands. For more information
about roles, see “Configuring RBAC (Task Map)” on page 196.

2. Run ASET interactively by using the aset command.

/usr/aset/aset -l level -d pathname

level Specifies the level of security. Valid values are low, medium, or high.
The default setting is low. For detailed information about security
levels, see “ASET Security Levels” on page 150.

pathname Specifies the working directory for ASET. The default is /usr/aset.

Steps

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 167

3. Verify that ASET is running by viewing the ASET execution log that is
displayed on the screen.

The execution log message identifies which tasks are being run.

Running ASET Interactively

In the following example, ASET is run at low security with the default working
directory.

/usr/aset/aset -l low
======= ASET Execution Log =======

ASET running at security level low

Machine = jupiter; Current time = 0111_09:26

aset: Using /usr/aset as working directory

Executing task list ...
firewall
env
sysconf
usrgrp
tune
cklist
eeprom

All tasks executed. Some background tasks may still be running.

Run /usr/aset/util/taskstat to check their status:
/usr/aset/util/taskstat [aset_dir]

where aset_dir is ASET’s operating
directory,currently=/usr/aset.

When the tasks complete, the reports can be found in:
/usr/aset/reports/latest/*.rpt

You can view them by:

more /usr/aset/reports/latest/*.rpt

� How to Run ASET Periodically

1. Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information
about roles, see “Configuring RBAC (Task Map)” on page 196.

2. If necessary, set up the time when you want ASET to run periodically.

Example 7–1

Steps

168 System Administration Guide: Security Services • January 2005

You should have ASET run when system demand is light. The
PERIODIC_SCHEDULE environment variable in the /usr/aset/asetenv file is
used to set up the time for ASET to run periodically. By default, the time is set for
every day at midnight.

If you want to set up a different time, edit the PERIODIC_SCHEDULE variable in
the /usr/aset/asetenv file. For detailed information about setting the
PERIODIC_SCHEDULE variable, see “PERIODIC_SCHEDULE Environment
Variable” on page 163.

3. Add an entry to the crontab file by using the aset command.

/usr/aset/aset -p

The -p option inserts a line in the crontab file that starts ASET running at the
time determined by the PERIODIC_SCHEDULE environment variable in the
/usr/aset/asetenv file.

4. Display the crontab entry to verify when ASET is scheduled to run.

crontab -l root

� How to Stop Running ASET Periodically

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Edit the crontab file.

crontab -e root

3. Delete the ASET entry.

4. Save the changes and exit.

5. Display the crontab entry to verify that the ASET entry is deleted.

crontab -l root

� How to Collect ASET Reports on a Server

1. Assume the Primary Administrator role, or become superuser.

Steps

Steps

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 169

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Set up a directory on the server:

a. Change to the /usr/aset directory.

mars# cd /usr/aset

b. Create a rptdir directory.

mars# mkdir rptdir

c. Change to the rptdir directory, and create a client_rpt directory.

This step creates a client_rpt subdirectory for a client. Repeat this step for each
client whose reports you need to collect.

mars# cd rptdir
mars# mkdir client_rpt

In the following example, the directory all_reports, and the subdirectories
pluto_rpt and neptune_rpt are created.

mars# cd /usr/aset
mars# mkdir all_reports
mars# cd all_reports
mars# mkdir pluto_rpt

mars# mkdir neptune_rpt

3. Add the client_rpt directories to the /etc/dfs/dfstab file.

The directories should have read and write options.

For example, the following entries in the dfstab file are shared with read and
write permissions.

share -F nfs -o rw=pluto /usr/aset/all_reports/pluto_rpt

share -F nfs -o rw=neptune /usr/aset/all_reports/neptune_rpt

4. Make the resources in the dfstab file available to the clients.

shareall

5. On each client, mount the client subdirectory from the server at the mount point,
/usr/aset/masters/reports.

mount server:/usr/aset/client_rpt /usr/aset/masters/reports

6. Edit the /etc/vfstab file to mount the directory automatically at boot time.

The following sample entry in /etc/vfstab on neptune lists the directory to be
mounted from mars, /usr/aset/all_reports/neptune_rpt, and the mount
point on neptune, /usr/aset/reports. At boot time, the directories that are

170 System Administration Guide: Security Services • January 2005

listed in vfstab are automatically mounted.

mars:/usr/aset/all_reports/neptune.rpt /usr/aset/reports nfs - yes hard

Troubleshooting ASET Problems
This section describes the error messages that are generated by ASET.

ASET Error Messages

ASET failed: no mail program found.
Cause: ASET is directed to send the execution log to a user, but no mail program
can be found.

Solution: Install a mail program.

Usage: aset [-n user[@host]] in /bin/mail or /usr/ucb/mail.

Cannot decide current and previous security levels.
Cause: ASET cannot determine what the security levels are for the current and
previous invocations.

Solution: Ensure the current security level is set either through the command-line
option or the ASETSECLEVEL environment variable. Also, ensure that the last line
of ASETDIR/archives/asetseclevel.arch correctly reflects the previous
security level. If these values are not set, or if these values are incorrect, enter the
correct values.

ASET working directory undefined.

To specify, set ASETDIR environment variable or use command line
option -d.

ASET startup unsuccessful.
Cause: The ASET working directory is not defined, or the directory is defined
incorrectly. The working directory is the operating directory.

Solution: Use the ASETDIR environment variable or the -d command-line option to
correct the error, and restart ASET.

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 171

ASET working directory $ASETDIR missing.

ASET startup unsuccessful.
Cause: The ASET working directory is not defined, or the directory is defined
incorrectly. The working directory is the operating directory. This problem might
be because the ASETDIR variable refers to a nonexistent directory. Or the -d
command-line option might refer to a nonexistent directory.

Solution: Ensure that the correct directory, that is, the directory that contains the
ASET directory hierarchy, is referred to correctly.

Cannot expand $ASETDIR to full pathname.
Cause: ASET cannot expand the directory name that is given by the ASETDIR
variable or the -d command-line option to a full path name.

Solution: Ensure that the directory name is correct. Ensure that the directory refers
to an existing directory to which the user has access.

aset: invalid/undefined security level.

To specify, set ASETSECLEVEL environment variable or use command
line option -l, with argument= low/med/high.

Cause: The security level is not defined, or the level is defined incorrectly. Only the
values low, med, or high are acceptable.

Solution: Use the ASETSECLEVEL variable or the -l command-line option to
specify one of the three values.

ASET environment file asetenv not found in $ASETDIR.

ASET startup unsuccessful.
Cause: ASET cannot locate an asetenv file in its working directory.

Solution: Ensure there is an asetenv file in ASET’s working directory. For the
details about this file, see the asetenv(4) man page.

filename doesn’t exist or is not readable.
Cause: The file that is referred to by filename either does not exist or is not readable.
This problem can occur when you are using the -u option. The option permits you
to specify a file that contains a list of users whom you want to check.

Solution: Ensure that the argument to the -u option exists and that the argument is
readable.

ASET task list TASKLIST undefined.
Cause: The ASET task list, which should be defined in the asetenv file, is not
defined. This message can mean that your asetenv file is bad.

172 System Administration Guide: Security Services • January 2005

Solution: Examine your asetenv file. Ensure that the task list is defined in the
User Configurable section. Also check other parts of the file to ensure that the
file is intact. For the content of a valid asetenv file, see the asetenv(4) man page.

ASET task list $TASKLIST missing.

ASET startup unsuccessful.
Cause: The ASET task list, which should be defined in the asetenv file, is not
defined. This message can mean that your asetenv file is bad.

Solution: Examine your asetenv file. Ensure that the task list is defined in the
User Configurable section. Also check other parts of the file to ensure that the
file is intact. For the content of a valid asetenv file, see the asetenv(4) man page.

Schedule undefined for periodic invocation.

No tasks executed or scheduled. Check asetenv file.
Cause: ASET scheduling is requested by using the -p option, but the environment
variable PERIODIC_SCHEDULE is undefined in the asetenv file.

Solution: Check the User Configurable section of the asetenv file to ensure
that the variable is defined. Ensure that the variable is in proper format.

Warning! Duplicate ASET execution scheduled.

Check crontab file.
Cause: ASET is scheduled to run more than once. In other words, ASET scheduling
is requested while a schedule is already in effect. This message does not necessarily
indicate an error if more than one schedule is indeed desired. In this instance, the
messages servers only as a warning. If you want more than one schedule, you
should use the proper scheduling format with the crontab command. For more
information, see the crontab(1) man page.

Solution: Verify, through the crontab command, that the correct schedule is in
effect. Ensure that no unnecessary crontab entries for ASET are in place.

Chapter 7 • Using the Automated Security Enhancement Tool (Tasks) 173

174 System Administration Guide: Security Services • January 2005

PART III Roles, Rights Profiles, and Privileges

This section covers role-based access control (RBAC) and process rights management.
RBAC components include roles, rights profiles, and authorizations. Process rights
management is implemented through privileges. Privileges work with RBAC to
provide a more secure administration alternative than administration of a system by a
superuser.

175

176 System Administration Guide: Security Services • January 2005

CHAPTER 8

Using Roles and Privileges (Overview)

Solaris role-based access control (RBAC) and privileges provide a more secure
alternative to superuser. This chapter provides overview information about RBAC and
about privileges.

The following is a list of the overview information in this chapter.

� “Role-Based Access Control (Overview)” on page 177
� “Privileges (Overview)” on page 186

Role-Based Access Control (Overview)
Role-based access control (RBAC) is a security feature for controlling user access to
tasks that would normally be restricted to superuser. By applying security attributes to
processes and to users, RBAC can divide up superuser capabilities among several
administrators. Process rights management is implemented through privileges. User
rights management is implemented through RBAC.

� For a discussion of process rights management, see “Privileges (Overview)”
on page 186.

� For information on RBAC tasks, see Chapter 9.
� For reference information, see Chapter 10.

RBAC: An Alternative to the Superuser Model
In conventional UNIX systems, the root user, also referred to as superuser, is
all-powerful. Programs that run as root, or setuid programs, are all-powerful. The
root user has the ability to read and write to any file, run all programs, and send kill
signals to any process. Effectively, anyone who can become superuser can modify a
site’s firewall, alter the audit trail, read confidential records, and shut down the entire
network. A setuid program that is hijacked can do anything on the system.

177

Role-based access control (RBAC) provides a more secure alternative to the
all-or-nothing superuser model. With RBAC, you can enforce security policy at a more
fine-grained level. RBAC uses the security principle of least privilege. Least privilege
means that a user has precisely the amount of privilege that is necessary to perform a
job. Ordinary users have enough privilege to use their applications, check the status of
their jobs, print files, create new files, and so on. Capabilities beyond ordinary user
capabilities are grouped into rights profiles. Users who are expected to do jobs that
require some of the capabilities of superuser assume a role that includes the
appropriate rights profile.

RBAC collects superuser capabilities into rights profiles. These rights profiles are
assigned to special user accounts that are called roles. A user can then assume a role to
do a job that requires some of superuser’s capabilities. Predefined rights profiles are
supplied with Solaris software. You create the roles and assign the profiles.

Rights profiles can provide broad capabilities. For example, the Primary Administrator
rights profile is equivalent to superuser. Rights profiles can also be narrowly defined.
For example, the Cron Management rights profile manages at and cron jobs. When
you create roles, you can decide to create roles with broad capabilities, or roles with
narrow capabilities, or both.

In the RBAC model, superuser creates one or more roles. The roles are based on rights
profiles. Superuser then assigns the roles to users who are trusted to perform the tasks
of the role. Users log in with their user name. After login, users assume roles that can
run restricted administrative commands and graphical user interface (GUI) tools.

The flexibility in setting up roles enables a variety of security policies. Although no
roles are shipped with the Solaris Operating System (Solaris OS), three recommended
roles can easily be configured. The roles are based on rights profiles of the same name:

� Primary Administrator – A powerful role that is equivalent to the root user, or
superuser.

� System Administrator – A less powerful role for administration that is not related
to security. This role can manage file systems, mail, and software installation.
However, this role cannot set passwords.

� Operator – A junior administrator role for operations such as backups and printer
management.

These three roles do not have to be implemented. Roles are a function of an
organization’s security needs. Roles can be set up for special-purpose administrators
in areas such as security, networking, or firewall administration. Another strategy is to
create a single powerful administrator role along with an advanced user role. The
advanced user role would be for users who are permitted to fix portions of their own
systems.

The superuser model and the RBAC model can co-exist. The following table
summarizes the gradations from superuser to restricted ordinary user that are possible
in the RBAC model. The table includes the administrative actions that can be tracked
in both models. For a summary of the effect of privileges alone on a system, see Table
8–2.

178 System Administration Guide: Security Services • January 2005

TABLE 8–1 Superuser Model Versus RBAC With Privileges Model

User Capabilities on a System Superuser Model RBAC Model

Can become superuser with full
superuser capability

Yes Yes

Can log in as a user with full user
capabilities

Yes Yes

Can become superuser with limited
capabilities

No Yes

Can log in as a user, and have
superuser capabilities, sporadically

Yes, with setuid
programs only

Yes, with setuid programs
and with RBAC

Can log in as a user with
administrative capabilities, but
without full superuser capability

No Yes, with RBAC and with
directly-assigned privileges and
authorizations

Can log in as a user with fewer
capabilities than an ordinary user

No Yes, with RBAC and with
removed privileges

Can track superuser actions Yes, by auditing the
su command

Yes, by auditing profile shell
commands

Also, if root user is disabled,
the name of the user who has
assumed the root role is in the
audit trail

Solaris RBAC Elements and Basic Concepts
The RBAC model in the Solaris OS introduces the following elements:

� Authorization – A permission that enables a user or role to perform a class of
actions that could affect security. For example, security policy at installation gives
ordinary users the solaris.device.cdrw authorization. This authorization
enables users to read and write to a CD-ROM device. For a list of authorizations,
see the /etc/security/auth_attr file.

� Privilege – A discrete right that can be granted to a command, a user, a role, or a
system. Privileges enable a process to succeed. For example, the proc_exec
privilege allows a process to call execve(). Ordinary users have basic privileges.
To see your basic privileges, run the ppriv -vl basic command.

� Security attributes – An attribute that enables a process to perform an operation.
In a typical UNIX environment, a security attribute enables a process to perform an
operation that is otherwise forbidden to ordinary users. For example, setuid and
setgid programs have security attributes. In the RBAC model, operations that
ordinary users perform might require security attributes. In addition to setuid
and setgid programs, authorizations and privileges are also security attributes in
the RBAC model. For example, a user with the solaris.device.allocate

Chapter 8 • Using Roles and Privileges (Overview) 179

authorization can allocate a device for exclusive use. A process with the sys_time
privilege can manipulate system time.

� Privileged application – An application or command that can override system
controls by checking for security attributes. In a typical UNIX environment and in
the RBAC model, programs that use setuid and setgid are privileged
applications. In the RBAC model, programs that require privileges or
authorizations to succeed are also privileged applications. For more information,
see “Privileged Applications and RBAC” on page 182.

� Rights profile – A collection of administrative capabilities that can be assigned to a
role or to a user. A rights profile can consist of authorizations, of commands with
security attributes, and of other rights profiles. Rights profiles offer a convenient
way to group security attributes.

� Role – A special identity for running privileged applications. The special identity
can be assumed by assigned users only. In a system that is run by roles, superuser
is unnecessary. Superuser capabilities are distributed to different roles. For
example, in a two-role system, security tasks would be handled by a security role.
The second role would handle system administration tasks that are not
security-related. Roles can be more fine-grained. For example, a system could
include separate administrative roles for handling the cryptographic framework,
printers, system time, file systems, and auditing.

The following figure shows how the RBAC elements work together.

Authorizations
Commands with

security attributes

Rights
profiles

Supplementary
rights profiles

Users

Roles

FIGURE 8–1 Solaris RBAC Element Relationships

In RBAC, roles are assigned to users. When a user assumes a role, the capabilities of
the role are available. Roles get their capabilities from rights profiles. Rights profiles
can contain authorizations, privileged commands, and other supplementary rights
profiles. Privileged commands are commands that execute with security attributes.

180 System Administration Guide: Security Services • January 2005

The following figure uses the Operator role, the Operator rights profile, and the
Printer Management rights profile to demonstrate RBAC relationships.

Commands with security attributes

 /usr/bin/lpset:egid=14

 /usr/lib/lp/lpsched:uid=0

 /usr/sbin/lpshut:euid=lp

 /usr/ucb/lpq:euid=0

 ...

Authorizations

 solaris.admin.printer.read

 solaris.admin.printer.modify

 solaris.admin.printer.delete

Supplementary rights profiles

 Media Backup

 Printer Management

Users

 jdoe

Roles

 Operator

Rights profiles

 Operator

FIGURE 8–2 Example of Solaris RBAC Element Relationships

The Operator role is used to maintain printers and to perform media backup. The role
is assigned to the user jdoe. jdoe can assume the role by switching to the role, and
then supplying the role password.

The Operator rights profile has been assigned to the Operator role. The Operator
rights profile contains two supplementary profiles, Printer Management and Media
Backup. The supplementary profiles reflect the role’s primary tasks.

Chapter 8 • Using Roles and Privileges (Overview) 181

The Printer Management rights profile is for managing printers, print daemons, and
spoolers. Three authorizations are included in the Printer Management rights profile:
solaris.admin.printer.read, solaris.admin.printer.delete, and
solaris.admin.printer.modify. These authorizations enable roles and users to
manipulate information in the printer queue. The Printer Management rights profile
also includes a number of commands with security attributes, such as
/usr/sbin/lpshut with euid=lp and /usr/ucb/lpq with euid=0.

RBAC Authorizations
An authorization is a discrete right that can be granted to a role or to a user.
Authorizations enforce policy at the user application level. Authorizations can be
assigned directly to a role or to a user. Typically, authorizations are included in a rights
profile. The rights profile is then included in a role, and the role is assigned to a user.
For an example, see Figure 8–2.

RBAC-compliant applications can check a user’s authorizations prior to granting
access to the application or specific operations within the application. This check
replaces the check in conventional UNIX applications for UID=0. For more
information on authorizations, see the following sections:

� “Authorization Naming and Delegation” on page 228
� “auth_attr Database” on page 232
� “Commands That Require Authorizations” on page 237

Authorizations and Privileges
Privileges enforce security policy in the kernel. The difference between authorizations
and privileges concerns the level at which the security policy is enforced. Without the
proper privilege, a process can be prevented from performing privileged operations by
the kernel. Without the proper authorizations, a user might be prevented from using a
privileged application or from performing security-sensitive operations within a
privileged application. For a fuller discussion of privileges, see “Privileges
(Overview)” on page 186.

Privileged Applications and RBAC
Applications and commands that can override system controls are considered
privileged applications. Security attributes such as UID=0, privileges, and
authorizations make an application privileged.

Applications That Check UIDs and GIDs
Privileged applications that check for root (UID=0) or some other special UID or GID
have long existed in the UNIX environment. The rights profile mechanism enables you
to isolate commands that require a specific ID. Instead of changing the ID on a

182 System Administration Guide: Security Services • January 2005

command that anyone can access, you can place the command with execution security
attributes in a rights profile. A user or role with that rights profile can then run the
program without having to become superuser.

IDs can be specified as real or effective. Assigning effective IDs is preferred over
assigning real IDs. Effective IDs are equivalent to the setuid feature in the file
permission bits. Effective IDs also identify the UID for auditing. However, because
some shell scripts and programs require a real UID of root, real UIDs can be set as
well. For example, the pkgadd command requires a real rather than an effective UID.
If an effective ID is not sufficient to run a command, you need to change the ID to a
real ID. For the procedure, see “How to Create or Change a Rights Profile” on page
215.

Applications That Check for Privileges
Privileged applications can check for the use of privileges. The RBAC rights profile
mechanism enables you to specify the privileges for specific commands. Instead of
requiring superuser capabilities to use an application or command, you can isolate the
command with execution security attributes in a rights profile. A user or role with that
rights profile can then run the command with just the privileges that the command
requires to succeed.

Commands that check for privileges include the following:

� Kerberos commands, such as kadmin, kprop, and kdb5_util
� Network commands, such as ifconfig, routeadm, and snoop
� File and file system commands, such as chmod, chgrp, and mount
� Commands that control processes, such as kill, pcred, and rcapadm

To add commands with privileges to a rights profile, see “How to Create or Change a
Rights Profile” on page 215. To determine what commands check for privileges in a
particular profile, see “Determining Your Assigned Privileges” on page 248.

Applications That Check Authorizations
The Solaris OS additionally provides commands that check authorizations. By
definition, the root user has all authorizations. Therefore, the root user can run any
application. Applications that check for authorizations include the following:

� The entire Solaris Management Console suite of tools
� Audit administration commands, such as auditconfig and auditreduce
� Printer administration commands, such as lpadmin and lpfilter
� The batch job-related commands, such as at, atq, batch, and crontab
� Device-oriented commands, such as allocate, deallocate, list_devices,

and cdrw.

To test a script or program for authorizations, see Example 9–19. To write a program
that requires authorizations, see “About Authorizations” in Solaris Security for
Developers Guide.

Chapter 8 • Using Roles and Privileges (Overview) 183

RBAC Rights Profiles
A rights profile is a collection of system overrides that can be assigned to a role or user.
A rights profile can include authorizations, commands with assigned security
attributes, and other rights profiles. Rights profile information is split between the
prof_attr and exec_attr databases. The rights profile name and authorizations
are in the prof_attr database. The rights profile name and the commands with
assigned security attributes are in the exec_attr database. For more information on
rights profiles, see the following sections:

� “Contents of Rights Profiles” on page 223
� “prof_attr Database” on page 233
� “exec_attr Database” on page 234

RBAC Roles
A role is a special type of user account from which you can run privileged applications.
Roles are created in the same general manner as user accounts. Roles have a home
directory, a group assignment, a password, and so on. Rights profiles and
authorizations give the role administrative capabilities. Roles cannot inherit
capabilities from other roles or other users. Discrete roles parcel out superuser
capabilities, and thus enable more secure administrative practices.

When a user assumes a role, the role’s attributes replace all user attributes. Role
information is stored in the passwd, shadow, and user_attr databases. Role
information can be added to the audit_user database. For detailed information on
setting up roles, see the following sections:

� “How to Plan Your RBAC Implementation” on page 197
� “How to Create a Role From the Command Line” on page 202
� “How to Change the Properties of a Role” on page 213

A role can be assigned to more than one user. All users who can assume the same role
have the same role home directory, operate in the same environment, and have access
to the same files. Users can assume roles from the command line by running the su
command and supplying the role name and password. Users can also assume a role in
the Solaris Management Console tool.

A role cannot log in directly. A user logs in, and then assumes a role. Having assumed
a role, the user cannot assume another role without first exiting their current role.
Having exited the role, the user can then assume another role.

You can prevent anonymous root login by changing the root user into a role, as
shown in “How to Make root User Into a Role” on page 206. If the profile shell
command, pfexec, is being audited, the audit trail contains the login user’s real UID,
the roles that the user has assumed, and the actions that the role performed. To audit
the system or a particular user for role operations, see “How to Audit Roles” on page
206.

184 System Administration Guide: Security Services • January 2005

No predefined roles are shipped with Solaris software.

� To configure the Primary Administrator role, see “Using the Solaris Management
Tools With RBAC (Task Map)” in System Administration Guide: Basic Administration.

� To configure other roles, see “How to Create and Assign a Role By Using the GUI”
on page 199.

� To create roles on the command line, see “Managing RBAC (Task Map)” on page
212.

Profile Shell in RBAC
Roles can run privileged applications from the Solaris Management Console launcher
or from a profile shell. A profile shell is a special shell that recognizes the security
attributes that are included in a rights profile. Profile shells are launched when the
user runs the su command to assume a role. The profile shells are pfsh, pfcsh, and
pfksh. The shells correspond to Bourne shell (sh), C shell (csh), and Korn shell
(ksh), respectively.

Users who have been directly assigned a rights profile must invoke a profile shell to
run the commands with security attributes. For usability and security considerations,
see “Security Considerations When Directly Assigning Security Attributes” on page
185.

All commands that are executed in a profile shell can be audited. For more
information, see “How to Audit Roles” on page 206.

Name Service Scope and RBAC
Name service scope is an important concept for understanding RBAC. The scope of a
role might be limited to an individual host. Alternatively, the scope might include all
hosts that are served by a name service such as NIS, NIS+, or LDAP. The name service
scope for a system is specified in the file /etc/nsswitch.conf. A lookup stops at
the first match. For example, if a rights profile exists in two name service scopes, only
the entries in the first name service scope are used. If files is the first match, then the
scope of the role is limited to the local host.

Security Considerations When Directly Assigning
Security Attributes
Typically, a user obtains administrative capabilities through a role. Authorizations and
privileged commands are grouped into a rights profile. The rights profile is included
in a role, and the role is assigned to a user.

Chapter 8 • Using Roles and Privileges (Overview) 185

Direct assignment of rights profiles and security attributes is also possible:

� Rights profiles, privileges, and authorizations can be assigned directly to users.
� Privileges and authorizations can be assigned directly to roles.

However, direct assignment is not a secure practice. Users and roles with a directly
assigned privilege could override security policy wherever this privilege is required
by the kernel. When a privilege is a security attribute of a command in a rights profile,
that privilege is available only for that command by someone who has that rights
profile. The privilege is not available for other commands that the user or role might
run.

Since authorizations act at the user level, direct assignment of authorizations can be
less dangerous than direct assignment of privileges. However, authorizations can
enable a user to perform highly secure tasks, such as delegate device administration.

A rights profile that is assigned directly to a user presents usability problems more
than security problems. The commands with security attributes in the rights profile
can only succeed in a profile shell. The user must open a profile shell, then type the
commands. A role that is assigned a rights profile gets a profile shell automatically.
Therefore, the commands succeed in the role’s shell.

Rights profiles provide an extensible, clean way to group security characteristics for
particular administrative tasks.

Privileges (Overview)
Process rights management enables processes to be restricted at the command, user,
role, or system level. The Solaris OS implements process rights management through
privileges. Privileges decrease the security risk that is associated with one user or one
process having full superuser capabilities on a system. Privileges and RBAC provide a
compelling alternative model to the traditional superuser model.

� For information on RBAC, see “Role-Based Access Control (Overview)” on page
177.

� For information on how to administer privileges, see Chapter 11.
� For reference information on privileges, see Chapter 12.

Privileges Protect Kernel Processes
A privilege is a discrete right that a process requires to perform an operation. The right
is enforced in the kernel. A program that operates within the bounds of the Solaris
basic set of privileges operates within the bounds of the system security policy. setuid
programs are examples of programs that operate outside the bounds of the system
security policy. By using privileges, programs eliminate the need for calls to setuid.

186 System Administration Guide: Security Services • January 2005

Privileges discretely enumerate the kinds of operations that are possible on a system.
Programs can be run with the exact privileges that enable the program to succeed. For
example, a program that sets the date and writes the date to an administrative file
might require the file_dac_write and sys_time privileges. This capability
eliminates the need to run any program as root.

Historically, systems have not followed the privilege model. Rather, systems used the
superuser model. In the superuser model, processes run as root or as a user. User
processes were limited to acting on the user’s directories and files. root processes
could create directories and files anywhere on the system. A process that required
creation of a directory outside the user’s directory would run with a UID=0, that is, as
root. Security policy relied on DAC, discretionary access control, to protect system
files. Device nodes were protected by DAC. For example, devices owned by group
sys could be opened only by members of group sys.

However, setuid programs, file permissions, and administrative accounts are
vulnerable to misuse. The actions that a setuid process is permitted are more
numerous than the process requires to complete its operation. A setuid program can
be compromised by an intruder who then runs as the all-powerful root user.
Similarly, any user with access to the root password can compromise the entire
system.

In contrast, a system that enforces policy with privileges allows a gradation between
user capabilities and root capabilities. A user can be granted privileges to perform
activities that are beyond the capabilities of ordinary users, and root can be limited to
fewer privileges than root currently possesses. With RBAC, a command that runs
with privileges can be isolated in a rights profile and assigned to one user or role.
Table 8–1 summarizes the gradation between user capabilities and root capabilities
that the RBAC plus privileges model provides.

The privilege model provides greater security than the superuser model. Privileges
that have been removed from a process cannot be exploited. Process privileges prevent
a program or administrative account from gaining access to all capabilities. Process
privileges can provide an additional safeguard for sensitive files, where DAC
protections alone can be exploited to gain access.

Privileges, then, can restrict programs and processes to just the capabilities that the
program requires. This capability is called the principle of least privilege. On a system
that implements least privilege, an intruder who captures a process has access to only
those privileges that the process has. The rest of the system cannot be compromised.

Privilege Descriptions
Privileges are logically grouped on the basis of the area of the privilege.

� FILE privileges – Privileges that begin with the string file operate on file system
objects. For example, the file_dac_write privilege overrides discretionary
access control when writing to files.

Chapter 8 • Using Roles and Privileges (Overview) 187

� IPC privileges – Privileges that begin with the string ipc override IPC object
access controls. For example, the ipc_dac_read privilege enables a process to
read remote shared memory that is protected by DAC.

� NET privileges – Privileges that begin with the string net give access to specific
network functionality. For example, the net_rawaccess privilege enables a
device to connect to the network.

� PROC privileges – Privileges that begin with the string proc allow processes to
modify restricted properties of the process itself. PROC privileges include privileges
that have a very limited effect. For example, the proc_clock_highres privilege
enables a process to use high resolution timers.

� SYS privileges – Privileges that begin with the string sys give processes
unrestricted access to various system properties. For example, the sys_linkdir
privilege enables a process to make and break hard links to directories.

Some privileges have a limited effect on the system, and some have a broad effect. The
definition of the proc_taskid privilege indicates its limited effect:

proc_taskid

Allows a process to assign a new task ID to the calling process.

The definition of the file_setid privilege indicates its broad effect:

net_rawaccess

Allow a process to have direct access to the network layer.

The privileges(5) man page provides descriptions of every privilege. The
command ppriv -lv prints a description of every privilege to standard out.

Administrative Differences on a System With
Privileges
A system that has privileges has several visible differences from a system that does not
have privileges. The following table lists some of the differences.

TABLE 8–2 Visible Differences Between a System With Privileges and a System Without Privileges

Feature No Privileges Privileges

Daemons Daemons run as root. Daemons run as the user daemon.

For example, the following daemons have been assigned
appropriate privileges and run as daemon: lockd,
mountd, nfsd, and rpcbind.

Log File
Ownership

Log files are owned by root. Log files are now owned by daemon, who created the log
file. The root user does not own the file.

188 System Administration Guide: Security Services • January 2005

TABLE 8–2 Visible Differences Between a System With Privileges and a System Without Privileges
(Continued)
Feature No Privileges Privileges

Error
Messages

Error messages refer to superuser.

For example, chroot: not
superuser.

Error messages reflect the use of privileges.

For example, the equivalent error message for chroot
failure is chroot: exec failed.

setuid
Programs

Programs use setuid to complete
tasks that ordinary users are not
allowed to perform.

Many setuid programs have been changed to run with
privileges.

For example, the following utilities use privileges:
ufsdump, ufsrestore, rsh, rlogin, rcp, rdist,
ping, traceroute, and newtask.

File
Permissions

Device permissions are controlled by
DAC. For example, members of the
group sys can open /dev/ip.

File permissions (DAC) do not predict who can open a
device. Devices are protected with DAC and device policy.

For example, the /dev/ip file has 666 permissions, but
the device can only be opened by a process with the
appropriate privileges. Raw sockets are still protected by
DAC.

Audit Events Auditing the use of the su command
covers many administrative
functions.

Auditing the use of privileges covers most administrative
functions. The pm and as audit classes include audit
events that configure device policy and audit events that
set privileges.

Processes Processes are protected by who owns
the process.

Processes are protected by privileges. Process privileges
and process flags are visible as a new entry in the
/proc/<pid> directory, priv.

Debugging No reference to privileges in core
dumps.

The ELF note section of core dumps includes information
about process privileges and flags in the NT_PRPRIV and
NT_PRPRIVINFO notes.

The ppriv utility and other utilities show the proper
number of properly sized sets. The utilities correctly map
the bits in the bit sets to privilege names.

How Privileges Are Implemented
Every process has four sets of privileges that determine whether a process can use a
particular privilege. The kernel automatically calculates the effective set of privileges.
You can modify the initial inheritable set of privileges. A program that is coded to use
privileges can reduce the program’s permitted set of privileges. You can shrink the limit
set of privileges.

� Effective privilege set, or E – Is the set of privileges that is currently in effect. A
process can add privileges that are in the permitted set to the effective set. A
process can also remove privileges from E.

Chapter 8 • Using Roles and Privileges (Overview) 189

� Permitted privilege set, or P – Is the set of privileges that is available for use.
Privileges can be available to a program from inheritance or through assignment.
An execution profile is one way to assign privileges to a program. The setuid
command assigns all privileges that root has to a program. Privileges can be
removed from the permitted set, but privileges cannot be added to the set.
Privileges that are removed from P are automatically removed from E.

A privilege-aware program removes the privileges that a program never uses from
the program’s permitted set. In this way, unnecessary privileges cannot be
exploited by the program or a malicious process. For more information on
privilege-aware programs, see Chapter 2, “Developing Privileged Applications,” in
Solaris Security for Developers Guide.

� Inheritable privilege set, or I – Is the set of privileges that a process can inherit
across a call to exec. After the call to exec, the permitted and the effective sets are
equal, except in the special case of a setuid program.

For a setuid program, after the call to exec, the inheritable set is first restricted
by the limit set. Then, the set of privileges that were inherited (I), minus any
privileges that were in the limit set (L), are assigned to P and E for that process.

� Limit privilege set, or L – Is the outside limit of what privileges are available to a
process and its children. By default, the limit set is all privileges. Processes can
shrink the limit set but can never extend the limit set. L is used to restrict I.
Consequently, L restricts P and E at the time of exec.

If a user has been assigned a profile that includes a program that has been assigned
privileges, the user can usually run that program. On an unmodified system, the
program’s assigned privileges are within the user’s limit set. The privileges that
have been assigned to the program become part of the user’s permitted set. To run
the program that has been assigned privileges, the user must run the program from
a profile shell.

The kernel recognizes a basic privilege set. On an unmodified system, each user’s initial
inheritable set equals the basic set at login. You can modify the user’s initial inheritable
set. You cannot modify the basic set.

On an unmodified system, a user’s privilege sets at login would appear similar to the
following:

E (Effective): basic
I (Inheritable): basic
P (Permitted): basic

L (Limit): all

Therefore, at login, all users have the basic set in their inheritable set, their permitted
set, and their effective set. A user’s limit set contains all privileges. To put more
privileges in the user’s effective set, you must assign a rights profile to the user. The
rights profile would include commands to which you have added privileges. You can
also assign privileges directly to the user or role, though such privilege assignment
can be risky. For a discussion of the risks, see “Security Considerations When Directly
Assigning Security Attributes” on page 185.

190 System Administration Guide: Security Services • January 2005

How Processes Get Privileges
Processes can inherit privileges. Or, processes can be assigned privileges. A process
inherits privileges from its parent process. At login, the user’s initial inheritable set of
privileges determines what privileges are available to the user’s processes. All child
processes of the user’s initial login inherit that set.

You can also directly assign privileges to programs, users, and roles. When a program
requires privileges, you assign the privileges to the program’s executable in a rights
profile. Users or roles that are permitted to run the program are assigned the profile
that includes the program. At login or when a profile shell is entered, the program
runs with privilege when the program’s executable is typed in the profile shell. For
example, a role that includes the Object Access Management profile is able to run the
chmod command with the file_chown privilege.

When a role or user runs a program that has been directly assigned an additional
privilege, the assigned privilege is added to the role or user’s inheritable set. Child
processes of the program that was assigned privileges inherit the privileges of the
parent. If the child process requires more privileges than the parent process, the child
process must be directly assigned those privileges.

Programs that are coded to use privileges are called privilege-aware programs. A
privilege-aware program turns on the use of privilege and turns off the use of
privilege during program execution. To succeed in a production environment, the
program must be assigned the privileges that the program turns on and off.

For examples of privilege-aware code, see Chapter 2, “Developing Privileged
Applications,” in Solaris Security for Developers Guide. To assign privileges to a program
that requires privileges, see “How to Add Privileges to a Command” on page 244.

Assigning Privileges
You, in your capacity as system administrator, are responsible for assigning privileges.
Typically, you assign the privilege to a command in a rights profile. The rights profile
is then assigned to a role or to a user. The Solaris Management Console provides the
graphical user interface (GUI) to assign privileges. Privileges can also be assigned by
using commands such as smuser and smrole. For more information on how to use
the GUI to assign privileges, see Chapter 9.

Privileges can also be assigned directly to a user. If you trust a subset of users to use a
privilege responsibly throughout their sessions, you can assign the privilege directly.
Good candidates for direct assignment are privileges that have a limited effect, such as
proc_clock_highres. Poor candidates for direct assignment are privileges that
have far-reaching effects, such as file_dac_write.

Privileges can also be denied to a user or to a system. Care must be taken when
removing privileges from the initial inheritable set or the limit set of a user or a
system.

Chapter 8 • Using Roles and Privileges (Overview) 191

Expanding a User or Role’s Privileges
Users and roles have an inheritable set of privileges, and a limit set of privileges. The
limit set cannot be expanded, since the limit set is initially all privileges. The initial
inheritable set can be expanded for users, roles, and systems. A privilege that is not in
the inheritable set can also be assigned to a process.

The assignment of privileges per process is the most precise way to add privileges.
You can expand the number of privileged operations that a user can perform by
enabling the user to assume a role. The role would be assigned profiles that include
commands with added privileges. When the user assumes the role, the user gets the
role’s profile shell. By typing in the role’s shell, the commands in the role’s profiles
execute with the added privileges.

You can also assign a profile to the user rather than to a role that the user assumes.
The profile would include commands with added privileges. When the user opens a
profile shell, such as pfksh, the user can execute the commands in the user’s profile
with privilege. In a regular shell, the commands do not execute with privilege. The
privileged process can only execute in a privileged shell.

To expand the initial inheritable set of privileges for users, roles, or systems is a riskier
way to assign privileges. All privileges in the inheritable set are in the permitted and
effective sets. All commands that the user or role types in a shell can use the directly
assigned privileges. Directly assigned privileges enable a user or role to easily perform
operations that can be outside the bounds of their administrative responsiblities.

When you add to the initial inheritable set of privileges on a system, all users who log
on to the system have a larger set of basic privileges. Such direct assignment enables
all users of the system to easily perform operations that are probably outside the
bounds of ordinary users.

Restricting a User or Role’s Privileges
By removing privileges, you can prevent users and roles from performing particular
tasks. You can remove privileges from the initial inheritable set, and from the limit set.
You should carefully test removal of privileges before you distribute an initial
inheritable set or a limit set that is smaller than the default set. By removing privileges
from the initial inheritable set, you might prevent users from logging in. When
privileges are removed from the limit set, a legacy setuid program might fail because
the program requires a privilege that was removed.

Assigning Privileges to a Script
Scripts are executables, like commands. Therefore, in a rights profile, you can add
privileges to a script just as you can add privileges to a command. The script runs
with the added privileges when a user or role who has been assigned the profile
executes the script in a profile shell. If the script contains commands that require
privileges, the commands with added privileges should also be in the profile.

192 System Administration Guide: Security Services • January 2005

Privilege-aware programs can restrict privileges per process. Your job with a
privilege-aware program is to assign the executable just the privileges that the
program needs. You then test the program to see that the program succeeds in
performing its tasks. You also check that the program does not abuse its use of
privileges.

Privileges and Devices
The privilege model uses privileges to protect system interfaces that are protected by
file permissions alone in the superuser model. In a system with privileges, file
permissions are too weak to protect the interfaces. A privilege such as proc_owner
could override file permissions and then give full access to all of the system.

Therefore, ownership of the device directory is not sufficient to open a device. For
example, members of the group sys are no longer automatically allowed to open the
/dev/ip device. The file permissions on /dev/ip are 0666, but the
net_rawaccess privilege is required to open the device.

Device policy is controlled by privileges. The getdevpolicy command displays the
device policy for every device. The device configuration command, devfsadm, installs
the device policy. The devfsadm command binds privilege sets with open for reading
or writing of devices. For more information, see the getdevpolicy(1M) and
devfsadm(1M) man pages.

Device policy allows you more flexibility in granting permission to open devices.You
can require different privileges or more privileges than the default device policy. The
privilege requirements can be modified for the device policy and for the driver proper.
You can modify the privileges when installing, adding, or updating a device driver.

The add_drv and update_drv commands can modify device policy entries and
driver-specific privileges. You must be running a process with the full set of privileges
to change the device policy. For more information, see the add_drv(1M) and
update_drv(1M) man pages.

Privileges and Debugging
The Solaris OS provides tools to debug privilege failure. The ppriv command and the
truss command provide debugging output. For examples, see the ppriv(1) man
page. For a procedure, see “How to Determine Which Privileges a Program Requires”
on page 242.

Chapter 8 • Using Roles and Privileges (Overview) 193

194 System Administration Guide: Security Services • January 2005

CHAPTER 9

Using Role-Based Access Control
(Tasks)

This chapter covers tasks for distributing the capabilities of superuser by using
discrete roles. The mechanisms that roles can use include rights profiles,
authorizations, and privileges. The following is a list of the task maps in this chapter.

� “Using RBAC (Task Map)” on page 195
� “Configuring RBAC (Task Map)” on page 196
� “Using Roles (Task Map)” on page 208
� “Managing RBAC (Task Map)” on page 212

For an overview of RBAC, see “Role-Based Access Control (Overview)” on page 177.
For reference information, see Chapter 10. To use privileges with RBAC or without
RBAC, see Chapter 11.

Using RBAC (Task Map)
To use RBAC requires planning, configuring RBAC, and knowing how to assume a
role. Once roles become familiar, you might further customize RBAC to handle new
operations. The following task map points to these major tasks.

Task Description For Instructions

Plan and configure RBAC Configure RBAC at your site. “Configuring RBAC (Task Map)”
on page 196

Use roles Assume roles from the command line
and in the Solaris Management Console
GUI.

“Using Roles (Task Map)” on page 208

195

Task Description For Instructions

Customize RBAC Customize RBAC for your site. “Managing RBAC (Task Map)” on page
212

Configuring RBAC (Task Map)
To use RBAC effectively requires planning. Use the following task map to plan and
initially implement RBAC at your site.

Task Description For Instructions

1. Plan for RBAC Involves examining your site’s security
needs, and deciding how to use RBAC
at your site.

“How to Plan Your RBAC
Implementation” on page 197

2. Learn to use the Solaris
Management Console

Involves becoming familiar with the
Solaris Management Console.

Chapter 2, “Working With the Solaris
Management Console (Tasks),” in System
Administration Guide: Basic Administration

3. Configure the first user
and role

Uses the RBAC configuration tools in
the Solaris Management Console to
create a user and a role, and to assign
the role to the user.

“Using the Solaris Management Tools
With RBAC (Task Map)” in System
Administration Guide: Basic Administration

4. (Optional) Create other
users who can assume roles

Ensures that users who can assume an
administrative role exist.

“Using the Solaris Management Tools
With RBAC (Task Map)” in System
Administration Guide: Basic Administration

5. (Recommended) Create
other roles and assign them
to users

Uses the RBAC tools to create roles for
particular administrative areas, and to
assign the roles to users.

“How to Create and Assign a Role By
Using the GUI” on page 199

Example 9–5

Uses the command line to create roles,
and to assign the roles to users

“How to Create a Role From the
Command Line” on page 202

“How to Assign a Role to a Local User”
on page 204

6. (Recommended) Audit
role actions

Preselect an audit class that includes the
audit event that records role actions.

“How to Audit Roles” on page 206

7. (Optional) Make root
user a role

Prevents anonymous root login, which
is a security hole.

“How to Make root User Into a Role”
on page 206

196 System Administration Guide: Security Services • January 2005

Configuring RBAC
RBAC can be configured with the following utilities:

� Solaris Management Console GUI – The preferred method for performing
RBAC-related tasks is through the GUI. The console tools for managing the RBAC
elements are contained in the Users Tool collection.

� Solaris Management Console commands – With the Solaris Management Console
command-line interfaces, such as smrole, you can operate on any name service.
The Solaris Management Console commands require authentication to connect to
the server. As a result, these commands are not practical for use in scripts.

� Local commands – With the user* and role* set of command-line interfaces, such
as useradd, you can operate on local files only. The commands that operate on
local files must be run by superuser or by a role with the appropriate privileges.

� How to Plan Your RBAC Implementation
RBAC can be an integral part of how an organization manages its information
resources. Planning requires a thorough knowledge of the RBAC capabilities as well as
the security requirements of your organization.

1. Learn the basic RBAC concepts.

Read “Role-Based Access Control (Overview)” on page 177. Using RBAC to
administer a system is very different from using conventional UNIX administrative
practices. You should be familiar with the RBAC concepts before you start your
implementation. For greater detail, see Chapter 10.

2. Examine your security policy.

Your organization’s security policy should detail the potential threats to your
system, measure the risk of each threat, and have a strategy to counter these
threats. Isolating the security-relevant tasks through RBAC can be a part of the
strategy. Although you can install the recommended roles and their configurations
as is, you might need to customize your RBAC configuration to adhere to your
security policy.

3. Decide how much RBAC your organization needs.

Depending on your security needs, you can use varying degrees of RBAC, as
follows:

� No RBAC – You can perform all tasks as root user. In this configuration, you
log in as yourself. Then, you type root as the user when you select a Solaris
Management Console tool.

Steps

Chapter 9 • Using Role-Based Access Control (Tasks) 197

� Single Role Only – This method adds one role. The one role is assigned the
Primary Administrator rights profile. This method is similar to the superuser
model, in that the role has superuser capabilities. However, this method enables
you to track the user who has assumed the role.

� Recommended Roles – This method creates three roles that are based on the
following rights profiles: Primary Administrator, System Administrator, and
Operator. The roles are suitable for organizations with administrators at
different levels of responsibility.

� Custom Roles – You can create your own roles to meet the security
requirements of your organization. The new roles can be based on existing or
customized rights profiles.

� Root User as a Role – This method prevents any user from logging in as root.
Instead, users must log in as ordinary users prior to assuming the root role.
For details, see “How to Make root User Into a Role” on page 206.

4. Decide which recommended roles are appropriate for your organization.

Review the capabilities of the recommended roles and default rights profiles.
Default rights profiles enable administrators to configure a recommended role by
using a single profile. Three default rights profiles are available for configuring the
recommended roles:

� Primary Administrator rights profile – For configuring a role that can perform
all administrative tasks, can grant rights to others, and can edit rights that are
associated with administrative roles. A user in this role can assign this role to
other users, and can grant rights to other users.

� System Administrator rights profile – For configuring a role that can perform
most administrative tasks that are not related to security. For example, the
System Administrator can add new user accounts, but cannot set passwords or
grant rights to other users.

� Operator rights profile – For configuring a role that can perform simple
administrative tasks, such as media backup and printer maintenance.

To further examine rights profiles, read one of the following:

� In the /etc/security directory, read the contents of the prof_attr database
and the exec_attr database.

� In the Solaris Management Console, use the Rights tool to display the contents
of a rights profile.

� In this book, refer to “Contents of Rights Profiles” on page 223 for summaries of
some typical rights profiles.

5. Decide if any additional roles or rights profiles are appropriate for your
organization.

Look for other applications or families of applications at your site that might
benefit from restricted access. Applications that affect security, that can cause
denial-of-service problems, or that require special administrator training are good
candidates for RBAC. You can customize roles and rights profiles to handle the

198 System Administration Guide: Security Services • January 2005

security requirements of your organization.

a. Determine which commands are needed for the new task.

b. Decide which rights profile is appropriate for this task.

Check if an existing rights profile can handle this task or if a separate rights
profile needs to be created.

c. Determine which role is appropriate for this rights profile.

Decide if the rights profile for this task should be assigned to an existing role or
if a new role should be created. If you use an existing role, check that the other
rights profiles are appropriate for users who are assigned to this role.

6. Decide which users should be assigned to the available roles.

According to the principle of least privilege, you should assign users to roles that
are appropriate to their level of trust. When you prevent users from access to tasks
that the users do not need to perform, you reduce potential problems.

� How to Create and Assign a Role By Using the GUI
To create a new role, you can be superuser, or you can use the Primary Administrator
role. In this procedure, the creator of the new role has assumed the role of Primary
Administrator.

� You have already created users who can assume a role at your site. If the users are
not yet created, create them by following the instructions in “Using the Solaris
Management Tools With RBAC (Task Map)” in System Administration Guide: Basic
Administration.

� You have been assigned the Primary Administrator role by following the
procedures in “Using the Solaris Management Tools With RBAC (Task Map)” in
System Administration Guide: Basic Administration.

1. Start the Solaris Management Console.

/usr/sbin/smc &

For login instructions, see “How to Assume a Role in the Solaris Management
Console” on page 211.

2. Click the Administrative Roles icon.

3. Select Add Administrative Role from the Action menu.

4. Create a new role by filling in the fields in the series of dialog boxes.

For possible roles, see Example 9–1 to Example 9–4.

Before You
Begin

Steps

Chapter 9 • Using Role-Based Access Control (Tasks) 199

Tip – All tools in the Solaris Management Console display information in the
bottom section of the page or at the left side of a wizard panel. Choose Help at any
time to find additional information about performing tasks in this interface.

5. Assign the role to a user.

Tip – After filling in the properties of the role, the last dialog box prompts you for a
user for the role.

6. In a terminal window, restart the name service cache daemon.

svcadm restart system/name-service-cache

For more information, see the svcadm(1M) and nscd(1M) man pages.

Creating a Role for the System Administrator Rights Profile

In this example, the new role can do system administration tasks that are not
connected to security. The role is created by performing the preceding procedure with
the following parameters:

� Role name: sysadmin

� Role full name: System Administrator

� Role description: Performs non-security admin tasks

� Rights profile: System Administrator

This rights profile is at the top of the list of profiles that are included in the role.

Creating a Role for the Operator Rights Profile

The Operator rights profile can manage printers and back up the system to offline
media. You might want to assign the role to one user on each shift. To do so, you
would select the role mailing list option in the Step 1: Enter a Role Name dialog box.
The role is created by performing the preceding procedure with the following
parameters:

� Role name: operadm

� Role full name: Operator

� Role description: Backup operator

� Rights profile: Operator

This rights profile must be at the top of the list of profiles that are included in the
role.

Example 9–1

Example 9–2

200 System Administration Guide: Security Services • January 2005

Creating a Role for a Security-Related Rights Profile

By default, the only rights profile that contains security-related commands and rights
is the Primary Administrator profile. If you want to create a role that is not as
powerful as Primary Administrator, but can handle some security-related tasks, you
must create the role.

In the following example, the role protects devices. The role is created by performing
the preceding procedure with the following parameters:

� Role name: devicesec
� Role full name: Device Security
� Role description: Configures Devices
� Rights profile: Device Security

In the following example, the role secures systems and hosts on the network. The role
is created by performing the preceding procedure with the following parameters:

� Role name: netsec
� Role full name: Network Security
� Role description: Handles IPsec, IKE, and SSH
� Rights profile: Network Security

Creating a Role for a Rights Profile With Limited Scope

A number of rights profiles are of limited scope. In this example, the sole task of the
role is to manage DHCP. The role is created by performing the preceding procedure
with the following parameters:

� Role name: dhcpmgt
� Role full name: DHCP Management
� Role description: Manages Dynamic Host Config Protocol
� Rights profile: DHCP Management

Modifying a User’s Role Assignment

In this example, a role is added to an existing user. The user’s role assignment is
modified by clicking the User Accounts icon in the Users tool in the Solaris
Management Console, double-clicking the user, and following the online help to add a
role to the user’s capabilities.

Check the following if the role does not have the capabilities that it should:

� Are the role’s rights profiles listed in the GUI from most to least powerful?

For example, if the All rights profile is at the top of the list, then no commands are
run with security attributes. A profile that contains commands with security
attributes must precede the All rights profile in the list.

� Do the commands in the role’s rights profiles have the appropriate security
attributes?

Example 9–3

Example 9–4

Example 9–5

Troubleshooting

Chapter 9 • Using Role-Based Access Control (Tasks) 201

For example, when the policy is suser, some commands require uid=0 rather
than euid=0.

� Is the rights profile defined in the appropriate name service scope? Is the role
operating in the name service scope where the rights profile is defined?

� Has the name service cache, svc:/system/name-service-cache, been
restarted?

The nscd daemon can have a lengthy time-to-live interval. By restarting the
daemon, you update the name service with current data.

� How to Create a Role From the Command Line
The Solaris Management Console GUI is the preferred method for managing RBAC.
To use the GUI, see “How to Create and Assign a Role By Using the GUI” on page 199.
You can also use the command-line interfaces, as described in this procedure.

Note – Do not attempt to administer RBAC with the command line and the graphical
user interface at the same time. Conflicting changes could be made to the
configuration, and the behavior would be unpredictable. You can use both tools to
administer RBAC, but you cannot use both concurrently.

To create a role, you must either assume a role that includes the Primary
Administrator rights profile, or switch to the user root.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Choose one of the following commands to create a role on the command line.

� For roles in the local name service scope, use the roleadd command.

Note – The roleadd command is more limited than the Solaris Management
Console GUI or command-line interfaces. After running the roleadd
command, you must run the usermod command to assign the role to a user.
And, the user then must set the password for the role, as shown in “How to
Assign a Role to a Local User” on page 204.

roleadd -c comment \
-g group -m homedir -u UID -s shell \

-P profile rolename

Before You
Begin

Steps

202 System Administration Guide: Security Services • January 2005

-c comment Is a comment that describes rolename.

-g group Is the group assignment for rolename.

-m homedir Is the path to the home directory for rolename.

-u UID Is the UID for rolename.

-s shell Is the login shell for rolename. This shell must be a profile shell.

-P profile Is one or more rights profiles for rolename.

rolename Is the name of the new local role.

� Use the smrole add command.

This command creates a role in a distributed name service, such as NIS, NIS+,
or LDAP. This command runs as a client of the Solaris Management Console
server.

$ /usr/sadm/bin/smrole -D domain-name \
-r admin-role -l <Type admin-role password> \
add -- -n rolename -a rolename -d directory\
-F full-description -p profile

-D domain-name Is the name of the domain that you want to manage.

-r admin-role Is the name of the administrative role that can modify the
role. The administrative role must have the
solaris.role.assign authorization. If you are
modifying a role that you have assumed, the role must
have the solaris.role.delegate authorization.

-l Is the prompt for the password of admin-role.

-- Is the required separator between authentication options
and subcommand options.

-n rolename Is the name of the new role.

-c comment Is the comment that describes the capabilities of the role.

-a username Is the name of the user who can assume rolename.

-d directory Is the home directory for rolename.

-F full-description Is the full description for rolename. This description is
displayed in the Solaris Management Console GUI.

-p profile Is a rights profile that is included in the capabilities of
rolename. This option gives commands with administrative
capabilities to the role. You can specify multiple -p profile
options.

3. To put the changes into effect, see “How to Assign a Role to a Local User”
on page 204.

Chapter 9 • Using Role-Based Access Control (Tasks) 203

Creating a Custom Operator Role by Using the smrole Command

The smrole command specifies a new role and its attributes in a name service. In the
following example, the Primary Administrator creates a new version of the Operator
role. The role includes the standard Operator rights profile as well as the Media
Restore rights profile. Note that the command prompts you for a password for the
new role.

% su primaryadm
Password: <Type primaryadm password>
$ /usr/sadm/bin/smrole add -H myHost -- -c "Backup and Restore Operator" \
-n operadm2 -a janedoe -d /export/home/operadm \
-F "Backup/Restore Operator" -p "Operator" -p "Media Restore"
Authenticating as user: primaryadm

Type /? for help, pressing <enter> accepts the default denoted by []
Please enter a string value for: password :: <Type primaryadm password>

Loading Tool: com.sun.admin.usermgr.cli.role.UserMgrRoleCli from myHost
Login to myHost as user primaryadm was successful.
Download of com.sun.admin.usermgr.cli.role.UserMgrRoleCli from myHost was successful.

Type /? for help, pressing <enter> accepts the default denoted by []
Please enter a string value for: password :: <Type operadm2 password>

$ svcadm restart system/name-service-cache

The smrole command with the list subcommand is used to display the new role:

$ /usr/sadm/bin/smrole list --
Authenticating as user: primaryadm

Type /? for help, pressing <enter> accepts the default denoted by []
Please enter a string value for: password :: <Type primaryadm password>

Loading Tool: com.sun.admin.usermgr.cli.role.UserMgrRoleCli from myHost
Login to myHost as user primaryadm was successful.
Download of com.sun.admin.usermgr.cli.role.UserMgrRoleCli from myHost was successful.
root 0 Superuser
primaryadm 100 Most powerful role
sysadmin 101 Performs non-security admin tasks
operadm 102 Backup Operator

operadm2 103 Backup/Restore Operator

� How to Assign a Role to a Local User
This procedure assigns a local role to a local user, restarts the name cache daemon, and
then shows how the user can assume the role.

Example 9–6

204 System Administration Guide: Security Services • January 2005

To assign a role to a user in a distributed name service, see “How to Create a Role
From the Command Line” on page 202 and “How to Change the Properties of a Role”
on page 213.

You have added a local role, as described in “How to Create a Role From the
Command Line” on page 202. You must have assumed the role of Primary
Administrator or have switched to superuser.

1. Assign the role to a local user.

If you added a local role with the roleadd command, this step is required. This
step is optional when you use the smrole command and the Solaris Management
Console to create a role.

usermod -u UID -R rolename

-u UID Is the UID of the user.

-R rolename Is the role that is being assigned to the user.

2. To put the changes into effect, restart the name service cache daemon.

svcadm restart system/name-service-cache

If you added a role with a Solaris Management Console interface, go to “Using
Roles (Task Map)” on page 208. Otherwise, continue with the next step.

3. (Optional) To unlock the role account, the user must create a password.

If you added a local role with the roleadd command, this step is required.

% su rolename
Password: <Type rolename password>
Confirm Password: <Retype rolename password>
$

Creating and Assigning a Local Role From the Command Line

In this example, a role is created to administer the Solaris cryptographic framework.
The Crypto Management rights profile contains the cryptoadm command for
administering hardware and software cryptographic services on a local system.

roleadd -c "Cryptographic Services manager" \
-g 14 -m /export/home/cryptoadm -u 104 -s pfksh \
-P "Crypto Management" cryptomgt
usermod -u 1111 -R cryptomgt
svcadm restart system/name-service-cache
% su cryptomgt
Password: <Type cryptomgt password>
Confirm Password: <Retype cryptomgt password>
$ /usr/ucb/whoami
cryptomgt

$

Before You
Begin

Steps

Example 9–7

Chapter 9 • Using Role-Based Access Control (Tasks) 205

For information about the Solaris cryptographic framework, see Chapter 13. To
administer the framework, see “Administering the Cryptographic Framework (Task
Map)” on page 277.

� How to Audit Roles
The actions that a role performs can be audited. Included in the audit record is the
login name of the user who assumed the role, the role name, and the action that the
role performed. The 6180:AUE_prof_cmd:profile command:ua,as audit event
collects the information. By preselecting the as class or the ua class, you can audit role
actions.

1. Plan for auditing and edit the audit configuration files.

For more information, see “Solaris Auditing (Task Map)” on page 549.

2. Include the ua class or the as class in the flags line of the audit_control
file.

audit_control file
dir:/var/audit
flags:lo,as
minfree:20

naflags:lo

The ua class and the as class include other audit events. To see the audit events
that are included in a class, read the audit_event file. You can also use the
bsmrecord command, as shown in Example 29–22.

3. Finish configuring the auditing service, then enable auditing.

For more information, see “Configuring and Enabling the Auditing Service”
on page 560.

� How to Make root User Into a Role
This procedure shows how to change root from a login user to a role. When you
complete this procedure, you can no longer log in to the system as root, except in
single-user mode. You can su to root if the root role has been assigned to you.

By changing the root user into a role, you prevent anonymous root login. Because a
user must log in and then assume the root role, the user’s login ID is provided to the
auditing service and is in the sulog file.

Steps

206 System Administration Guide: Security Services • January 2005

If you change the root user into a role without assigning the role to a valid user or
without a currently existing role that is equivalent to the root user, no one can
become superuser.

� For safety, at least one local user should be assigned the root role.

� You cannot perform this procedure when you are logged in as root. You must log
in as yourself, then su to root.

1. As an ordinary user, log in to the target host.

2. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see “Using the Solaris Management
Tools With RBAC (Task Map)” in System Administration Guide: Basic Administration.

3. Create a local user who can assume the root role.

$ useradd -c comment -d homedir username

-c comment Is the comment that describes the user.

-d homedir Is the home directory of the user. This directory should be on the
local system.

username Is the name of the new local user.

useradd -c "Local administrative user" -d /export/home1 admuser

4. Give the user a password.

passwd -r files admuser
New Password: <Type password>
Re-enter new Password: <Retype password>
passwd: password successfully changed for admuser

#

5. Make sure that you are not logged in as root.

who
jdoe console May 24 13:51 (:0)
jdoe pts/5 May 24 13:51 (:0.0)
jdoe pts/4 May 24 13:51 (:0.0)

jdoe pts/10 May 24 13:51 (:0.0)

6. Change root user into a role.

usermod -K type=role root

7. Verify that root is a role.

The root entry in the user_attr file should appear similar to the following:

root::::type=role;auths=solaris.*,solaris.grant;profiles=Web Console

Management,All;lock_after_retries=no

Before You
Begin

Steps

Chapter 9 • Using Role-Based Access Control (Tasks) 207

8. Assign the root role to the local administrative user.

usermod -R root admuser

9. Configure the name service to return in case of failure.

a. Open a new terminal window and assume the root role.

% whoami
jdoe
% su admuser
Enter password: <Type admuser password>
% roles
root
% su root
Enter password: <Type root password>
#

b. Edit the nsswitch.conf file.

For example, the following entries in the nsswitch.conf file would enable the
name service to return.

passwd: files nis [TRYAGAIN=0 UNAVAIL=return NOTFOUND=return]

group: files nis [TRYAGAIN=0 UNAVAIL=return NOTFOUND=return]

10. Assign the root role to selected user accounts in the name service.

For the procedure, see “How to Change the RBAC Properties of a User” on page
218.

Using Roles (Task Map)
The following task map points to procedures for using your role after roles have been
assigned.

Task Description For Instructions

Use the Solaris
Management Console

Authenticate yourself as a role to perform
administrative tasks in the Solaris
Management Console.

“How to Assume a Role in the Solaris
Management Console” on page 211

Assume a role in a
terminal window

Perform command-line administrative
tasks in a profile shell.

“How to Assume a Role in a Terminal
Window” on page 209

208 System Administration Guide: Security Services • January 2005

Using Roles
After you have set up roles with default Solaris rights profiles, and assigned the roles
to users, the roles can be used. A role can be assumed on the command line. In the
Solaris Management Console, a role can also be used for administering the system
locally and over the network.

� How to Assume a Role in a Terminal Window
The role must already be assigned to you. The name service must be updated with
that information.

1. In a terminal window, determine which roles you can assume.

% roles

Comma-separated list of role names is displayed

2. Use the su command to assume a role.

% su rolename
Password: <Type rolename password>
$

The su command with a role name changes the shell to a profile shell for the role.
A profile shell recognizes security attributes (authorizations, privileges, and set ID
bits).

3. Verify that you are now in a role.

$ /usr/ucb/whoami

rolename

You can now perform role tasks in this terminal window.

4. (Optional) View the capabilities of your role.

For the procedure, see “How to Determine the Privileged Commands That a Role
Can Run” on page 251.

Assuming the Primary Administrator Role

In the following example, the user assumes the role of Primary Administrator. In the
default configuration, this role is equivalent to superuser. The role then checks to see
which privileges are available to any command that is typed in the profile shell for the
role.

% roles
sysadmin,oper,primaryadm
% su primaryadm

Before You
Begin

Steps

Example 9–8

Chapter 9 • Using Role-Based Access Control (Tasks) 209

Password: <Type primaryadm password>
$ /usr/ucb/whoami Prompt has changed to role prompt
primaryadm
$ ppriv $$
1200: pfksh
flags = <none>

E (Effective): all
I (Inheritable): basic
P (Permitted): all

L (Limit): all

For information about privileges, see “Privileges (Overview)” on page 186.

Assuming the root Role
In the following example, the user assumes the root role. The role was created in
“How to Make root User Into a Role” on page 206

% roles
root
% su root
Password: <Type root password>
/usr/ucb/whoami Prompt has changed to role prompt
root
$ ppriv $$
1200: pfksh
flags = <none>

E: all
I: basic
P: all

L: all

For information about privileges, see “Privileges (Overview)” on page 186.

Assuming the System Administrator Role
In the following example, the user assumes the role of System Administrator. In
contrast to the Primary Administrator role, the System Administrator has the basic set
of privileges in its effective set.

% roles
sysadmin,oper,primaryadm
% su sysadmin
Password: <Type sysadmin password>
$ /usr/ucb/whoami Prompt has changed to role prompt
sysadmin
$ ppriv $$
1200: pfksh
flags = <none>

E: basic
I: basic
P: basic

L: all

Example 9–9

Example 9–10

210 System Administration Guide: Security Services • January 2005

For information about privileges, see “Privileges (Overview)” on page 186. For a short
description of the capabilities of the role, see “System Administrator Rights Profile”
on page 224.

� How to Assume a Role in the Solaris Management
Console
To change information in the Solaris Management Console GUI requires
administrative capabilities. A role gives you administrative capabilities. If you want to
view information, you must have the solaris.admin.usermgr.read
authorization. The Basic Solaris User rights profile includes this authorization.

An administrative role that can change the properties of users or roles must have
already been assigned to you. For example, the Primary Administrator role can change
the properties of users or roles.

1. Start the Solaris Management Console.

% /usr/sbin/smc &

For detailed instructions, see “Using the Solaris Management Tools With RBAC
(Task Map)” in System Administration Guide: Basic Administration.

2. Select the toolbox for your task.

Navigate to the toolbox that contains the tool or collection in the appropriate name
service scope and click the icon. The scopes are files (local), NIS, NIS+, and LDAP.
If the appropriate toolbox is not displayed in the navigation pane, choose Open
Toolbox from the Console menu and load the relevant toolbox.

3. Select the tool that you want to use.

Navigate to the tool or collection and click the icon. The tools for managing the
RBAC elements are in the Users tool, as shown in the following figure.

Before You
Begin

Steps

Chapter 9 • Using Role-Based Access Control (Tasks) 211

4. Type your user name and password in the Login: User Name dialog box.

5. Authenticate yourself in the Login: Role dialog box.

The Role option menu in the dialog box displays the roles that are assigned to you.
Choose a role and type the role password.

Managing RBAC (Task Map)
The following task map points to procedures for customizing role-based access control
(RBAC) after RBAC has been initially implemented.

Task Description For Instructions

Modify the properties
of a role

Modifies the capabilities (privileges, privileged
commands, profiles, or authorizations) of a role.

“How to Change the Properties of a
Role” on page 213

Create or change rights
profiles

Creates a rights profile. Or modifies the
authorizations, privileged commands, or
supplementary rights profiles in a rights profile.

“How to Create or Change a Rights
Profile” on page 215

212 System Administration Guide: Security Services • January 2005

Task Description For Instructions

Change a user’s
administrative
capabilities

Adds a role, a rights profile, an authorization, or
privileges to an ordinary user.

“How to Change the RBAC Properties
of a User” on page 218

Secure legacy
applications

Turns on the set ID permissions for legacy
applications. Scripts can contain commands
with set IDs. Legacy applications can check for
authorizations, if appropriate.

“How to Add RBAC Properties to
Legacy Applications” on page 220

These procedures manage the elements that are used in RBAC. For user management
procedures, refer to Chapter 5, “Managing User Accounts and Groups (Tasks),” in
System Administration Guide: Basic Administration.

Managing RBAC
The Solaris Management Console GUI is the preferred method for managing RBAC.

Note – Do not attempt to administer RBAC with the command line and the graphical
user interface at the same time. Conflicting changes could be made to the
configuration, and the behavior would be unpredictable. Both tools can administer
RBAC, but you cannot use both tools concurrently.

� How to Change the Properties of a Role
You must have assumed the role of Primary Administrator or have switched to
superuser to change the properties of a role. Role properties include password, rights
profiles, and authorizations.

� Use one of the following methods to change the properties of a role.

� Use the Users tool in the Solaris Management Console.

To start the console, see “How to Assume a Role in the Solaris Management
Console” on page 211. Follow the instructions in the left-hand pane to modify a
role in Administrative Roles. For more extensive information, see the online
help.

� Use the rolemod command.

Before You
Begin

Step

Chapter 9 • Using Role-Based Access Control (Tasks) 213

This command modifies the attributes of a role that is defined in the local name
service.

$ rolemod -c comment -P profile-list rolename

-c comment Is the new comment that describes the capabilities of the role.

-P profile-list Is the list of the profiles that are included in the role. This list
replaces the current list of profiles.

rolename Is the name of an existing, local role that you want to modify.

For more command options, see the rolemod(1M) man page.

� Use the smrole command with the modify subcommand.

This command modifies the attributes of a role in a distributed name service,
such as NIS, NIS+, or LDAP. This command runs as a client of the Solaris
Management Console server.

$ /usr/sadm/bin/smrole -D domain-name \
-r admin-role -l <Type admin-role password> \

modify -- -n rolename -r username -u username

-D domain-name Is the name of the domain that you want to manage.

-r admin-role Is the name of the administrative role that can modify the
role. The administrative role must have the
solaris.role.assign authorization. If you are
modifying a role that you have assumed, the role must have
the solaris.role.delegate authorization.

-l Is the prompt for the password of admin-role.

-- Is the required separator between authentication options
and subcommand options.

-n rolename Is the name of the new role.

-r username Is the name of the user who can no longer assume rolename.

-u username Is the name of the user who can now assume rolename.

For more command options, see the smrole(1M) man page.

Changing a Local Role’s Properties With the rolemod Command

In this example, the operadm role is modified to include the Media Restore rights
profile.

$ rolemod -c "Handles printers, backup, AND restore" \

-P "Printer Management,Media Backup,Media Restore,All" operadm

Example 9–11

214 System Administration Guide: Security Services • January 2005

Changing a Local Role’s Properties With the smrole modify
Command

In the following example, the operadm role is modified to add the Media Restore
rights profile.

$ /usr/sadm/bin/smrole -r primaryadm -l <Type primaryadm password> \
modify -- -n operadm -c "Handles printers, backup, AND restore" \

-p "Media Restore"

Changing a Role in a Domain With the smrole modify Command

In the following example, the clockmgr role is changed. The NIS user whose ID is
108 can no longer assume the role. The NIS user whose ID is 110 can assume the role
clockmgr.

$ /usr/sadm/bin/smrole -D nis:/examplehost/example.domain \
-r primaryadm -l <Type primaryadm password> \

modify -- -n clockmgr -r 108 -u 110

� How to Create or Change a Rights Profile
A rights profile is a property of a role. You should create or change a rights profile
when the prof_attr database does not contain a rights profile that fulfills your
needs. To learn more about rights profiles, see “RBAC Rights Profiles” on page 184.

To create or change a rights profile, you must have assumed the role of Primary
Administrator or have switched to superuser.

� Use one of the following methods to change the properties of a role.

� Use the Users tool in the Solaris Management Console.

To start the console, see “How to Assume a Role in the Solaris Management
Console” on page 211. Follow the instructions in the left-hand pane to create or
change a rights profile in Rights. For more extensive information, see the online
help.

� Use the smprofile command.

This command enables you to add, modify, list, or delete a rights profile. The
command works on files, and in a distributed name service, such as NIS, NIS+,
or LDAP. The smprofile command runs as a client of the Solaris Management
Console server.

$ /usr/sadm/bin/smprofile -D domain-name \
-r admin-role -l <Type admin-role password> \
add | modify -- -n profile-name \

Example 9–12

Example 9–13

Before You
Begin

Step

Chapter 9 • Using Role-Based Access Control (Tasks) 215

-d description -m help-file -p supplementary-profile

-D domain-name Is the name of the domain that you want to manage.

-r admin-role Is the name of the administrative role that can
modify the role. The administrative role must have
the solaris.role.assign authorization. If you
are modifying a role that you have assumed, the
role must have the solaris.role.delegate
authorization.

-l Is the prompt for the password of admin-role.

-- Is the required separator between authentication
options and subcommand options.

-n profile-name Is the name of the new profile.

-d description Is a short description of the profile.

-m help-file Is the name of the HTML help file that you have
created and placed in the
/usr/lib/help/profiles/locale/C directory.

-p supplementary-profile Is the name of an existing rights profile that is
included in this rights profile. You can specify
multiple -p supplementary-profile options.

For more command options, see the smprofile(1M) man page.

Modifying a Rights Profile From the Command Line

In the following example, the Network Management rights profile is made a
supplementary profile of the Network Security rights profile. The role that contains
the Network Security profile can now configure the network and hosts, as well has run
security-relevant commands.

$ /usr/sadm/bin/smprofile -D nisplus:/example.host/example.domain \
-r primaryadm -l <Type primaryadm password> \
modify -- -n "Network Security" \
-d "Manage network and host configuration and security" \

-m RtNetConfSec.html -p "Network Management"

The administrator created a new help file, RtNetConfSec.html, and placed it in the
/usr/lib/help/profiles/locale/C directory, before running this command.

Example 9–14

216 System Administration Guide: Security Services • January 2005

Creating a New Rights Profile With the Rights Tool

The following table shows sample data for a hypothetical rights profile that is called
“Build Administrator”. This rights profile includes the commands in the subdirectory
/usr/local/swctrl/bin. These commands have an effective UID of 0. The Build
Administrator rights profile would be useful for administrators who manage the
builds and versioning for software development.

Tab Field Example

General Name Build Administrator

Description For managing software builds and versioning.

Help File Name BuildAdmin.html

Commands Add Directory Click Add Directory, type /usr/local/swctrl/bin in the
dialog box, and click OK.

Commands Denied /
Commands Permitted

Move /usr/local/swctrl/bin to the Commands
Permitted column.

Set Security Attributes Select /usr/local/swctrl/bin, click Set Security
Attributes, and set Effective UID = root.

Authorizations Authorizations Excluded /
Authorizations Included

No authorizations.

Supplementary
Rights

Rights Excluded / Rights
Included

No supplementary rights profiles.

Check the following if the rights profile does not provide the role with the capabilities
that you expect:

� Are the rights profiles for the role listed in the GUI from most to least powerful?

For example, if the All rights profile is at the top of the list, then no commands are
run with security attributes. A profile that contains commands with security
attributes must precede the All rights profile in the list.

� Is a command listed more than once in the role’s rights profiles? If so, does the first
instance of the command have all the security attributes that are required?

For example, a command can require privileges for particular options to the
command. For the options that require privileges to succeed, the first instance of
the command in the highest rights profile in the list must have the assigned
privileges.

� Do the commands in the role’s rights profiles have the appropriate security
attributes?

For example, when the policy is suser, some commands require uid=0 rather
than euid=0 to succeed.

Example 9–15

Troubleshooting

Chapter 9 • Using Role-Based Access Control (Tasks) 217

� Has the name service cache, svc:/system/name-service-cache, been
restarted?

The nscd daemon can have a lengthy time-to-live interval. By restarting the
daemon, you update the name service with current data.

� How to Change the RBAC Properties of a User
User properties include password, rights profiles, and authorizations. The most secure
method of giving a user administrative capabilities is to assign a role to the user. For a
discussion, see “Security Considerations When Directly Assigning Security Attributes”
on page 185.

You must have assumed the role of Primary Administrator or have switched to
superuser to change the properties of a user.

� Use one of the following methods to change the RBAC properties of a user.

� Use the Users tool in the Solaris Management Console.

To start the console, see “How to Assume a Role in the Solaris Management
Console” on page 211. Follow the instructions in the left-hand pane to modify a
user in User Accounts. For more extensive information, see the online help.

Tip – It is not good practice to assign authorizations, privileges, or rights profiles
directly to users. The preferred approach is to assign a role to users. Users then
assume a role to perform privileged operations.

� Use the usermod command.

This command modifies the attributes of a user that is defined in the local name
service.

$ usermod -R rolename username

-R rolename Is the name of an existing local role.

username Is the name of an existing, local user that you want to modify.

For more command options, see the usermod(1M) man page.

� Use the smuser command with the modify subcommand.

This command modifies the attributes of a user in a distributed name service,
such as NIS, NIS+, or LDAP. This command runs as a client of the Solaris
Management Console server.

$ /usr/sadm/bin/smuser -D domain-name \
-r admin-role -l <Type admin-role password> \

Before You
Begin

Step

218 System Administration Guide: Security Services • January 2005

modify -- -n username -a rolename

-D domain-name Is the name of the domain that you want to manage.

-r admin-role Is the name of the administrative role that can modify the
role. The administrative role must have the
solaris.role.assign authorization. If you are
modifying a role that you have assumed, the role must have
the solaris.role.delegate authorization.

-l Is the prompt for the password of admin-role.

-- Is the required separator between authentication options
and subcommand options.

-n username Is the name of the user who is being assigned rolename.

-a rolename Is the name of the role that you are assigning to username.
You can specify multiple -a rolenameoptions.

For more command options, see the smuser(1M) man page.

Modifying a Local User’s RBAC Properties From the Command Line

In this example, the user jdoe can now assume the role of System Administrator.

$ usermod -R sysadmin jdoe

Modifying a User’s RBAC Properties With the smuser Command

In this example, the user jdoe is assigned two roles, System Administrator and
Operator. Because the user and the roles are defined locally, the -D option is not
necessary.

$ /usr/sadm/bin/smuser -r primaryadm -l <Type primaryadm password> \

modify -- -n jdoe -a sysadmin -a operadm

In the following example, the user is defined in the NIS name service. Therefore, the
-D option is required. Two roles are defined in the name service. One role, root, is
defined locally.

$ /usr/sadm/bin/smuser -D nis:/examplehost/example.domain \
-r primaryadm -l <Type primaryadm password> \

modify -- -n jdoe -a sysadmin -a operadm -a root

Example 9–16

Example 9–17

Chapter 9 • Using Role-Based Access Control (Tasks) 219

� How to Add RBAC Properties to Legacy
Applications
A legacy application is a command or set of commands. The security attributes are set
for each command in a rights profile. The rights profile is then included in a role. A
user who assumes the role can run the legacy application with the security attributes.

To add legacy applications to the Solaris Management Console, see “Adding Tools to
the Solaris Management Console” in System Administration Guide: Basic Administration.

You must have assumed the role of Primary Administrator or have switched to
superuser to change the security attributes of a command in a rights profile.

1. Use the Users tool in the Solaris Management Console.

To start the console, see “How to Assume a Role in the Solaris Management
Console” on page 211. Follow the instructions in the left-hand pane to modify a
rights profile in Rights. For more extensive information, see the online help.

2. Add security attributes to the commands that implement the legacy application.

You add security attributes to a legacy application in the same way that you would
for any command. You must add the command with security attributes to a rights
profile. For a legacy command, give the command euid=0 or uid=0 security
attributes. For details of the procedure, see “How to Create or Change a Rights
Profile” on page 215.

3. After adding the legacy application to a rights profile, include the rights profile
in a role’s list of profiles.

To add a rights profile to a role, see “How to Change the Properties of a Role”
on page 213.

Adding Security Attributes to Commands in a Script

If a command in a script needs to have the setuid bit or setgid bit set to succeed,
the script executable and the command must have the security attributes added in a
rights profile. Then, the rights profile is included in a role, and the role is assigned to a
user. When the user assumes the role and executes the script, the command runs with
the security attributes.

To add security attributes to a command or shell script, see “How to Create or Change
a Rights Profile” on page 215.

Checking for Authorizations in a Script or Program

To have a script for authorizations, you need to add a test that is based on the auths
command. For detailed information about this command, see the auths(1) man page.

Before You
Begin

Steps

Example 9–18

Example 9–19

220 System Administration Guide: Security Services • January 2005

For example, the following line tests if the user has the authorization that is supplied
as the $1 argument:

if [‘/usr/bin/auths|/usr/xpg4/bin/grep $1‘]; then
echo Auth granted

else
echo Auth denied

fi

To be more complete, the test should include logic that checks for other authorizations
that use wildcards. For example, to test if the user has the
solaris.admin.usermgr.write authorization, you would need to check for the
following strings:

� solaris.admin.usermgr.write
� solaris.admin.usermgr.*
� solaris.admin.*
� solaris.*

If you are writing a program, use the function getauthattr() to test for the
authorization.

Chapter 9 • Using Role-Based Access Control (Tasks) 221

222 System Administration Guide: Security Services • January 2005

CHAPTER 10

Role-Based Access Control (Reference)

This chapter provides reference material about RBAC. The following is a list of the
reference information in this chapter:

� “Contents of Rights Profiles” on page 223
� “Authorization Naming and Delegation” on page 228
� “Databases That Support RBAC” on page 229
� “RBAC Commands” on page 236

For information on using RBAC, see Chapter 9. For overview information, see
“Role-Based Access Control (Overview)” on page 177.

Contents of Rights Profiles
This section describes some typical rights profiles. Rights profiles can include
authorizations, commands with security attributes, and supplementary rights profiles.
The rights profiles are listed from most to least powerful. For suggestions on how to
distribute rights profiles to roles at your site, see “How to Plan Your RBAC
Implementation” on page 197.

� Primary Administrator rights profile – Provides the capabilities of superuser in
one profile.

� System Administrator rights profile – Provides a profile that can do most tasks
that are not connected with security. This profile includes several other profiles to
create a powerful role.

� Operator rights profile – Provides limited capabilities to manage files and offline
media. This profile includes supplementary rights profiles to create a simple role.

� Printer Management rights profile – Provides a limited number of commands and
authorizations to handle printing. This profile is one of several profiles that cover a
single area of administration.

223

� Basic Solaris User rights profile – Enables users to use the system within the
bounds of security policy. This profile is listed by default in the policy.conf file.

� All rights profile – For roles, provides access to commands that do not have
security attributes.

Each rights profile has an associated help file. The help files are in HTML and are
customizable. The files reside in the /usr/lib/help/auths/locale/C directory.

Primary Administrator Rights Profile
The Primary Administrator rights profile is assigned to the most powerful role on the
system. The role that includes the Primary Administrator rights profile has superuser
capabilities.

� The solaris.* authorization effectively assigns all of the authorizations that are
provided by the Solaris software.

� The solaris.grant authorization lets a role assign any authorization to any
rights profile, role, or user.

� The command assignment *:uid=0;gid=0 provides the ability to run any
command with UID=0 and GID=0.

You can customize the help file RtPriAdmin.html for your site, if necessary. Help
files are stored in the /usr/lib/help/auths/locale/C directory.

Note also that if the Primary Administrator rights profile is not consistent with a site’s
security policy, the profile can be modified or not assigned at all. However, the
security capabilities in the Primary Administrator rights profile would need to be
handled in one or more other rights profiles. Those other rights profiles would then be
assigned to roles.

TABLE 10–1 Contents of Primary Administrator Rights Profile

Purpose Contents

To perform all administrative tasks Commands: *:uid=0;gid=0

Authorizations: solaris.*, solaris.grant

Help File: RtPriAdmin.html

System Administrator Rights Profile
The System Administrator rights profile is intended for the System Administrator role.
Because the System Administrator does not have the broad capabilities of the Primary
Administrator, no wildcards are used. Instead, this profile is a set of discrete,
supplementary administrative rights profiles that do not deal with security. The
commands with security attributes from one of the supplementary rights profiles are
shown.

224 System Administration Guide: Security Services • January 2005

Note that the All rights profile is assigned at the end of the list of supplementary
rights profiles.

TABLE 10–2 Contents of System Administrator Rights Profile

Purpose Contents

To perform most
nonsecurity
administrative tasks

Supplementary rights profiles: Audit Review, Printer Management,
Cron Management, Device Management, File System Management,
Mail Management, Maintenance and Repair, Media Backup, Media
Restore, Name Service Management, Network Management, Object
Access Management, Process Management, Software Installation,
User Management, All

Help File: RtSysAdmin.html

Commands from one of
the supplementary
profiles

Object Access Management rights profile, solaris policy:
/usr/bin/chgrp:privs=file_chown,
/usr/bin/chmod:privs=file_chown,
/usr/bin/chown:privs=file_chown,
/usr/bin/setfacl:privs=file_chown

suser policy: /usr/bin/chgrp:euid=0,
/usr/bin/chmod:euid=0, /usr/bin/chown:euid=0,
/usr/bin/getfacl:euid=0, /usr/bin/setfacl:euid=0

Operator Rights Profile
The Operator rights profile is a less powerful profile that provides the ability to do
backups and printer maintenance. The ability to restore files has more security
consequences. Therefore, in this profile, the default is to not include the ability to
restore files.

TABLE 10–3 Contents of Operator Rights Profile

Purpose Contents

To perform simple
administrative tasks

Supplementary rights profiles: Printer Management, Media
Backup, All

Help File: RtOperator.html

Printer Management Rights Profile
Printer Management is a typical rights profile that is intended for a specific task area.
This profile includes authorizations and commands. The following table shows a
partial list of commands.

Chapter 10 • Role-Based Access Control (Reference) 225

TABLE 10–4 Contents of Printer Management Rights Profile

Purpose Contents

To manage printers, daemons, and
spooling

Authorizations: solaris.admin.printer.delete,
solaris.admin.printer.modify,
solaris.admin.printer.read

Commands: /usr/bin/cancel:euid=lp;uid=lp,
/usr/bin/lpset:egid=14,
/usr/bin/lpstat:euid=0,
/usr/lib/lp/local/lpadmin:uid=lp;gid=8,
/usr/lib/lp/lpsched:uid=0,
/usr/sbin/lpadmin:egid=14;uid=lp;gid=8,
/usr/sbin/lpfilter:euid=lp;uid=lp,
/usr/ucb/lprm:euid=0

Help File: RtPrntMngmnt.html

Basic Solaris User Rights Profile
By default, the Basic Solaris User rights profile is assigned automatically to all users
through the policy.conf file. This profile provides basic authorizations that are
useful in normal operations. Note that the convenience that is offered by the Basic
Solaris User rights profile must be balanced against site security requirements. Sites
that need stricter security might prefer to remove this profile from the policy.conf
file.

TABLE 10–5 Contents of Basic Solaris User Rights Profile

Purpose Contents

To automatically assign
rights to all users

Authorizations: solaris.profmgr.read,
solaris.jobs.users, solaris.mail.mailq,
solaris.admin.usermgr.read,
solaris.admin.logsvc.read,
solaris.admin.fsmgr.read,
solaris.admin.serialmgr.read,
solaris.admin.diskmgr.read,
solaris.admin.procmgr.user, solaris.compsys.read,
solaris.admin.printer.read,
solaris.admin.prodreg.read,
solaris.admin.dcmgr.read, solaris.snmp.read,
solaris.project.read, solaris.admin.patchmg.read,
solaris.network.hosts.read, solaris.compsys.read,
solaris.admin.volmgr.read

Supplementary rights profiles: All

Help File: RtDefault.html

226 System Administration Guide: Security Services • January 2005

All Rights Profile
The All rights profile uses the wildcard to include all commands. This profile provides
a role with access to all commands that are not explicitly assigned in other rights
profiles. Without the All rights profile or other rights profiles that use wildcards, a role
has access to explicitly assigned commands only. Such a limited a set of commands is
not very practical.

The All rights profile, if used, should be the final rights profile that is assigned. This
last position ensures that explicit security attribute assignments in other rights profiles
are not inadvertently overridden.

TABLE 10–6 Contents of All Rights Profile

Purpose Contents

To execute any command as the user or role Commands: *

Help File: RtAll.html

Order of Rights Profiles
The commands in rights profiles are interpreted in order. The first occurrence of a
command is the only version of the command that is used for that role or user.
Different rights profiles can include the same command. Therefore, the order of rights
profiles in a list of profiles is important. The rights profile with the most capabilities
should be listed first.

Rights profiles are listed in the Solaris Management Console GUI and in the
prof_attr file. In the Solaris Management Console GUI, the rights profile with the
most capabilities should be the top profile in a list of assigned rights profiles. In the
prof_attr file, the rights profile with the most capabilities should be the first in a list
of supplementary profiles. This placement ensures that a command with security
attributes is listed before that same command without security attributes.

Viewing the Contents of Rights Profiles
The Solaris Management Console Rights tool provides one way of inspecting the
contents of the rights profiles.

The prof_attr and exec_attr files offer a more fragmented view. The prof_attr
file contains the name of every rights profile that is defined on the system. The file also
includes the authorizations and the supplementary rights profiles for each profile. The
exec_attr file contains the names of rights profiles and their commands with
security attributes.

Chapter 10 • Role-Based Access Control (Reference) 227

Authorization Naming and Delegation
An RBAC authorization is a discrete right that can be granted to a role or a user.
Authorizations are checked by RBAC-compliant applications before a user gets access
to the application or specific operations within the application. This check replaces the
tests in conventional UNIX applications for UID=0.

Authorization Naming Conventions
An authorization has a name that is used internally and in files. For example,
solaris.admin.usermgr.pswd is the name of an authorization. An authorization
has a short description, which appears in the graphical user interfaces (GUIs). For
example, Change Passwords is the description of the
solaris.admin.usermgr.pswd authorization.

By convention, authorization names consist of the reverse order of the Internet name
of the supplier, the subject area, any subareas, and the function. The parts of the
authorization name are separated by dots. An example would be
com.xyzcorp.device.access. Exceptions to this convention are the authorizations
from Sun Microsystems, Inc., which use the prefix solaris instead of an Internet
name. The naming convention enables administrators to apply authorizations in a
hierarchical fashion. A wildcard (*) can represent any strings to the right of a dot.

Example of Authorization Granularity
As an example of how authorizations are used, consider the following: A user in the
Operator role might be limited to the solaris.admin.usermgr.read
authorization, which provides read but not write access to user configuration files. The
System Administrator role naturally has the solaris.admin.usermgr.read and
the solaris.admin.usermgr.write authorizations for making changes to user
files. However, without the solaris.admin.usermgr.pswd authorization, the
System Administrator cannot change passwords. The Primary Administrator has all
three of these authorizations.

The solaris.admin.usermgr.pswd authorization is required to make password
changes in the Solaris Management Console User tool. This authorization is also
required for using the password modification options in the smuser, smmultiuser,
and smrole commands.

Delegation Authority in Authorizations
An authorization that ends with the suffix grant enables a user or a role to delegate to
other users any assigned authorizations that begin with the same prefix.

228 System Administration Guide: Security Services • January 2005

For example, a role with the authorizations solaris.admin.usermgr.grant and
solaris.admin.usermgr.read can delegate the
solaris.admin.usermgr.read authorization to another user. A role with the
solaris.admin.usermgr.grant and solaris.admin.usermgr.*
authorizations can delegate any of the authorizations with the
solaris.admin.usermgr prefix to other users.

Databases That Support RBAC
The following four databases store the data for the RBAC elements:

� Extended user attributes database (user_attr) – Associates users and roles
with authorizations and rights

� Rights profile attributes database (prof_attr) – Defines rights profiles, lists the
profiles’ assigned authorizations, and identifies the associated help file

� Authorization attributes database (auth_attr) – Defines authorizations and
their attributes, and identifies the associated help file

� Execution attributes database (exec_attr) – Identifies the commands with
security attributes that are assigned to specific rights profiles

The policy.conf database contains authorizations,privileges, and rights profiles
that are applied to all users. For more information, see “policy.conf File” on page
235.

RBAC Database Relationships
Each RBAC database uses a key=value syntax for storing attributes. This method
accommodates future expansion of the databases. The method also enables a system to
continue to operate if the system encounters a keyword that is unknown to its policy.
The key=value contents link the files. The following linked entries from the four
databases illustrate how the RBAC databases work together.

EXAMPLE 10–1 Showing RBAC Database Connections

In the following example, the user jdoe gets the capabilities of the File System
Management profile through being assigned the role filemgr.

1. The user jdoe is assigned the role filemgr in the jdoe user entry in the
user_attr database.

user_attr - user definition

jdoe::::type=normal;roles=filemgr

2. The role filemgr is assigned the rights profile File System Management in the
role’s entry in the user_attr database.

Chapter 10 • Role-Based Access Control (Reference) 229

EXAMPLE 10–1 Showing RBAC Database Connections (Continued)

user_attr - role definition

filemgr::::profiles=File System Management;type=role

The user and the role are uniquely defined in the passwd and shadow files on the
local system, or in equivalent databases in a distributed name service.

3. The File System Management rights profile is defined in the prof_attr database.
This database also assigns three sets of authorizations to the File System
Management entry.

prof_attr - rights profile definitions and assigned authorizations
File System Management:::Manage, mount, share file systems:
help=RtFileSysMngmnt.html;
auths=solaris.admin.fsmgr.*,solaris.admin.diskmgr.*,solaris.admin.volmgr.*

4. The authorizations are defined in the auth_attr database.

auth_attr - authorization definitions
solaris.admin.fsmgr.:::Mounts and Shares::help=AuthFsmgrHeader.html
solaris.admin.fsmgr.read:::View Mounts and Shares::help=AuthFsmgrRead.html
solaris.admin.fsmgr.write:::Mount and Share Files::help=AuthFsmgrWrite.html

5. The File System Management rights profile is assigned commands with security
attributes in the exec_attr database.

exec_attr - rights profile names with secured commands
File System Management:suser:cmd:::/usr/sbin/mount:uid=0
File System Management:suser:cmd:::/usr/sbin/dfshares:euid=0
...
File System Management:solaris:cmd:::/usr/sbin/mount:privs=sys_mount

...

RBAC Databases and the Name Service
The name service scope of the RBAC databases can apply to the local host only. The
scope can also include all hosts that are served by a name service such as NIS, NIS+,
or LDAP. Which name service has precedence is set for each of the databases in the
/etc/nsswitch.conf file.

� auth_attr entry – Sets the name service precedence for the auth_attr database.

� passwd entry – Sets the name service precedence for the user_attr database.

� prof_attr entry – Sets the name service precedence for the prof_attr database.
Also sets the name service precedence for the exec_attr database.

For example, if a command with security attributes is assigned to a rights profile
that exists in two name service scopes, only the entry in the first name service
scope is used.

230 System Administration Guide: Security Services • January 2005

user_attr Database
The user_attr database contains user and role information that supplements the
passwd and shadow databases. The user_attr database contains extended user
attributes such as authorizations, rights profiles, and assigned roles. The fields in the
user_attr database are separated by colons, as follows:

user:qualifier:res1:res2:attr

The fields have the following meanings:

user
The name of the user or role as specified in the passwd database.

qualifier:res1:res2
These fields are reserved for future use.

attr
An optional list of semicolon-separated (;) key-value pairs that describes the
security attributes to be applied when the user runs commands. The four valid keys
are type, auths, profiles, and roles.

� The type keyword can be set to normal, if this account is for a normal user.
The type is role if this account is for a role.

� The auths keyword specifies a comma-separated list of authorization names
that are chosen from names that are defined in the auth_attr database.
Authorization names can include the asterisk (*) character as a wildcard. For
example, solaris.device.* means all of the Solaris device authorizations.

� The profiles keyword specifies an ordered, comma-separated list of rights
profile names from the prof_attr database. The order of rights profiles works
similarly to UNIX search paths. The first profile in the list that contains the
command to be executed defines which (if any) security attributes are to be
applied to the command.

� The roles keyword can be assigned to the user through a comma-separated list
of role names. Note that roles are defined in the same user_attr database.
Roles are indicated by setting the type value to role. Roles cannot be assigned
to other roles.

The following example demonstrates how the Operator role is defined in a typical
user_attr database. The example shows how the role is assigned to user jdoe.
Roles and users are differentiated by the type keyword.

% grep operator /etc/user_attr
jdoe::::type=normal;roles=operator

operator::::profiles=Operator;type=role

Chapter 10 • Role-Based Access Control (Reference) 231

auth_attr Database
All authorizations are stored in the auth_attr database. Authorizations can be
assigned to users, to roles, or to rights profiles. The preferred method is to place
authorizations in a rights profile, to include the profile in a role’s list of profiles, and
then to assign the role to a user.

The fields in the auth_attr database are separated by colons, as follows:

authname:res1:res2:short_desc:long_desc:attr

The fields have the following meanings:

authname A unique character string that is used to identify the authorization in
the format prefix.[suffix]. Authorizations for the Solaris OS use
solaris as a prefix. All other authorizations should use a prefix
that begins with the reverse-order Internet domain name of the
organization that creates the authorization (for example,
com.xyzcompany). The suffix indicates what is being authorized,
which is typically the functional area and operation.

When the authname consists of a prefix and functional area and
ends with a period, the authname serves as a heading to be used by
applications in their GUIs. A two-part authname is not an actual
authorization. The authname of solaris.printmgr. is an
example of a heading.

When authname ends with the word “grant,” the authname serves
as a grant authorization. A grant authorization enables the user to
delegate to other users authorizations with the same prefix and
functional area. The authname of solaris.printmgr.grant is
an example of a grant authorization. solaris.printmgr.grant
gives the user the right to delegate to other users such
authorizations as solaris.printmgr.admin and
solaris.printmgr.nobanner.

res1:res2 Reserved for future use.

short_desc A short name for the authorization. This short name is suitable for
display in user interfaces, such as in a scrolling list in a GUI.

long_desc A long description. This field identifies the purpose of the
authorization, the applications in which the authorization is used,
and the type of user who might use the authorization. The long
description can be displayed in the help text of an application.

attr An optional list of semicolon-separated (;) key-value pairs that
describe the attributes of an authorization. Zero or more keys can be
specified.

232 System Administration Guide: Security Services • January 2005

The keyword help identifies a help file in HTML. Help files can be
accessed from the index.html file in the
/usr/lib/help/auths/locale/C directory.

The following example shows an auth_attr database with some typical values:

% grep printer /etc/security/auth_attr
solaris.admin.printer.:::Printer Information::help=AuthPrinterHeader.html
solaris.admin.printer.delete:::Delete Printer Information::help=AuthPrinterDelete.html
solaris.admin.printer.modify:::Update Printer Information::help=AuthPrinterModify.html

solaris.admin.printer.read:::View Printer Information::help=AuthPrinterRead.html

Note that solaris.admin.printer. is defined as a heading, because the
authorization name ends in a dot (.). Headings are used by the GUIs to organize
families of authorizations.

prof_attr Database
The prof_attr database stores the name, description, help file location, and
authorizations that are assigned to rights profiles. The commands and security
attributes that are assigned to rights profiles are stored in the exec_attr database.
For more information, see “exec_attr Database” on page 234. The fields in the
prof_attr database are separated by colons, as follows:

profname:res1:res2:desc:attr

The fields have the following meanings:

profname The name of the rights profile. Rights profile names are case-sensitive.
This name is also used by the user_attr database to indicate the
profiles that are assigned to roles and users.

res1:res2 Reserved for future use.

desc A long description. This field should explain the purpose of the rights
profile, including what type of user would be interested in using the
profile. The long description should be suitable for display in the help
text of an application.

attr An optional list of key-value pairs that are separated by semicolons (;)
that describes the security attributes to apply to the object on
execution. Zero or more keys can be specified. The two valid keys are
help and auths.

The keyword help identifies a help file in HTML. Help files can be
accessed from the index.html file in the
/usr/lib/help/auths/locale/C directory.

Chapter 10 • Role-Based Access Control (Reference) 233

The keyword auths specifies a comma-separated list of authorization
names that are chosen from those names that are defined in the
auth_attr database. Authorization names can be specified with the
asterisk (*) character as a wildcard.

The following example shows two typical prof_attr database entries. Note that the
Printer Management rights profile is a supplementary rights profile of the Operator
rights profile. The example is wrapped for display purposes.

% grep ’Printer Management’ /etc/security/prof_attr
Printer Management::: Name of rights profile
Manage printers, daemons, spooling: Description
help=RtPrntAdmin.html; Help file
auths=solaris.admin.printer.read, Authorizations
solaris.admin.printer.modify,solaris.admin.printer.delete
...
Operator::: Name of rights profile
Can perform simple administrative tasks: Description
profiles=Printer Management, Supplementary rights profiles
Media Backup,All;

help=RtOperator.html Help file

exec_attr Database
The exec_attr database defines commands that require security attributes to
succeed. The commands are part of a rights profile. A command with its security
attributes can be run by roles to whom the profile is assigned.

The fields in the exec_attr database are separated by colons, as follows:

name:policy:type:res1:res2:id:attr

The fields have the following meanings.

profname The name of the rights profile. Rights profile names are case-sensitive.
The name refers to a profile in the prof_attr database.

policy The security policy that is associated with this entry. Currently, suser
and solaris are the valid entries. The solaris policy recognizes
privileges. The suser policy does not.

type The type of entity that is specified. Currently, the only valid entity
type is cmd (command).

res1:res2 Reserved for future use.

id A string that identifies the entity. Commands should have the full
path or a path with a wildcard (*). To specify arguments, write a
script with the arguments and point the id to the script.

234 System Administration Guide: Security Services • January 2005

attr An optional list of semicolon (;) separated key-value pairs that
describes the security attributes to apply to the entity on execution.
Zero or more keys can be specified. The list of valid keywords
depends on the policy that is enforced.

For the suser policy, the four valid keys are euid, uid, egid, and
gid.

� The euid and uid keywords contain a single user name or a
numeric user ID (UID). Commands that are designated with euid
run with the supplied UID, which is similar to setting the setuid
bit on an executable file. Commands that are designated with uid
run with both the real UID and the effective UID.

� The egid and gid keywords contain a single group name or
numeric group ID (GID). Commands that are designated with
egid run with the supplied GID, which is similar to setting the
setgid bit on an executable file. Commands that are designated
with gid run with both the real GID and the effective GID.

For the solaris policy, the valid keyword is privs. The value
consists of a list of privileges that are separated by commas.

The following example shows some typical values from an exec_attr database:

% grep ’File System Management’ /etc/security/exec_attr
File System Management:suser:cmd:::/usr/sbin/ff:euid=0
File System Management:solaris:cmd:::/usr/sbin/mount:privs=sys_mount

...

policy.conf File
The policy.conf file provides a way of granting specific rights profiles, specific
authorizations, and specific privileges to all users. The relevant entries in the file
consist of key=value pairs:

� AUTHS_GRANTED=authorizations – Refers to one or more authorizations.
� PROFS_GRANTED=rights profiles – Refers to one or more rights profiles.
� PRIV_DEFAULT=privileges – Refers to one or more privileges.
� PRIV_LIMIT=privileges – Refers to all privileges.

The following example shows some typical values from a policy.conf database:

grep AUTHS /etc/security/policy
AUTHS_GRANTED=solaris.device.cdrw

grep PROFS /etc/security/policy
PROFS_GRANTED=Basic Solaris User

grep PRIV /etc/security/policy

Chapter 10 • Role-Based Access Control (Reference) 235

#PRIV_DEFAULT=basic

#PRIV_LIMIT=all

For more information about privileges, see “Privileges (Overview)” on page 186.

RBAC Commands
This section lists commands that are used to administer RBAC. Also provided is a
table of commands whose access can be controlled by authorizations.

Commands That Manage RBAC
While you can edit the local RBAC databases manually, such editing is strongly
discouraged. The following commands are available for managing access to tasks with
RBAC.

TABLE 10–7 RBAC Administration Commands

Man Page for Command Description

auths(1) Displays authorizations for a user.

makedbm(1M) Makes a dbm file.

nscd(1M) Name service cache daemon, useful for caching the user_attr,
prof_attr, and exec_attr databases. Use the svcadm command to
restart the daemon.

pam_roles(5) Role account management module for PAM. Checks for the
authorization to assume role.

pfexec(1) Used by profile shells to execute commands with security attributes
that are specified in the exec_attr database.

policy.conf(4) Configuration file for system security policy. Lists granted
authorizations, granted privileges, and other security information.

profiles(1) Displays rights profiles for a specified user.

roles(1) Displays roles that a specified user can assume.

roleadd(1M) Adds a role to a local system.

roledel(1M) Deletes a role from a local system.

236 System Administration Guide: Security Services • January 2005

TABLE 10–7 RBAC Administration Commands (Continued)
Man Page for Command Description

rolemod(1M) Modifies a role’s properties on a local system.

smattrpop(1M) Merges the source security attribute database into the target database.
For use in situations where local databases need to be merged into a
name service. Also for use in upgrades where conversion scripts are not
supplied.

smexec(1M) Manages entries in the exec_attr database. Requires authentication.

smmultiuser(1M) Manages bulk operations on user accounts. Requires authentication.

smprofile(1M) Manages rights profiles in the prof_attr and exec_attr databases.
Requires authentication.

smrole(1M) Manages roles and users in role accounts. Requires authentication.

smuser(1M) Manages user entries. Requires authentication.

useradd(1M) Adds a user account to the system. The -P option assigns a role to a
user’s account.

userdel(1M) Deletes a user’s login from the system.

usermod(1M) Modifies a user’s account properties on the system.

Commands That Require Authorizations
The following table provides examples of how authorizations are used to limit
command options on a Solaris system. For more discussion of authorizations, see
“Authorization Naming and Delegation” on page 228.

TABLE 10–8 Commands and Associated Authorizations

Man Page for Command Authorization Requirements

at(1) solaris.jobs.user required for all options (when neither
at.allow nor at.deny files exist)

atq(1) solaris.jobs.admin required for all options

cdrw(1) solaris.device.cdrw required for all options, and is granted by
default in the policy.conf file

crontab(1) solaris.jobs.user required for the option to submit a job (when
neither crontab.allow nor crontab.deny files exist)

solaris.jobs.admin required for the options to list or modify other
users’ crontab files

Chapter 10 • Role-Based Access Control (Reference) 237

TABLE 10–8 Commands and Associated Authorizations (Continued)
Man Page for Command Authorization Requirements

allocate(1) solaris.device.allocate (or other authorization as specified in
device_allocate file) required to allocate a device

solaris.device.revoke (or other authorization as specified in
device_allocate file) required to allocate a device to another user
(-F option)

deallocate(1) solaris.device.allocate (or other authorization as specified in
device_allocate file) required to deallocate another user’s device

solaris.device.revoke (or other authorization as specified in
device_allocate) required to force deallocation of the specified
device (-F option) or all devices (-I option)

list_devices(1) solaris.device.revoke required to list another user’s devices (-U
option)

sendmail(1M) solaris.mail required to access mail subsystem functions;
solaris.mail.mailq required to view mail queue

238 System Administration Guide: Security Services • January 2005

CHAPTER 11

Privileges (Tasks)

This chapter provides step-by-step instructions for managing privileges and using
privileges on your system. The following is a list of the information in this chapter.

� “Managing and Using Privileges (Task Map)” on page 239
� “Managing Privileges (Task Map)” on page 240
� “Determining Your Privileges (Task Map)” on page 248

For an overview of privileges, see “Privileges (Overview)” on page 186. For reference
information, see Chapter 12.

Managing and Using Privileges (Task
Map)
The following task map points to task maps for managing privileges and for using
privileges.

Task Description For Instructions

Use privileges at your site Involves assigning, removing, adding, and
debugging the use of privileges.

“Managing Privileges (Task
Map)” on page 240

Use privileges when you run
a command

Involves using the privileges that have been
assigned to you.

“Determining Your Privileges
(Task Map)” on page 248

239

Managing Privileges (Task Map)
The following task map points to procedures for viewing privileges, assigning
privileges, and running a script that contains privileged commands.

Task Description For Instructions

Determine what privileges
are in a process

Lists the effective, inheritable, permitted, and
limit privilege sets for a process.

“How to Determine the
Privileges on a Process” on page
241

Determine what privileges
are missing from a process

Lists the privileges that a failed process
requires to succeed.

“How to Determine Which
Privileges a Program Requires”
on page 242

Add privileges to a command Adds privileges to a command in a rights
profile. Users or roles can be assigned the
rights profile. The users can then run the
command with the assigned privileges in a
profile shell.

“How to Add Privileges to a
Command” on page 244

Assign privileges to a user Expands a user’s or role’s inheritable set of
privileges. Use this procedure with caution.

“How to Assign Privileges to a
User or Role” on page 244

Restrict a user’s privileges Limits the user’s basic set of privileges. Use
this procedure with caution.

“How to Limit a User’s or Role’s
Privileges” on page 245

Run a privileged shell script Adds privilege to a shell script and to the
commands in the shell script. Then, runs the
script in a profile shell.

“How to Run a Shell Script With
Privileged Commands” on page
247

Managing Privileges
The most secure way to manage privileges for users and roles is to confine use of
privilege to commands in a rights profile. The rights profile is then included in a role.
The role is assigned to a user. When the user assumes the assigned role, the privileged
commands are available to be run in a profile shell. The following procedures show
how to assign privileges, remove privileges, and debug privilege use.

240 System Administration Guide: Security Services • January 2005

� How to Determine the Privileges on a Process
This procedure shows how to determine which privileges are available to your
processes. The listing does not include privileges that have been assigned to particular
commands.

� List the privileges that are available to your shell’s process.

% ppriv pid
$ ppriv -v pid

pid Is the process number. Use a double dollar sign ($$) to pass the process
number of the parent shell to the command.

-v Provides a verbose listing of the privilege names.

Determining the Privileges in Your Current Shell

In the following example, the privileges in the parent process of the user’s shell
process are listed. In the second example, the full names of the privileges are listed.
The single letters in the output refer to the following privilege sets:

E
Is the effective privilege set.

I
Is the inheritable privilege set.

P
Is the permitted privilege set.

L
Is the limit privilege set.

% ppriv $$
1200: -csh
flags = <none>

E: basic
I: basic
P: basic
L: all

% ppriv -v $$
1200: -csh
flags = <none>

E: file_link_any,proc_exec,proc_fork,proc_info,proc_session
I: file_link_any,proc_exec,proc_fork,proc_info,proc_session
P: file_link_any,proc_exec,proc_fork,proc_info,proc_session

L: cpc_cpu,dtrace_kernel,dtrace_proc,dtrace_user,...,sys_time

Step

Example 11–1

Chapter 11 • Privileges (Tasks) 241

Determining the Privileges of a Role That You Can Assume

Roles use an administrative shell, or profile shell. You must assume a role and use the
role’s shell to list the privileges that have been directly assigned to the role. In the
following example, the role sysadmin has no directly assigned privileges.

% su sysadmin
Password: <Type sysadmin password>
$ /usr/ucb/whoami
sysadmin
$ ppriv -v $$
1400: pfksh
flags = <none>

E: file_link_any,proc_exec,proc_fork,proc_info,proc_session
I: file_link_any,proc_exec,proc_fork,proc_info,proc_session
P: file_link_any,proc_exec,proc_fork,proc_info,proc_session

L: cpc_cpu,dtrace_kernel,dtrace_proc,dtrace_user,...,sys_time

� How to Determine Which Privileges a Program
Requires
This procedure determines which privileges a command or process requires to
succeed.

The command or process must have failed for this procedure to work.

1. Type the command that is failing as an argument to the ppriv debugging
command.

% ppriv -eD touch /etc/acct/yearly
touch[11365]: missing privilege "file_dac_write"

(euid = 130, syscall = 224) needed at ufs_direnter_cm+0x27c

touch: /etc/acct/yearly cannot create

2. Determine which system call is failing by finding the syscall number in the
/etc/name_to_sysnum file.

% grep 224 /etc/name_to_sysnum

creat64 224

Using the truss Command to Examine Privilege Use

The truss command can debug privilege use in a regular shell. For example, the
following command debugs the failing touch process:

% truss -t creat touch /etc/acct/yearly
creat64("/etc/acct/yearly", 0666)

Err#13 EACCES [file_dac_write]

touch: /etc/acct/yearly cannot create

Example 11–2

Before You
Begin

Steps

Example 11–3

242 System Administration Guide: Security Services • January 2005

The extended /proc interfaces report the missing privilege after the error code in
truss output.

Using the ppriv Command to Examine Privilege Use in a Profile
Shell
The ppriv command can debug privilege use in a profile shell. If you assign a rights
profile to a user, and the rights profile includes commands with privileges, the
commands must be typed in a profile shell. When the privileged commands are typed
in a regular shell, the commands do not execute with privilege.

In this example, the jdoe user can assume the role objadmin. The objadmin role
includes the Object Access Management rights profile. This rights profile allows the
objadmin role to change permissions on files that objadmin does not own.

In the following excerpt, jdoe fails to change the permissions on the
useful.script file:

jdoe% ls -l useful.script
-rw-r--r-- 1 aloe staff 2303 Mar 11 05:29 useful.script
jdoe% chown objadmin useful.script
chown: useful.script: Not owner
jdoe% ppriv -eD chown objadmin useful.script
chown[11444]: missing privilege "file_chown"

(euid = 130, syscall = 16) needed at ufs_setattr+0x258

chown: useful.script: Not owner

When jdoe assumes the objadmin role, the permissions on the file are changed:

jdoe% su objadmin
Password: <Type objadmin password>
$ ls -l useful.script
-rw-r--r-- 1 aloe staff 2303 Mar 11 05:29 useful.script
$ chown objadmin useful.script
$ ls -l useful.script
-rw-r--r-- 1 objadmin staff 2303 Mar 11 05:29 useful.script
$ chgrp admin useful.script
$ ls -l objadmin.script

-rw-r--r-- 1 objadmin admin 2303 Mar 11 05:31 useful.script

Changing a File Owned by the root User
This example illustrates the protections against privilege escalation. For a discussion,
see “Prevention of Privilege Escalation” on page 258. The file is owned by the root
user. The less powerful role, objadmin role needs all privileges to change the file’s
ownership, so the operation fails.

jdoe% su objadmin
Password: <Type objadmin password>
$ cd /etc; ls -l system
-rw-r--r-- 1 root sys 1883 Mar 20 14:04 system
$ chown objadmin system

Example 11–4

Example 11–5

Chapter 11 • Privileges (Tasks) 243

chown: system: Not owner
$ ppriv -eD chown objadmin system
chown[11481]: missing privilege "ALL"

(euid = 101, syscall = 16) needed at ufs_setattr+0x258

chown: system: Not owner

� How to Add Privileges to a Command
You add privileges to a command when you are adding the command to a rights
profile. The privileges enable the role that includes the rights profile to run the
administrative command, while not gaining any other superuser capabilities.

The command or program must be privilege-aware. For a fuller discussion, see “How
Processes Get Privileges” on page 191.

1. Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information
about roles, see “Configuring RBAC (Task Map)” on page 196.

2. Open the Solaris Management Console GUI.

For instructions, see “How to Assume a Role in the Solaris Management Console”
on page 211.

3. Use the Rights tool to update an appropriate profile.

Select the command to include. For each included command, add the privileges
that the command requires.

Caution – When you include commands in a rights profile and add privileges to the
commands, the commands execute with those privileges when the commands are
run in a profile shell.

The order of profiles is important. The profile shell executes a command or action
with the security attributes that are specified in the earliest profile in the account’s
list of profiles. For example, if the chgrp command is in the Object Access
Management rights profile with privileges, and Object Access Management is the
first profile in which the chgrp command is found, then the chgrp command
executes with the privileges specified in the Object Access Management profile.

� How to Assign Privileges to a User or Role
You might trust some users with a particular privilege all the time. Very specific
privileges that affect a small part of the system are good candidates for assigning to a
user. For a discussion of the implications of directly assigned privileges, see “Security
Considerations When Directly Assigning Security Attributes” on page 185.

Before You
Begin

Steps

244 System Administration Guide: Security Services • January 2005

The following procedure enables user jdoe to use high resolution timers.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Add the privilege that affects high resolution times to the user’s initial
inheritable set of privileges.

$ usermod -K defaultpriv=basic,proc_clock_highres jdoe

3. Read the resulting user_attr entry.

$ grep jdoe /etc/user_attr

jdoe::::type=normal;defaultpriv=basic,proc_clock_highres

Creating a Role With Privileges to Configure System Time

In this example, a role is created whose only task is to handle time on the system.

$ /usr/sadm/bin/smrole -D nisplus:/examplehost/example.domain \
-r primaryadm -l <Type primaryadm password> \
add -- -n clockmgr \
-c "Role that sets system time" \
-F "Clock Manager" \
-s /bin/pfksh \
-u 108 \
-P <Type clockmgr password> \
-K defaultpriv=basic,proc_priocntl,sys_cpu_config,

proc_clock_highres,sys_time

The -K line is wrapped for display purposes.

If the role was created locally, the user_attr entry for the role would appear similar
to the following:

clockmgr:::Role that sets system time:
type=role;defaultpriv=basic,proc_priocntl,sys_cpu_config,

proc_clock_highres,sys_time

� How to Limit a User’s or Role’s Privileges
You can limit the privileges that are available to a user or role by reducing the basic
set, or by reducing the limit set. You should have good reason to limit the user’s
privileges in this way, because such limitations can have unintended side effects.

Steps

Example 11–6

Chapter 11 • Privileges (Tasks) 245

Caution – You should thoroughly test any user’s capabilities where the basic set or the
limit set has been modified for a user.

� When the basic set is less than the default, users can be prevented from using the
system.

� When the limit set is less than all privileges, processes that need to run with an
effective UID=0 might fail.

1. Determine the privileges in a user’s basic set and limit set.

For the procedure, see “How to Determine the Privileges on a Process” on page
241.

2. (Optional) Remove one of the privileges from the basic set.

$ usermod -K defaultpriv=basic,!priv-name username

By removing the proc_session privilege, you prevent the user from examining
any processes outside the user’s current session. By removing the file_link_any
privilege, you prevent the user from making hard links to files that are not owned
by the user.

Caution – Do not remove the proc_fork or the proc_exec privilege. Without
these privileges, the user would not be able to use the system. In fact, these two
privileges are only reasonably removed from daemons that should not fork() or
exec() other processes.

3. (Optional) Remove one of the privileges from the limit set.

$ usermod -K limitpriv=all,!priv-name username

4. Test the capabilities of username.

Log in as username and try to perform the tasks that username must perform on the
system.

Removing Privileges From a User’s Limit Set

In the following example, all sessions that originate from jdoe’s initial login are
prevented from using the sys_linkdir privilege. That is, the user cannot make hard
links to directories, nor can the user unlink directories, even after the user runs the su
command.

$ usermod -K limitpriv=all,!sys_linkdir jdoe
$ grep jdoe /etc/user_attr

jdoe::::type=normal;defaultpriv=basic;limitpriv=all,!sys_linkdir

Steps

Example 11–7

246 System Administration Guide: Security Services • January 2005

Removing Privileges From a User’s Basic Set
In the following example, all sessions that originate from jdoe’s initial login are
prevented from using the proc_session privilege. That is, the user cannot examine
any processes outside the user’s session, even after the user runs the su command.

$ usermod -K defaultpriv=basic,!proc_session jdoe

$ grep jdoe /etc/user_attr

jdoe::::type=normal;defaultpriv=basic,!proc_session;limitpriv=all

� How to Run a Shell Script With Privileged
Commands

Note – When you create a shell script that runs commands with inherited privileges,
the appropriate rights profile must contain the commands with privileges assigned to
them.

1. Start the script with /bin/pfsh, or any other profile shell, on the first line.

#!/bin/pfsh

Copyright (c) 2003 by Sun Microsystems, Inc.

2. Determine the privileges that the commands in the script need.

% ppriv -eD script-full-path

3. Open the Solaris Management Console GUI.
For instructions, see “How to Assume a Role in the Solaris Management Console”
on page 211. Choose a role, such as Primary Administrator, that can create a rights
profile.

4. Use the Rights tool to create or update an appropriate profile.
Select the script, and include in the rights profile each of the commands in the shell
script that need privileges to run. For each included command, add the privileges
that the command requires.

Caution – The order of rights profiles is important. The profile shell executes the
earliest instance of a command in the list of profiles. For example, if the chgrp
command is in the Object Access Management rights profile, and Object Access
Management is the first profile in which the chgrp command is found, then the
chgrp command executes with the privileges that are specified in the Object
Access Management profile.

5. Add the rights profile to a role and assign the role to a user.

Example 11–8

Steps

Chapter 11 • Privileges (Tasks) 247

To execute the profile, the user assumes the role and runs the script in the role’s
profile shell.

Determining Your Privileges (Task Map)
The following task map points to procedures for using the privileges that have been
assigned to you.

Task Description For Instructions

View your privileges as a user
in any shell

Shows the privileges that have been directly
assigned to you. All of your processes run
with these privileges.

“How to Determine the
Privileges That You Have Been
Directly Assigned” on page 248

Determine which commands
you can run with privilege

When privileges are assigned to executables in
a rights profile, the executable must be typed
in a profile shell.

“How to Determine the
Privileged Commands That You
Can Run” on page 250

Determine which commands
a role can run with privileges

Assumes the role to determine which
commands the role can run with privileges.

“How to Determine the
Privileged Commands That a
Role Can Run” on page 251

Determining Your Assigned Privileges
When a user is directly assigned privileges, the privileges are in effect in every shell.
When a user is not directly assigned privileges, then the user must open a profile shell.
For example, when commands with assigned privileges are in a rights profile that is in
the user’s list of rights profiles, then the user must execute the command in a profile
shell.

� How to Determine the Privileges That You Have
Been Directly Assigned
The following procedure shows how to determine if you have been directly assigned
privileges.

248 System Administration Guide: Security Services • January 2005

Caution – Inappropriate use of directly assigned privileges can result in unintentional
breaches of security. For a discussion, see “Security Considerations When Directly
Assigning Security Attributes” on page 185.

1. List the privileges that your processes can use.

See “How to Determine the Privileges on a Process” on page 241 for the procedure.

2. Invoke actions and run commands in any shell.

The privileges that are listed in the effective set are in effect throughout your
session. If you have been directly assigned privileges in addition to the basic set,
the privileges are listed in the effective set.

Determining Your Directly-Assigned Privileges
If you have been directly assigned privileges, then your basic set contains more than
the default basic set. In this example, the user always has access to the
proc_clock_highres privilege.

% /usr/ucb/whoami
jdoe
% ppriv -v $$
1800: pfksh
flags = <none>

E: file_link_any,...,proc_clock_highres,proc_session
I: file_link_any,...,proc_clock_highres,proc_session
P: file_link_any,...,proc_clock_highres,proc_session
L: cpc_cpu,dtrace_kernel,dtrace_proc,dtrace_user,...,sys_time

% ppriv -vl proc_clock_highres

Allows a process to use high resolution timers.

Determining a Role’s Directly-Assigned Privileges
Roles use an administrative shell, or profile shell. Users who assume a role can use the
role’s shell to list the privileges that have been directly assigned to the role. In the
following example, the role realtime has been directly assigned privileges to handle
date and time programs.

% su realtime
Password: <Type realtime password>
$ /usr/ucb/whoami
realtime
$ ppriv -v $$
1600: pfksh
flags = <none>

E: file_link_any,...,proc_clock_highres,proc_session,sys_time
I: file_link_any,...,proc_clock_highres,proc_session,sys_time
P: file_link_any,...,proc_clock_highres,proc_session,sys_time

L: cpc_cpu,dtrace_kernel,dtrace_proc,dtrace_user,...,sys_time

Steps

Example 11–9

Example
11–10

Chapter 11 • Privileges (Tasks) 249

� How to Determine the Privileged Commands That
You Can Run
When a user is not directly assigned privileges, then the user gets access to privileged
commands through a rights profile. Commands in a rights profile must be executed in
a profile shell.

The user or role who authenticates to the Solaris Management Console must have the
solaris.admin.usermgr.read authorization. The Basic Solaris User rights profile
includes this authorization.

1. Determine the rights profiles that you have been assigned.

$ /usr/sadm/bin/smuser list -- -n username -l
Authenticating as user: admin
... Please enter a string value for: password ::
...
User name: username
User ID (UID): 130
Primary group: staff
Secondary groups:
Comment: object mgt jobs
Login Shell: /bin/sh
Home dir server: system
Home directory: /export/home/username
AutoHome setup: True
Mail server: system
Rights: Object Access Management

Assigned Roles:

2. Locate the line that begins with “Rights:”.

The “Rights” line lists the names of the rights profiles that have been directly
assigned to you.

3. Find the names of the rights profiles in the exec_attr database.

$ cd /etc/security
$ grep "Object Access Management" exec_attr
Object Access Management:solaris:cmd:::/usr/bin/chgrp:privs=file_chown
Object Access Management:solaris:cmd:::/usr/bin/chown:privs=file_chown
Object Access Management:suser:cmd:::/usr/bin/chgrp:euid=0
Object Access Management:suser:cmd:::/usr/bin/chmod:euid=0

...

The commands with added privileges are listed at the end of solaris policy
entries.

4. Type the commands that require privileges in a profile shell.

Before You
Begin

Steps

250 System Administration Guide: Security Services • January 2005

When the commands are typed in a regular shell, the commands do not run with
privilege, and do not succeed.

% pfsh

$

Running Privileged Commands in a Profile Shell
In the following example, the user jdoe cannot change the group permissions on a file
from his regular shell. However, jdoe can change the permissions when typing the
command in a profile shell.

% whoami
jdoe
% ls -l useful.script
-rwxr-xr-- 1 nodoe eng 262 Apr 2 10:52 useful.script
chgrp staff useful.script
chgrp: useful.script: Not owner
% pfksh
$ /usr/ucb/whoami
jdoe
$ chgrp staff useful.script
$ chown jdoe useful.script
$ ls -l useful.script

-rwxr-xr-- 1 jdoe staff 262 Apr 2 10:53 useful.script

� How to Determine the Privileged Commands That
a Role Can Run
A role gets access to privileged commands through a rights profile that contains
commands with assigned privileges. The most secure way to provide a user with
access to privileged commands is to assign a role to them. After assuming the role, the
user can execute all the privileged commands that are included in the rights profiles
for that role.

The user or role who authenticates to the Solaris Management Console must have the
solaris.admin.usermgr.read authorization. The Basic Solaris User rights profile
includes this authorization.

1. Determine the roles that you can assume.

$ /usr/sadm/bin/smuser list -- -n username -l
Authenticating as user: primadmin
...
User name: username
User ID (UID): 110
Primary group: staff
Secondary groups:

Example
11–11

Before You
Begin

Steps

Chapter 11 • Privileges (Tasks) 251

Comment: Has admin roles
Login Shell: /bin/sh
...
Rights:

Assigned Roles: primadmin, admin

2. Locate the line that begins with “Assigned Roles:”.

The “Assigned Roles” line lists the roles that you can assume.

3. Determine the rights profiles that are included in one of your roles.

$ /usr/sadm/bin/smuser list -- -n admin -l
Authenticating as user: primadmin
...
User name: admin
User ID (UID): 101
Primary group: sysadmin
Secondary groups:
Comment: system administrator
Login Shell: /bin/pfksh
...
Rights: System Administrator

Assigned Roles:

4. Locate the names of the rights profiles for the role in the “Rights:” line.

5. Find the rights profiles in the prof_attr database.

Because the System Administrator profile is a collection of profiles, you need to list
the profiles in the System Administrator profile.

$ cd /etc/security
$ grep "System Administrator" prof_attr
System Administrator:::Can perform most non-security administrative
tasks:profiles=Audit Review,Printer Management,Cron Management,
Device Management,File System Management,Mail Management,Maintenance
and Repair,Media Backup,Media Restore,Name Service Management,Network
Management,Object Access Management,Process Management,Software

Installation,User Management,All;help=RtSysAdmin.html

6. For each rights profile, find the rights profiles in the exec_attr database.

For example, the Network Management profile is a supplementary profile of the
System Administrator profile. The Network Management profile includes a
number of privileged commands.

$ cd /etc/security
$ grep "Network Management" exec_attr
Network Management:solaris:cmd:::/usr/sbin/ifconfig:privs=sys_net_config
Network Management:solaris:cmd:::/usr/sbin/route:privs=sys_net_config

...

The commands and their assigned privileges are the final two fields of solaris
policy entries. You can run these commands in the profile shell of your role.

252 System Administration Guide: Security Services • January 2005

Running the Privileged Commands in Your Role

When a user assumes a role, the shell becomes a profile shell. Therefore, the
commands are executed with the privileges that were assigned to the commands. In
the following example, the admin role can change the permissions on the
useful.script file.

% whoami
jdoe
% ls -l useful.script
-rwxr-xr-- 1 elsee eng 262 Apr 2 10:52 useful.script
chgrp admin useful.script
chgrp: useful.script: Not owner
% su admin
Password: <Type admin password>
$ /usr/ucb/whoami
admin
$ chgrp admin useful.script
$ chown admin useful.script
$ ls -l useful.script

-rwxr-xr-- 1 admin admin 262 Apr 2 10:53 useful.script

Example
11–12

Chapter 11 • Privileges (Tasks) 253

254 System Administration Guide: Security Services • January 2005

CHAPTER 12

Privileges (Reference)

The following is a list of the reference information in this chapter:

� “Administrative Commands for Handling Privileges” on page 255
� “Files With Privilege Information” on page 256
� “Privileges and Auditing” on page 257
� “Prevention of Privilege Escalation” on page 258
� “Legacy Applications and the Privilege Model” on page 259

To use privileges, see Chapter 11. For overview information, see “Privileges
(Overview)” on page 186.

Administrative Commands for Handling
Privileges
The following table lists the commands that are available to handle privileges.

TABLE 12–1 Commands for Handling Privilege

Purpose Command Man Page

Examine process privileges ppriv -v pid ppriv(1)

Set process privileges ppriv -s spec

List the privileges on the system ppriv -l

List a privilege and its description ppriv -lv priv

Debug privilege failure ppriv -eD failed-operation

255

TABLE 12–1 Commands for Handling Privilege (Continued)
Purpose Command Man Page

Assign privileges to a new local user useradd useradd(1M)

Add privileges to an existing local
user

usermod usermod(1M)

Assign privileges to a user in a name
service

smuser smuser(1M)

Assign privileges to a new local role roleadd roleadd(1M)

Add privileges to an existing local
role

rolemod rolemod(1M)

Assign privileges to a role in a name
service

smrole smrole(1M)

View device policy getdevpolicy getdevpolicy(1M)

Set device policy devfsadm devfsadm(1M)

Update device policy on open devices update_drv -p policy driver update_drv(1M)

Add device policy to a device add_drv -p policy driver add_drv(1M)

The Solaris Management Console GUI is the preferred tool for assigning privileges to
commands, users, and roles. For more information, see “How to Assume a Role in the
Solaris Management Console” on page 211.

Files With Privilege Information
The following files contain information about privileges.

TABLE 12–2 Files That Contain Privilege Information

File and Man Page Keyword Description

/etc/security/policy.conf

policy.conf(4)

PRIV_DEFAULT Inheritable set of privileges
for the system

PRIV_LIMIT Limit set of privileges for the
system

256 System Administration Guide: Security Services • January 2005

TABLE 12–2 Files That Contain Privilege Information (Continued)
File and Man Page Keyword Description

/etc/user_attr

user_attr(4)

defaultpriv keyword in user or role’s
entry

Value is usually set in the Solaris
Management Console GUI

Inheritable set of privileges
for a user or role

limitpriv keyword in user or role’s
entry

Value is usually set in the Solaris
Management Console GUI

Limit set of privileges for a
user or role

/etc/security/exec_attr

exec_attr(4)

privs keyword in the profile’s entry for
the command

Policy for the command must be solaris

List of privileges that are
assigned to a command in a
rights profile

syslog.conf

syslog.conf(4)

System log file for debug messages

Path set in priv.debug entry

Privilege debugging log

Note – Do not edit the exec_attr and user_attr databases directly. To administer
privileges, use the Solaris Management Console, or commands such as smuser. For
more information, see the smc(1M) and the smuser(1M) man pages. For procedures,
see “Managing Privileges (Task Map)” on page 240.

Privileges and Auditing
Privilege use can be audited. When a process uses a privilege, the use of privilege is
recorded in the audit trail. The privileges are recorded in their textual representation.
The following audit events record use of privilege:

� AUE_SETPPRIV audit event – The event generates an audit record when a
privilege set is changed. The AUE_SETPPRIV audit event is in the pm class.

� AUE_MODALLOCPRIV audit event – The audit event generates an audit record
when a privilege is added from outside the kernel. The AUE_MODALLOCPRIV audit
event is in the ad class.

� AUE_MODDEVPLCY audit event – The audit event generates an audit record when
the device policy is changed. The AUE_MODDEVPLCY audit event is in the ad class.

� AUE_prof_cmd audit event – The audit event generates an audit record when a
command is executed in a profile shell. The AUE_prof_cmd audit event is in the
as and ua audit classes.

Chapter 12 • Privileges (Reference) 257

The successful use of privileges that are in the basic set is not audited. The attempt to
use a basic privilege that has been removed from a user’s basic set is audited.

Prevention of Privilege Escalation
The Solaris kernel prevents privilege escalation. Privilege escalation is when a privilege
enables a process to do more than the process should be able to do. To prevent a
process from gaining more privileges than the process should have, certain system
modifications require the full set of privileges. For example, a file or process that is
owned by root (UID=0) can only be changed by a process with the full set of
privileges. The root user does not require privileges to change a file that root owns.
However, a non-root user must have all privileges in order to change a file that is
owned by root.

Similarly, operations that provide access to devices require all privileges in the
effective set.

The file_chown_self and proc_owner privileges are subject to privilege
escalation. The file_chown_self privilege allows a process to give away its files.
The proc_owner privilege allows a process to inspect processes that the process does
not own.

The file_chown_self privilege is limited by the rstchown system variable. When
the rstchown variable is set to zero, the file_chown_self privilege is removed
from the initial inheritable set of the system and of all users. For more information on
the rstchown system variable, see the chown(1) man page.

The file_chown_self privilege is most safely assigned to a particular command,
placed in a profile, and assigned to a role for use in a profile shell.

The proc_owner privilege is not sufficient to switch a process UID to 0. To switch a
process from any UID to UID=0 requires all privileges. Because the proc_owner
privilege gives unrestricted read access to all files on the system, the privilege is most
safely assigned to a particular command, placed in a profile, and assigned to a role for
use in a profile shell.

Caution – A user’s account can be modified to include the file_chown_self
privilege or the proc_owner privilege in the user’s initial inheritable set. You should
have overriding security reasons for placing such powerful privileges in the
inheritable set of privileges for any user, role, or system.

For details of how privilege escalation is prevented for devices, see “Privileges and
Devices” on page 193.

258 System Administration Guide: Security Services • January 2005

Legacy Applications and the Privilege
Model
To accommodate legacy applications, the implementation of privileges works with
both the superuser and the privilege models. The kernel automatically tracks the
PRIV_AWARE flag, which indicates that a program has been designed to work with
privileges. Consider a child process that is not aware of privileges. Any privileges that
were inherited from the parent process are available in the child’s permitted and
effective sets. If the child process sets a UID to 0, the child process might not have full
superuser capabilities. The process’s effective and permitted sets are restricted to those
privileges in the child’s limit set. Thus, the limit set of a privilege-aware process
restricts the root privileges of child processes that are not aware of privileges.

Chapter 12 • Privileges (Reference) 259

260 System Administration Guide: Security Services • January 2005

PART IV Solaris Cryptographic Services

This section describes the centralized cryptographic services that the Solaris OS
provides.

261

262 System Administration Guide: Security Services • January 2005

CHAPTER 13

Solaris Cryptographic Framework
(Overview)

This chapter describes the Solaris cryptographic framework. The following is a list of
the information in this chapter.

� “Solaris Cryptographic Framework” on page 263
� “Terminology in the Solaris Cryptographic Framework” on page 264
� “Scope of the Solaris Cryptographic Framework” on page 265
� “Administrative Commands in the Solaris Cryptographic Framework” on page 266
� “User-Level Commands in the Solaris Cryptographic Framework” on page 266
� “Plugins to the Solaris Cryptographic Framework” on page 267
� “Cryptographic Services and Zones” on page 268

To administer and use the Solaris cryptographic framework, see Chapter 14.

Solaris Cryptographic Framework
The Solaris cryptographic framework provides a common store of algorithms and
PKCS #11 libraries to handle cryptographic requirements. The PKCS #11 libraries are
implemented according to the following standard: RSA Security Inc. PKCS #11
Cryptographic Token Interface (Cryptoki).

At the kernel level, the framework currently handles cryptographic requirements for
Kerberos and IPsec. User-level consumers include libsasl and IKE.

Export law in the United States requires that the use of open cryptographic interfaces
be restricted. The Solaris cryptographic framework satisfies the current law by
requiring that kernel cryptographic providers and PKCS #11 cryptographic providers
be signed. For further discussion, see “Binary Signatures for Third-Party Software”
on page 267.

263

The framework enables providers of cryptographic services to have their services used
by many consumers in the Solaris Operating System. Another name for providers is
plugins. The framework allows three types of plugins:

� User-level plugins – Shared objects that provide services by using PKCS #11
libraries, such as pkcs11_softtoken.so.1.

� Kernel-level plugins – Kernel modules that provide implementations of
cryptographic algorithms in software, such as AES.

Many of the algorithms in the framework are optimized for x86 with the SSE2
instruction set and for SPARC hardware.

� Hardware plugins – Device drivers and their associated hardware accelerators. A
hardware accelerator offloads expensive cryptographic functions from the
operating system. The Sun Crypto Accelerator 1000 board is one example.

The framework implements a standard interface, the PKCS #11, v2.11 library, for
user-level providers. The library can be used by third-party applications to reach
providers. Third parties can also add signed libraries, signed kernel algorithm
modules, and signed device drivers to the framework. These plugins are added when
the pkgadd utility installs the third-party software. For a diagram of the major
components of the framework, see Chapter 8, “Introduction to the Solaris
Cryptographic Framework,” in Solaris Security for Developers Guide.

Terminology in the Solaris
Cryptographic Framework
The following list of definitions and examples is useful when working with the
cryptographic framework.

� Algorithms – Cryptographic algorithms. These are established, recursive
computational procedures that encrypt or hash input. Encryption algorithms can
be symmetric or asymmetric. Symmetric algorithms use the same key for
encryption and decryption. Asymmetric algorithms, which are used in public-key
cryptography, require two keys. Hashing functions are also algorithms.

Examples of algorithms include:

� Symmetric algorithms, such as AES and ARCFOUR
� Asymmetric algorithms, such as Diffie-Hellman and RSA
� Hashing functions, such as MD5

� Consumers – Are users of the cryptographic services that come from providers.
Consumers can be applications, end users, or kernel operations.

Examples of consumers include:

� Applications, such as IKE

264 System Administration Guide: Security Services • January 2005

� End users, such as an ordinary user who runs the encrypt command
� Kernel operations, such as IPsec

� Mechanism – Is the application of a mode of an algorithm for a particular purpose.

For example, a DES mechanism that is applied to authentication, such as
CKM_DES_MAC, is a separate mechanism from a DES mechanism that is applied
to encryption, CKM_DES_CBC_PAD.

� Mode – Is a version of a cryptographic algorithm. For example, CBC (Cipher Block
Chaining) is a different mode from ECB (Electronic Code Book). The AES algorithm
has two modes, CKM_AES_ECB and CKM_AES_CBC.

� Policy – Is the choice, by an administrator, of which mechanisms to make available
for use. By default, all providers and all mechanisms are available for use. The
disabling of any mechanism would be an application of policy. The enabling of a
disabled mechanism would also be an application of policy.

� Providers – Are cryptographic services that consumers use. Providers plug in to
the framework, so are also called plugins.

Examples of providers include:

� PKCS #11 libraries, such as pkcs11_softtoken.so

� Modules of cryptographic algorithms, such as aes and arcfour

� Device drivers and their associated hardware accelerators, such as the dca/0
accelerator

Scope of the Solaris Cryptographic
Framework
The framework provides commands for administrators, for users, and for developers
who supply providers:

� Administrative commands – The cryptoadm command provides a list
subcommand to list the available providers and their capabilities. Ordinary users
can run the cryptoadm list and the cryptoadm --help commands.

All other cryptoadm subcommands require you to assume a role that includes the
Crypto Management rights profile, or to become superuser. Subcommands such as
disable, install, and uninstall are available for administering the
framework.

The svcadm command is used to manage the kcfd daemon, and to refresh
cryptographic policy in the kernel.

� User-level commands – The digest and mac commands provide file integrity
services. The encrypt and decrypt commands protect files from eavesdropping.

Chapter 13 • Solaris Cryptographic Framework (Overview) 265

� Binary signatures for third-party providers – The elfsign command enables
third parties to sign binaries for use within the framework. Binaries that can be
added to the framework are PKCS #11 libraries, kernel algorithm modules, and
hardware device drivers. To use the elfsign command, see Appendix F,
“Packaging and Signing Cryptographic Providers,” in Solaris Security for Developers
Guide.

Administrative Commands in the Solaris
Cryptographic Framework
The cryptoadm command administers a running cryptographic framework. The
command is part of the Crypto Management rights profile. This profile can be
assigned to a role for secure administration of the cryptographic framework. The
cryptoadm command manages the following:

� Displaying cryptographic provider information
� Disabling or enabling provider mechanisms

The svcadm command is used to enable, refresh, and disable the cryptographic
services daemon, kcfd. This command is part of the Solaris service management
facility, smf. svc:/system/cryptosvcs is the service instance for the cryptographic
framework. For more information, see the smf(5) and svcadm(1M) man pages.

User-Level Commands in the Solaris
Cryptographic Framework
The Solaris cryptographic framework provides user-level commands to check the
integrity of files, to encrypt files, and to decrypt files. A separate command, elfsign,
enables providers to sign binaries for use with the framework.

� digest command – Computes a message digest for one or more files or for stdin.
A digest is useful for verifying the integrity of a file. SHA1 and MD5 are examples
of digest functions.

� mac command – Computes a message authentication code (MAC) for one or more
files or for stdin. A MAC associates data with an authenticated message. A MAC
enables a receiver to verify that the message came from the sender and that the
message has not been tampered with. The sha1_mac and md5_hmac mechanisms
can compute a MAC.

266 System Administration Guide: Security Services • January 2005

� encrypt command – Encrypts files or stdin with a symmetric cipher. The
encrypt -l command lists the algorithms that are available. Mechanisms that are
listed under a user-level library are available to the encrypt command. The
framework provides AES, DES, 3DES (Triple-DES), and ARCFOUR mechanisms for
user encryption.

� decrypt command – Decrypts files or stdin that were encrypted with the
encrypt command. The decrypt command uses the identical key and
mechanism that were used to encrypt the original file.

Binary Signatures for Third-Party Software
The elfsign command provides a means to sign providers to be used with the
Solaris cryptographic framework. Typically, this command is run by the developer of a
provider.

The elfsign command has subcommands to request a certificate from Sun and to
sign binaries. Another subcommand verifies the signature. Unsigned binaries cannot
be used by the Solaris cryptographic framework. To sign one or more providers
requires the certificate from Sun and the private key that was used to request the
certificate. For more information, see Appendix F, “Packaging and Signing
Cryptographic Providers,” in Solaris Security for Developers Guide.

Plugins to the Solaris Cryptographic
Framework
Third parties can plug their providers into the Solaris cryptographic framework. A
third-party provider can be one of the following objects:

� PKCS #11 shared library
� Loadable kernel software module, such as an encryption algorithm, MAC function,

or digest function
� Kernel device driver for a hardware accelerator

The objects from a provider must be signed with a certificate from Sun. The certificate
request is based on a private key that the third party selects, and a certificate that Sun
provides. The certificate request is sent to Sun, which registers the third party and then
issues the certificate. The third party then signs its provider object with the certificate
from Sun.

The loadable kernel software modules and the kernel device drivers for hardware
accelerators must also register with the kernel. Registration is through the Solaris
cryptographic framework SPI (service provider interface).

Chapter 13 • Solaris Cryptographic Framework (Overview) 267

To install the provider, the third party provides a package that installs the signed
object and the certificate from Sun. The package must include the certificate, and
enable the administrator to place the certificate in a secure directory. For more
information, see the Appendix F, “Packaging and Signing Cryptographic Providers,”
in Solaris Security for Developers Guide.

Cryptographic Services and Zones
The global zone and each non-global zone has its own /system/cryptosvc service.
When the cryptographic service is enabled or refreshed in the global zone, the kcfd
daemon starts in the global zone, user-level policy for the global zone is set, and
kernel policy for the system is set. When the service is enabled or refreshed in a
non-global zone, the kcfd daemon starts in the zone, and user-level policy for the
zone is set. Kernel policy was set by the global zone.

For more information on zones, see Part II, “Zones,” in System Administration Guide:
Solaris Containers—Resource Management and Solaris Zones. For more information on the
service management facility that manages persistent applications, see Chapter 9,
“Managing Services (Overview),” in System Administration Guide: Basic Administration
and the smf(5) man page.

268 System Administration Guide: Security Services • January 2005

CHAPTER 14

Solaris Cryptographic Framework
(Tasks)

This chapter describes how to use the Solaris cryptographic framework. The following
is a list of information in this chapter.

� “Using the Cryptographic Framework (Task Map)” on page 269
� “Protecting Files With the Solaris Cryptographic Framework (Task Map)” on page

270
� “Administering the Cryptographic Framework (Task Map)” on page 277

Using the Cryptographic Framework
(Task Map)
The following task map points to tasks for using the cryptographic framework.

Task Description For Instructions

Protect individual files
or sets of files

Ensures that file content has not been tampered
with. Prevents files from being read by intruders.
These procedures can be done by ordinary users.

“Protecting Files With the Solaris
Cryptographic Framework (Task
Map)” on page 270

Administer the
framework

Adds, configures, and removes software
providers. Disables and enables hardware
provider mechanisms. These procedures are
administrative procedures.

“Administering the Cryptographic
Framework (Task Map)” on page 277

Sign a provider Enables a provider to be added to the Solaris
cryptographic framework. These procedures are
developer procedures.

Appendix F, “Packaging and Signing
Cryptographic Providers,” in Solaris
Security for Developers Guide.

269

Protecting Files With the Solaris
Cryptographic Framework (Task Map)
The Solaris cryptographic framework can help you protect your files. The following
task map points to procedures for listing the available algorithms, and for protecting
your files cryptographically.

Task Description For Instructions

Generate a symmetric key Generates a random key for use with the encrypt
command or the mac command.

“How to Generate a Symmetric
Key” on page 270

Provide a checksum that
ensures the integrity of a
file

Verifies that the receiver’s copy of a file is identical
to the file that was sent.

“How to Compute a Digest of a
File” on page 272

Protect a file with a
message authentication
code (MAC)

Verifies to the receiver of your message that you
were the sender.

“How to Compute a MAC of a
File” on page 273

Encrypt a file, and then
decrypt the encrypted file

Protects the content of files by encrypting the file.
Provides the encryption parameters to decrypt the
file.

“How to Encrypt and Decrypt a
File” on page 275

Protecting Files With the Solaris
Cryptographic Framework
This section describes how to generate symmetric keys, how to create checksums for
file integrity, and how to protect files from eavesdropping. The commands in this
section can be run by ordinary users. Developers can write scripts that use these
commands.

� How to Generate a Symmetric Key
A key is needed to encrypt files, and to generate the MAC of a file. The key should be
derived from a random pool of numbers.

If your site has a random number generator, use the generator. Otherwise, you can use
the dd command with the Solaris /dev/urandom device as input. For more
information, see the dd(1M) man page.

270 System Administration Guide: Security Services • January 2005

1. Determine the key length that your algorithm requires.

a. List the available algorithms.

% encrypt -l
Algorithm Keysize: Min Max (bits)
--
aes 128 128
arcfour 8 128
des 64 64
3des 192 192

% mac -l
Algorithm Keysize: Min Max (bits)
--
des_mac 64 64
sha1_hmac 8 512

md5_hmac 8 512

b. Determine the key length in bytes to pass to the dd command.

Divide the minimum and maximum key sizes by 8. When the minimum and
maximum key sizes are different, intermediate key sizes are possible. For
example, the value 8, 16, or 64 can be passed to the dd command for the
sha1_hmac and md5_hmac functions.

2. Generate the symmetric key.

% dd if=/dev/urandom of=keyfile bs=n count=n

if=file Is the input file. For a random key, use the /dev/urandom file.

of=keyfile Is the output file that holds the generated key.

bs=n Is the key size in bytes. For the length in bytes, divide the key length
in bits by 8.

count=n Is the count of the input blocks. The number for n should be 1.

3. Store your key in a protected directory.

The key file should not be readable by anyone but the user.

% chmod 400 keyfile

Creating a Key for the AES Algorithm

In the following example, a secret key for the AES algorithm is created. The key is also
stored for later decryption. AES mechanisms use a 128-bit key. The key is expressed as
16 bytes in the dd command.

% ls -al ~/keyf
drwx------ 2 jdoe staff 512 May 3 11:32 ./
% dd if=/dev/urandom of=$HOME/keyf/05.07.aes16 bs=16 count=1

% chmod 400 ~/keyf/05.07.aes16

Steps

Example 14–1

Chapter 14 • Solaris Cryptographic Framework (Tasks) 271

Creating a Key for the DES Algorithm

In the following example, a secret key for the DES algorithm is created. The key is also
stored for later decryption. DES mechanisms use a 64-bit key. The key is expressed as 8
bytes in the dd command.

% dd if=/dev/urandom of=$HOME/keyf/05.07.des8 bs=8 count=1

% chmod 400 ~/keyf/05.07.des8

Creating a Key for the 3DES Algorithm

In the following example, a secret key for the 3DES algorithm is created. The key is
also stored for later decryption. 3DES mechanisms use a 192-bit key. The key is
expressed as 24 bytes in the dd command.

% dd if=/dev/urandom of=$HOME/keyf/05.07.3des.24 bs=24 count=1

% chmod 400 ~/keyf/05.07.3des.24

Creating a Key for the MD5 Algorithm

In the following example, a secret key for the MD5 algorithm is created. The key is
also stored for later decryption. The key is expressed as 64 bytes in the dd command.

% dd if=/dev/urandom of=$HOME/keyf/05.07.mack64 bs=64 count=1

% chmod 400 ~/keyf/05.07.mack64

� How to Compute a Digest of a File
When you compute a digest of a file, you can check to see that the file has not been
tampered with by comparing digest outputs. A digest does not alter the original file.

1. List the available digest algorithms.

% digest -l
md5

sha1

2. Compute the digest of the file and save the digest listing.

Provide an algorithm with the digest command.

% digest -v -a algorithm input-file > digest-listing

-v Displays the output in the following format:

algorithm (input-file) = digest

-a algorithm Is the algorithm to use to compute a digest of the file. Type the
algorithm as the algorithm appears in the output of Step 1.

Example 14–2

Example 14–3

Example 14–4

Steps

272 System Administration Guide: Security Services • January 2005

input-file Is the input file for the digest command.

digest-listing Is the output file for the digest command.

Computing a Digest With the MD5 Mechanism

In the following example, the digest command uses the MD5 mechanism to
compute a digest for an email attachment.

% digest -v -a md5 email.attach >> $HOME/digest.emails.05.07
% cat ~/digest.emails.05.07

md5 (email.attach) = 85c0a53d1a5cc71ea34d9ee7b1b28b01

When the -v option is not used, the digest is saved with no accompanying
information:

% digest -a md5 email.attach >> $HOME/digest.emails.05.07
% cat ~/digest.emails.05.07

85c0a53d1a5cc71ea34d9ee7b1b28b01

Computing a Digest With the SHA1 Mechanism

In the following example, the digest command uses the SHA1 mechanism to
provide a directory listing. The results are placed in a file.

% digest -v -a sha1 docs/* > $HOME/digest.docs.legal.05.07
% more ~/digest.docs.legal.05.07
sha1 (docs/legal1) = 1df50e8ad219e34f0b911e097b7b588e31f9b435
sha1 (docs/legal2) = 68efa5a636291bde8f33e046eb33508c94842c38
sha1 (docs/legal3) = 085d991238d61bd0cfa2946c183be8e32cccf6c9

sha1 (docs/legal4) = f3085eae7e2c8d008816564fdf28027d10e1d983

� How to Compute a MAC of a File
A message authentication code, or MAC, computes a digest for the file and uses a
secret key to further protect the digest. A MAC does not alter the original file.

1. List the available mechanisms.

% mac -l
Algorithm Keysize: Min Max

des_mac 64 64
sha1_hmac 8 512

md5_hmac 8 512

2. Generate a symmetric key of the appropriate length.

Example 14–5

Example 14–6

Steps

Chapter 14 • Solaris Cryptographic Framework (Tasks) 273

You have two options. You can provide a passphrase from which a key will be
generated. Or you can provide a key.

� If you provide a passphrase, you must store or remember the passphrase. If you
store the passphrase online, the passphrase file should be readable only by you.

� If you provide a key, it must be the correct size for the mechanism. For the
procedure, see “How to Generate a Symmetric Key” on page 270.

3. Create a MAC for a file.

Provide a key and use a symmetric key algorithm with the mac command.

% mac -v -a algorithm [-k keyfile] input-file

-v Displays the output in the following format:

algorithm (input-file) = mac

-a algorithm Is the algorithm to use to compute the MAC. Type the algorithm as
the algorithm appears in the output of the mac -l command.

-k keyfile Is the file that contains a key of algorithm-specified length.

input-file Is the input file for the MAC.

Computing a MAC With DES_MAC and a Passphrase

In the following example, the email attachment is authenticated with the DES_MAC
mechanism and a key that is derived from a passphrase. The MAC listing is saved to a
file. If the passphrase is stored in a file, the file should not be readable by anyone but
the user.

% mac -v -a des_mac email.attach
Enter key: <Type passphrase>
des_mac (email.attach) = dd27870a

% echo "des_mac (email.attach) = dd27870a" >> ~/desmac.daily.05.07

Computing a MAC With MD5_HMAC and a Key File

In the following example, the email attachment is authenticated with the MD5_HMAC
mechanism and a secret key. The MAC listing is saved to a file.

% mac -v -a md5_hmac -k $HOME/keyf/05.07.mack64 email.attach
md5_hmac (email.attach) = 02df6eb6c123ff25d78877eb1d55710c
% echo "md5_hmac (email.attach) = 02df6eb6c123ff25d78877eb1d55710c" \

>> ~/mac.daily.05.07

Computing a MAC With SHA1_HMAC and a Key File

In the following example, the directory manifest is authenticated with the
SHA1_HMAC mechanism and a secret key. The results are placed in a file.

Example 14–7

Example 14–8

Example 14–9

274 System Administration Guide: Security Services • January 2005

% mac -v -a sha1_hmac \
-k $HOME/keyf/05.07.mack64 docs/* > $HOME/mac.docs.legal.05.07
% more ~/mac.docs.legal.05.07
sha1_hmac (docs/legal1) = 9b31536d3b3c0c6b25d653418db8e765e17fe07a
sha1_hmac (docs/legal2) = 865af61a3002f8a457462a428cdb1a88c1b51ff5
sha1_hmac (docs/legal3) = 076c944cb2528536c9aebd3b9fbe367e07b61dc7

sha1_hmac (docs/legal4) = 7aede27602ef6e4454748cbd3821e0152e45beb4

� How to Encrypt and Decrypt a File
When you encrypt a file, the original file is not removed or changed. The output file is
encrypted.

For solutions to common errors from the encrypt command, see the section that
follows the examples.

1. Create a symmetric key of the appropriate length.

You have two options. You can provide a passphrase from which a key will be
generated. Or you can provide a key.

� If you provide a passphrase, you must store or remember the passphrase. If you
store the passphrase online, the passphrase file should be readable only by you.

� If you provide a key, it must be the correct size for the mechanism. For the
procedure, see “How to Generate a Symmetric Key” on page 270.

2. Encrypt a file.

Provide a key and use a symmetric key algorithm with the encrypt command.

% encrypt -a algorithm [-k keyfile] -i input-file -o output-file

-a algorithm Is the algorithm to use to encrypt the file. Type the algorithm as
the algorithm appears in the output of the encrypt -l
command.

-k keyfile Is the file that contains a key of algorithm-specified length. The
key length for each algorithm is listed, in bits, in the output of the
encrypt -l command.

-i input-file Is the input file that you want to encrypt. This file is left
unchanged by the command.

-o output-file Is the output file that is the encrypted form of the input file.

Steps

Chapter 14 • Solaris Cryptographic Framework (Tasks) 275

Encrypting and Decrypting With AES and a Passphrase

In the following example, a file is encrypted with the AES algorithm. The key is
generated from the passphrase. If the passphrase is stored in a file, the file should not
be readable by anyone but the user.

% encrypt -a aes -i ticket.to.ride -o ~/enc/e.ticket.to.ride

Enter key: <Type passphrase>

The input file, ticket.to.ride, still exists in its original form.

To decrypt the output file, the user uses the same passphrase and encryption
mechanism that encrypted the file.

% decrypt -a aes -i ~/enc/e.ticket.to.ride -o ~/d.ticket.to.ride

Enter key: <Type passphrase>

Encrypting and Decrypting With AES and a Key File

In the following example, a file is encrypted with the AES algorithm. AES mechanisms
use a key of 128 bits, or 16 bytes.

% encrypt -a aes -k ~/keyf/05.07.aes16 \

-i ticket.to.ride -o ~/enc/e.ticket.to.ride

The input file, ticket.to.ride, still exists in its original form.

To decrypt the output file, the user uses the same key and encryption mechanism that
encrypted the file.

% decrypt -a aes -k ~/keyf/05.07.aes16 \

-i ~/enc/e.ticket.to.ride -o ~/d.ticket.to.ride

Encrypting and Decrypting With ARCFOUR and a Key File

In the following example, a file is encrypted with the ARCFOUR algorithm. The
ARCFOUR algorithm accepts a key of 8 bits (1 byte), 64 bits (8 bytes), or 128 bits (16
bytes).

% encrypt -a arcfour -i personal.txt \

-k ~/keyf/05.07.rc4.8 -o ~/enc/e.personal.txt

To decrypt the output file, the user uses the same key and encryption mechanism that
encrypted the file.

% decrypt -a arcfour -i ~/enc/e.personal.txt \

-k ~/keyf/05.07.rc4.8 -o ~/personal.txt

Example
14–10

Example
14–11

Example
14–12

276 System Administration Guide: Security Services • January 2005

Encrypting and Decrypting With 3DES and a Key File

In the following example, a file is encrypted with the 3DES algorithm. The 3DES
algorithm requires a key of 192 bits, or 24 bytes.

% encrypt -a 3des -k ~/keyf/05.07.des24 \

-i ~/personal2.txt -o ~/enc/e.personal2.txt

To decrypt the output file, the user uses the same key and encryption mechanism that
encrypted the file.

% decrypt -a 3des -k ~/keyf/05.07.des24 \

-i ~/enc/e.personal2.txt -o ~/personal2.txt

The following messages indicate that the key that you provided to the encrypt
command is not permitted by the algorithm that you are using.

� encrypt: unable to create key for crypto operation:
CKR_ATTRIBUTE_VALUE_INVALID

� encrypt: failed to initialize crypto operation:
CKR_KEY_SIZE_RANGE

If you pass a key that does not meet the requirements of the algorithm, you must
supply a better key.

� One option is to use a passphrase. The framework then provides a key that meets
the requirements.

� The second option is to pass a key size that the algorithm accepts. For example, the
DES algorithm requires a key of 64 bits. The 3DES algorithm requires a key of 192
bits.

Administering the Cryptographic
Framework (Task Map)
The following task map points to procedures for administering software and hardware
providers in the Solaris cryptographic framework.

Task Description For Instructions

List the providers in the
Solaris cryptographic
framework

Lists the algorithms, libraries, and hardware
devices that are available for use in the
Solaris cryptographic framework.

“How to List Available Providers”
on page 278

Example
14–13

Troubleshooting

Chapter 14 • Solaris Cryptographic Framework (Tasks) 277

Task Description For Instructions

Add a software provider Adds a PKCS #11 library or a kernel
module to the Solaris cryptographic
framework. The provider must be signed.

“How to Add a Software Provider”
on page 280

Prevent the use of a
user-level mechanism

Removes a software mechanism from use.
The mechanism can be enabled again.

“How to Prevent the Use of a
User-Level Mechanism” on page 282

Temporarily disable
mechanisms from a kernel
module

Temporarily removes a mechanism from
use. Usually used for testing.

“How to Prevent the Use of a Kernel
Software Provider” on page 284

Uninstall a provider Removes a kernel software provider from
use.

Example 14–22

List available hardware
providers

Shows the attached hardware, shows the
mechanisms that the hardware provides,
and shows which mechanisms are enabled
for use.

“How to List Hardware Providers”
on page 286

Disable mechanisms from
a hardware provider

Ensures that selected mechanisms on a
hardware accelerator are not used.

“How to Disable Hardware Provider
Mechanisms and Features” on page 287

Restart or refresh
cryptographic services

Ensures that cryptographic services are
available.

“How to Refresh or Restart All
Cryptographic Services” on page 288

Administering the Cryptographic
Framework
This section describes how to administer the software providers and the hardware
providers in the Solaris cryptographic framework. Software providers and hardware
providers can be removed from use when desirable. For example, you can disable the
implementation of an algorithm from one software provider. You can then force the
system to use the algorithm from a different software provider.

� How to List Available Providers
The Solaris cryptographic framework provides algorithms for several types of
consumers:

� User-level providers provide a PKCS #11 cryptographic interface to applications
that are linked with the libpkcs11 library

� Kernel software providers provide algorithms for IPsec, Kerberos, and other Solaris
kernel components

278 System Administration Guide: Security Services • January 2005

� Kernel hardware providers provide algorithms that are available to kernel
consumers and to applications through the pkcs11_kernel library

1. List the providers in a brief format.

Only those mechanisms at the user level are available for use by ordinary users.

% cryptoadm list
user-level providers:

/usr/lib/security/$ISA/pkcs11_kernel.so
/usr/lib/security/$ISA/pkcs11_softtoken.so

kernel software providers:
des
aes
blowfish
arcfour
sha1
md5
rsa

kernel hardware providers:

dca/0

2. List the providers and their mechanisms in the Solaris cryptographic framework.

All mechanisms are listed in the following output. However, some of the listed
mechanisms might be unavailable for use. To list only the mechanisms that the
administrator has approved for use, see Example 14–15.
The output is reformatted for display purposes.

% cryptoadm list -m
user-level providers:
=====================
/usr/lib/security/$ISA/pkcs11_kernel.so: CKM_MD5,CKM_MD5_HMAC,
CKM_MD5_HMAC_GENERAL,CKM_SHA_1,CKM_SHA_1_HMAC,CKM_SHA_1_HMAC_GENERAL,
...
/usr/lib/security/$ISA/pkcs11_softtoken.so:
CKM_DES_CBC,CKM_DES_CBC_PAD,CKM_DES_ECB,CKM_DES_KEY_GEN,
CKM_DES3_CBC,CKM_DES3_CBC_PAD,CKM_DES3_ECB,CKM_DES3_KEY_GEN,
CKM_AES_CBC,CKM_AES_CBC_PAD,CKM_AES_ECB,CKM_AES_KEY_GEN,
...
kernel software providers:
==========================
des: CKM_DES_ECB,CKM_DES_CBC,CKM_DES3_ECB,CKM_DES3_CBC
aes: CKM_AES_ECB,CKM_AES_CBC
blowfish: CKM_BF_ECB,CKM_BF_CBC
arcfour: CKM_RC4
sha1: CKM_SHA_1,CKM_SHA_1_HMAC,CKM_SHA_1_HMAC_GENERAL
md5: CKM_MD5,CKM_MD5_HMAC,CKM_MD5_HMAC_GENERAL
rsa: CKM_RSA_PKCS,CKM_RSA_X_509,CKM_MD5_RSA_PKCS,CKM_SHA1_RSA_PKCS
swrand: No mechanisms presented.

kernel hardware providers:
==========================

Steps

Chapter 14 • Solaris Cryptographic Framework (Tasks) 279

dca/0: CKM_MD5,CKM_MD5_HMAC,CKM_MD5_HMAC_GENERAL,...

Finding the Existing Cryptographic Mechanisms

In the following example, all mechanisms that the user-level library,
pkcs11_softtoken, offers are listed.

% cryptoadm list -m provider=/usr/lib/security/’$ISA’/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so:
CKM_DES_CBC,CKM_DES_CBC_PAD,CKM_DES_ECB,CKM_DES_KEY_GEN,
CKM_DES3_CBC,CKM_DES3_CBC_PAD,CKM_DES3_ECB,CKM_DES3_KEY_GEN,
...

CKM_SSL3_KEY_AND_MAC_DERIVE,CKM_TLS_KEY_AND_MAC_DERIVE

Finding the Available Cryptographic Mechanisms

Policy determines which mechanisms are available for use. The administrator sets the
policy. An administrator can choose to disable mechanisms from a particular provider.
The -p option displays the list of mechanisms that are permitted by the policy that the
administrator has set.

% cryptoadm list -p
user-level providers:
=====================
/usr/lib/security/$ISA/pkcs11_kernel.so: all mechanisms are enabled.
random is enabled.
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled.
random is enabled.

kernel software providers:
==========================
des: all mechanisms are enabled.
aes: all mechanisms are enabled.
blowfish: all mechanisms are enabled.
arcfour: all mechanisms are enabled.
sha1: all mechanisms are enabled.
md5: all mechanisms are enabled.
rsa: all mechanisms are enabled.
swrand: random is enabled.

kernel hardware providers:
==========================

dca/0: all mechanisms are enabled. random is enabled.

� How to Add a Software Provider

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic

Example
14–14

Example
14–15

Steps

280 System Administration Guide: Security Services • January 2005

Administration.

2. List the software providers that are available to the system.

cryptoadm list
user-level providers:

/usr/lib/security/$ISA/pkcs11_kernel.so
/usr/lib/security/$ISA/pkcs11_softtoken.so

kernel software providers:
des
aes
blowfish
arcfour
sha1
md5
rsa
swrand

kernel hardware providers:

dca/0

3. Add the provider’s package by using the pkgadd command.

pkgadd -d /path/to/package pkginst

The package must include software that has been signed by a certificate from Sun.
To request a certificate from Sun and to sign a provider, see Appendix F,
“Packaging and Signing Cryptographic Providers,” in Solaris Security for Developers
Guide.

The package should have scripts that notify the cryptographic framework that
another provider with a set of mechanisms is available. For information on the
packaging requirements, see Appendix F, “Packaging and Signing Cryptographic
Providers,” in Solaris Security for Developers Guide.

4. Refresh the providers.

You need to refresh providers if you added a software provider, or if you added
hardware and specified policy for the hardware.

svcadm refresh svc:/system/cryptosvc

5. Locate the new provider on the list.

In this case, a new kernel software provider was installed.

cryptoadm list
...
kernel software providers:

des
aes
blowfish
arcfour
sha1
md5
rsa

Chapter 14 • Solaris Cryptographic Framework (Tasks) 281

swrand
ecc <-- added provider

...

Adding a User-Level Software Provider
In the following example, a signed PKCS #11 library is installed.

pkgadd -d /cdrom/cdrom0/SolarisNew
Answer the prompts

svcadm refresh system/cryptosvc
cryptoadm list
user-level providers:
==========================

/usr/lib/security/$ISA/pkcs11_kernel.so
/usr/lib/security/$ISA/pkcs11_softtoken.so

/opt/SUNWconn/lib/$ISA/libpkcs11.so.1 <-- added provider

Developers who are testing a library with the cryptographic framework can install the
library manually.

cryptoadm install provider=/opt/SUNWconn/lib/’$ISA’/libpkcs11.so.1

� How to Prevent the Use of a User-Level
Mechanism
If some of the cryptographic mechanisms from a library provider should not be used,
you can remove selected mechanisms. This procedure uses the DES mechanisms in the
pkcs11_softtoken library as an example.

1. Become superuser or assume a role that includes the Crypto Management rights
profile.

To create a role that includes the Crypto Management rights profile and assign the
role to a user, see Example 9–7.

2. List the mechanisms that are offered by a particular user-level software provider.

% cryptoadm list -m provider=/usr/lib/security/’$ISA’/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so:
CKM_DES_CBC,CKM_DES_CBC_PAD,CKM_DES_ECB,CKM_DES_KEY_GEN,
CKM_DES3_CBC,CKM_DES3_CBC_PAD,CKM_DES3_ECB,CKM_DES3_KEY_GEN,
CKM_AES_CBC,CKM_AES_CBC_PAD,CKM_AES_ECB,CKM_AES_KEY_GEN,

...

3. List the mechanisms that are available for use.

$ cryptoadm list -p
user-level providers:
=====================

Example
14–16

Steps

282 System Administration Guide: Security Services • January 2005

...
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled.
random is enabled.

...

4. Disable the mechanisms that should not be used.

$ cryptoadm disable provider=/usr/lib/security/’$ISA’/pkcs11_softtoken.so \

> mechanism=CKM_DES_CBC,CKM_DES_CBC_PAD,CKM_DES_ECB

5. List the mechanisms that are available for use.

$ cryptoadm list -p provider=/usr/lib/security/’$ISA’/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled,

except CKM_DES_ECB,CKM_DES_CBC_PAD,CKM_DES_CBC. random is enabled.

Enabling a User-Level Software Provider Mechanism

In the following example, a disabled DES mechanism is again made available for use.

$ cryptoadm list -m provider=/usr/lib/security/’$ISA’/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so:
CKM_DES_CBC,CKM_DES_CBC_PAD,CKM_DES_ECB,CKM_DES_KEY_GEN,
CKM_DES3_CBC,CKM_DES3_CBC_PAD,CKM_DES3_ECB,CKM_DES3_KEY_GEN,
...
$ cryptoadm list -p provider=/usr/lib/security/’$ISA’/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled,
except CKM_DES_ECB,CKM_DES_CBC_PAD,CKM_DES_CBC. random is enabled.
$ cryptoadm enable provider=/usr/lib/security/’$ISA’/pkcs11_softtoken.so \
> mechanism=CKM_DES_ECB
$ cryptoadm list -p provider=/usr/lib/security/’$ISA’/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled,

except CKM_DES_CBC_PAD,CKM_DES_CBC. random is enabled.

Enabling All User-Level Software Provider Mechanisms

In the following example, all mechanisms from the user-level library are enabled.

$ cryptoadm enable provider=/usr/lib/security/’$ISA’/pkcs11_softtoken.so all
$ cryptoadm list -p provider=/usr/lib/security/’$ISA’/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled.

random is enabled.

Permanently Removing User-Level Software Provider Availability

In the following example, the libpkcs11.so.1 library is removed.

$ cryptoadm uninstall provider=/opt/SUNWconn/lib/’$ISA’/libpkcs11.so.1
$ cryptoadm list
user-level providers:

/usr/lib/security/$ISA/pkcs11_kernel.so
/usr/lib/security/$ISA/pkcs11_softtoken.so

Example
14–17

Example
14–18

Example
14–19

Chapter 14 • Solaris Cryptographic Framework (Tasks) 283

kernel software providers:

...

� How to Prevent the Use of a Kernel Software
Provider
If the cryptographic framework provides multiple modes of a provider such as AES,
you might remove a slow mechanism from use, or a corrupted mechanism. This
procedure uses the AES algorithm as an example.

1. Become superuser or assume a role that includes the Crypto Management rights
profile.

To create a role that includes the Crypto Management rights profile and assign the
role to a user, see Example 9–7.

2. List the mechanisms that are offered by a particular kernel software provider.

$ cryptoadm list -m provider=aes

aes: CKM_AES_ECB,CKM_AES_CBC

3. List the mechanisms that are available for use.

$ cryptoadm list -p provider=aes

aes: all mechanisms are enabled.

4. Disable the mechanism that should not be used.

$ cryptoadm disable provider=aes mechanism=CKM_AES_ECB

5. List the mechanisms that are available for use.

$ cryptoadm list -p provider=aes

aes: all mechanisms are enabled, except CKM_AES_ECB.

Enabling a Kernel Software Provider Mechanism

In the following example, a disabled AES mechanism is again made available for use.

cryptoadm list -m provider=aes
aes: CKM_AES_ECB,CKM_AES_CBC
$ cryptoadm list -p provider=aes
aes: all mechanisms are enabled, except CKM_AES_ECB.
$ cryptoadm enable provider=aes mechanism=CKM_AES_ECB
$ cryptoadm list -p provider=aes

aes: all mechanisms are enabled.

Steps

Example
14–20

284 System Administration Guide: Security Services • January 2005

Temporarily Removing Kernel Software Provider Availability
In the following example, the AES provider is temporarily removed from use. The
unload subcommand is useful to prevent a provider from being loaded automatically
while the provider is being uninstalled. For example, the unload subcommand would
be used when installing a patch that affects the provider.

$ cryptoadm unload provider=aes
$ cryptoadm list
...
kernel software providers:

des
aes (inactive)
blowfish
arcfour
sha1
md5
rsa

swrand

The AES provider is unavailable until the cryptographic framework is refreshed.

$ svcadm refresh system/cryptosvc
$ cryptoadm list
...
kernel software providers:

des
aes
blowfish
arcfour
sha1
md5
rsa

swrand

If a kernel consumer is using the kernel software provider, the software is not
unloaded. An error message is displayed and the provider continues to be available
for use.

Permanently Removing Software Provider Availability
In the following example, the AES provider is removed from use. Once removed, the
AES provider does not appear in the policy listing of kernel software providers.

$ cryptoadm uninstall provider=aes
$ cryptoadm list
...
kernel software providers:

des
blowfish
arcfour
sha1
md5
rsa

Example
14–21

Example
14–22

Chapter 14 • Solaris Cryptographic Framework (Tasks) 285

swrand

If a kernel consumer is using the kernel software provider, an error message is
displayed and the provider continues to be available for use.

Reinstalling a Removed Kernel Software Provider

In the following example, the AES kernel software provider is reinstalled.

$ cryptoadm install provider=aes mechanism=CKM_AES_ECB,CKM_AES_CBC
$ cryptoadm list
...
kernel software providers:

des
aes
blowfish
arcfour
sha1
md5
rsa

swrand

� How to List Hardware Providers
Hardware providers are automatically located and loaded. For more information, see
driver.conf(4) man page.

When you add hardware that expects to be used within the Solaris cryptographic
framework, the hardware registers with the SPI in the kernel. The framework checks
that the hardware driver is signed. Specifically, the framework checks that the object
file of the driver is signed with a certificate that Sun issues.

1. List the hardware providers that are available on the system.

% cryptoadm list
...
kernel hardware providers:

dca/0

2. List the mechanisms that the board provides.

% cryptoadm list -m provider=dca/0

dca/0: CKM_MD5,CKM_MD5_HMAC,CKM_MD5_HMAC_GENERAL,...

3. List the mechanisms that are available for use on the board.

% cryptoadm list -p provider=dca/0

dca/0: all mechanisms are enabled. random is enabled.

Example
14–23

Before You
Begin

Steps

286 System Administration Guide: Security Services • January 2005

� How to Disable Hardware Provider Mechanisms
and Features
You can selectively disable mechanisms and the random number feature from a
hardware provider. To enable them again, see Example 14–24.

1. List the mechanisms and features that are available from the board.

% cryptoadm list -p provider=dca/0

dca/0: all mechanisms are enabled. random is enabled.

2. Become superuser or assume a role that includes the Crypto Management rights
profile.

To create a role that includes the Crypto Management rights profile and assign the
role to a user, see Example 9–7.

3. Choose the mechanisms or feature to disable:

� Disable selected mechanisms.

cryptoadm list -m provider=dca/0
dca/0: CKM_MD5,CKM_MD5_HMAC,CKM_MD5_HMAC_GENERAL,...
CKM_DES_ECB,CKM_DES3_ECB...
random is enabled.
cryptoadm disable provider=dca/0 mechanism=CKM_DES_ECB,CKM_DES3_ECB
cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled except CKM_DES_ECB,CKM_DES3_ECB.

random is enabled.

� Disable the random number generator.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is enabled.
cryptoadm disable provider=dca/0 random
cryptoadm list -p provider=dca/0

dca/0: all mechanisms are enabled. random is disabled.

� Disable all mechanisms. Do not disable the random number generator.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is enabled.
cryptoadm disable provider=dca/0 mechanism=all
cryptoadm list -p provider=dca/0

dca/0: all mechanisms are disabled. random is enabled.

� Disable every feature and mechanism on the hardware.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled. random is enabled.
cryptoadm disable provider=dca/0 all
cryptoadm list -p provider=dca/0

dca/0: all mechanisms are disabled. random is disabled.

Steps

Chapter 14 • Solaris Cryptographic Framework (Tasks) 287

Enabling Mechanisms and Features on a Hardware Provider

In the following examples, disabled mechanisms on a piece of hardware are selectively
enabled.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled except CKM_DES_ECB,CKM_DES3_ECB.
random is enabled.
cryptoadm enable provider=dca/0 mechanism=CKM_DES3_ECB
cryptoadm list -p provider=dca/0

dca/0: all mechanisms are enabled except CKM_DES_ECB. random is enabled.

In the following example, only the random generator is enabled.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled, except CKM_MD5,CKM_MD5_HMAC,....
random is disabled.
cryptoadm enable provider=dca/0 random
cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled, except CKM_MD5,CKM_MD5_HMAC,....

random is enabled.

In the following example, only the mechanisms are enabled. The random generator
continues to be disabled.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled, except CKM_MD5,CKM_MD5_HMAC,....
random is disabled.
cryptoadm enable provider=dca/0 mechanism=all
cryptoadm list -p provider=dca/0

dca/0: all mechanisms are enabled. random is disabled.

In the following example, every feature and mechanism on the board is enabled.

cryptoadm list -p provider=dca/0
dca/0: all mechanisms are enabled, except CKM_DES_ECB,CKM_DES3_ECB.
random is disabled.
cryptoadm enable provider=dca/0 all
cryptoadm list -p provider=dca/0

dca/0: all mechanisms are enabled. random is enabled.

� How to Refresh or Restart All Cryptographic
Services
By default, the Solaris cryptographic framework is enabled. When the kcfd daemon
fails for any reason, the service management facility can be used to restart
cryptographic services. For more information, see the smf(5) and svcadm(1M) man
pages. For the effect on zones of restarting cryptographic services, see “Cryptographic
Services and Zones” on page 268.

Example
14–24

288 System Administration Guide: Security Services • January 2005

1. Check the status of cryptographic services.

% svcs *cryptosvc*
STATE STIME FMRI

offline Dec_09 svc:/system/cryptosvc:default

2. Become superuser or assume an equivalent role to enable cryptographic services.

Roles contain authorizations and privileged commands. For more information
about roles, see “Configuring RBAC (Task Map)” on page 196.

svcadm enable svc:/system/cryptosvc

Refreshing Cryptographic Services

In the following example, cryptographic services are refreshed in the global zone.
Therefore, kernel-level cryptographic policy in every non-global zone is also refreshed.

svcadm refresh system/cryptosvc

Steps

Example
14–25

Chapter 14 • Solaris Cryptographic Framework (Tasks) 289

290 System Administration Guide: Security Services • January 2005

PART V
Authentication Services and Secure
Communication

This section discusses authentication services that can be configured on a
non-networked system, or between two systems. To configure a network of
authenticated users and systems, see Part VI.

291

292 System Administration Guide: Security Services • January 2005

CHAPTER 15

Using Authentication Services (Tasks)

This chapter provides information about how to use Secure RPC to authenticate a host
and a user across an NFS mount. The following is a list of the topics in this chapter.

� “Overview of Secure RPC” on page 293
� “Administering Secure RPC (Task Map)” on page 298

Overview of Secure RPC
Secure RPC (Remote Procedure Call) protects remote procedures with an
authentication mechanism. The Diffie-Hellman authentication mechanism
authenticates both the host and the user who is making a request for a service. The
authentication mechanism uses Data Encryption Standard (DES) encryption.
Applications that use Secure RPC include NFS and the name services, NIS and NIS+.

NFS Services and Secure RPC
NFS enables several hosts to share files over the network. Under the NFS service, a
server holds the data and resources for several clients. The clients have access to the
file systems that the server shares with the clients. Users who are logged in to the
client systems can access the file systems by mounting the file systems from the server.
To the user on the client system, it appears as if the files are local to the client. One of
the most common uses of NFS allows systems to be installed in offices, while storing
all user files in a central location. Some features of the NFS service, such as the
-nosuid option to the mount command, can be used to prohibit the opening of
devices and file systems by unauthorized users.

293

The NFS service uses Secure RPC to authenticate users who make requests over the
network. This process is known as Secure NFS. The Diffie-Hellman authentication
mechanism, AUTH_DH, uses DES encryption to ensure authorized access. The
AUTH_DH mechanism has also been called AUTH_DES. For more information, see the
following:

� To set up and administer Secure NFS, see “Administering the Secure NFS System”
in System Administration Guide: Network Services.

� To set up the NIS+ tables and enter names in the cred table, see System
Administration Guide: Naming and Directory Services (NIS+).

� For an outline of the transactions that are involved in RPC authentication, see
“Implementation of Diffie-Hellman Authentication” on page 295.

DES Encryption With Secure NFS
The Data Encryption Standard (DES) encryption functions use a 56-bit key to encrypt
data. If two credential users or principals know the same DES key, they can
communicate in private by using the key to encipher and decipher text. DES is a
relatively fast encryption mechanism. A DES chip makes the encryption even faster.
However, if the chip is not present, a software implementation is substituted.

The risk of using just the DES key is that an intruder can collect enough cipher-text
messages that were encrypted with the same key to be able to discover the key and
decipher the messages. For this reason, security systems such as Secure NFS need to
change the keys frequently.

Kerberos Authentication
Kerberos is an authentication system that was developed at MIT. Some encryption in
Kerberos is based on DES. Kerberos V4 support is no longer supplied as part of Secure
RPC. However, a client-side and server-side implementation of Kerberos V5, which
uses RPCSEC_GSS, is included with this release. For more information, see
Chapter 20.

Diffie-Hellman Authentication
The Diffie-Hellman (DH) method of authenticating a user is nontrivial for an intruder
to crack. The client and the server have their own private key, which they use with the
public key to devise a common key. The private key is also known as the secret key.
The client and the server use the common key to communicate with each other. The
common key is encrypted with an agreed-upon encryption function, such as DES.

294 System Administration Guide: Security Services • January 2005

Authentication is based on the ability of the sending system to use the common key to
encrypt the current time. Then, the receiving system can decrypt and check against its
current time. The time on the client and the server must be synchronized. For more
information, see “Managing Network Time Protocol (Tasks)” in System Administration
Guide: Network Services.

The public keys and private keys are stored in an NIS or NIS+ database. NIS stores the
keys in the publickey map. NIS+ stores the keys in the cred table. These files
contain the public key and the private key for all potential users.

The system administrator is responsible for setting up NIS maps or NIS+ tables, and
for generating a public key and a private key for each user. The private key is stored in
encrypted form with the user’s password. This process makes the private key known
only to the user.

Implementation of Diffie-Hellman Authentication
This section describes the series of transactions in a client-server session that use
Diffie-Hellman authentication (AUTH_DH).

Generating the Public Keys and Secret Keys

Sometime prior to a transaction, the administrator runs either the newkey or the
nisaddcred command to generate a public key and a secret key. Each user has a
unique public key and secret key. The public key is stored in a public database. The
secret key is stored in encrypted form in the same database. The chkey command
changes the key pair.

Running the keylogin Command

Normally, the login password is identical to the Secure RPC password. In this case, the
keylogin command is not required. However, if the passwords are different, the
users have to log in and then run the keylogin command.

The keylogin command prompts the user for a Secure RPC password. The command
then uses the password to decrypt the secret key. The keylogin command then
passes the decrypted secret key to the keyserver program. The keyserver is an RPC
service with a local instance on every computer. The keyserver saves the decrypted
secret key and waits for the user to initiate a Secure RPC transaction with a server.

If both the login password and the RPC password are the same, the login process
passes the secret key to the keyserver. If the passwords are required to be different,
then the user must always run the keylogin command. When the keylogin
command is included in the user’s environment configuration file, such as the
~/.login, ~/.cshrc, or ~/.profile file, the keylogin command runs
automatically whenever the user logs in.

Chapter 15 • Using Authentication Services (Tasks) 295

Generating the Conversation Key

When the user initiates a transaction with a server, the following occurs:

1. The keyserver randomly generates a conversation key.

2. The kernel uses the conversation key, plus other material, to encrypt the client’s
timestamp.

3. The keyserver looks up the server’s public key in the public key database. For more
information, see the publickey(4) man page.

4. The keyserver uses the client’s secret key and the server’s public key to create a
common key.

5. The keyserver encrypts the conversation key with the common key.

Initially Contacting the Server

The transmission, which includes the encrypted timestamp and the encrypted
conversation key, is then sent to the server. The transmission includes a credential and
a verifier. The credential contains three components:

� The client’s network name
� The conversation key, which is encrypted with the common key
� A “window,” which is encrypted with the conversation key

The window is the difference in time that the client says should be allowed between
the server’s clock and the client’s timestamp. If the difference between the server’s
clock and the timestamp is greater than the window, the server rejects the client’s
request. Under normal circumstances, this rejection does not happen, because the
client first synchronizes with the server before starting the RPC session.

The client’s verifier contains the following:

� The encrypted timestamp
� An encrypted verifier of the specified window, which is decremented by 1

The window verifier is needed in case somebody wants to impersonate a user. The
impersonator can write a program that, instead of filling in the encrypted fields of the
credential and verifier, just inserts random bits. The server decrypts the conversation
key into some random key. The server then uses the key to try to decrypt the window
and the timestamp. The result is random numbers. After a few thousand trials,
however, the random window/timestamp pair is likely to pass the authentication
system. The window verifier lessens the chance that a fake credential could be
authenticated.

Decrypting the Conversation Key

When the server receives the transmission from the client, the following occurs:

1. The keyserver that is local to the server looks up the client’s public key in the
public key database.

296 System Administration Guide: Security Services • January 2005

2. The keyserver uses the client’s public key and the server’s secret key to deduce the
common key. The common key is the same common key that is computed by the
client. Only the server and the client can calculate the common key because the
calculation requires knowing one of the secret keys.

3. The kernel uses the common key to decrypt the conversation key.

4. The kernel calls the keyserver to decrypt the client’s timestamp with the decrypted
conversation key.

Storing Information on the Server

After the server decrypts the client’s timestamp, the server stores four items of
information in a credential table:

� The client’s computer name
� The conversation key
� The window
� The client’s timestamp

The server stores the first three items for future use. The server stores the client’s
timestamp to protect against replays. The server accepts only timestamps that are
chronologically greater than the last timestamp seen. As a result, any replayed
transactions are guaranteed to be rejected.

Note – Implicit in these transactions is the name of the caller, who must be
authenticated in some manner. The keyserver cannot use DES authentication to
authenticate the caller because the use of DES by the keyserver would create a
deadlock. To avoid a deadlock, the keyserver stores the secret keys by user ID (UID)
and grants requests only to local root processes.

Returning the Verifier to the Client

The server returns a verifier to the client, which includes the following:

� The index ID, which the server records in its credential cache
� The client’s timestamp minus 1, which is encrypted by the conversation key

The reason for subtracting 1 from the client’s timestamp is to ensure that the
timestamp is out of date. An out-of-date timestamp cannot be reused as a client
verifier.

Authenticating the Server

The client receives the verifier and authenticates the server. The client knows that only
the server could have sent the verifier because only the server knows what timestamp
the client sent.

Chapter 15 • Using Authentication Services (Tasks) 297

Handling Transactions

With every transaction after the first transaction, the client returns the index ID to the
server in its next transaction. The client also sends another encrypted timestamp. The
server sends back the client’s timestamp minus 1, which is encrypted by the
conversation key.

Administering Secure RPC (Task Map)
The following task map points to procedures that configure Secure RPC for NIS, NIS+,
and NFS.

Task Description For Instructions

1. Start the keyserver. Ensures that keys can be created so that
users can be authenticated.

“How to Restart the Secure RPC Keyserver”
on page 299

2. Set up credentials
on an NIS+ host.

Ensures that the root user on a host can
be authenticated in an NIS+ environment.

“How to Set Up a Diffie-Hellman Key for an
NIS+ Host” on page 299

3. Give an NIS+ user
a key.

Enables a user to be authenticated in an
NIS+ environment.

“How to Set Up a Diffie-Hellman Key for an
NIS+ User” on page 300

4. Set up credentials
on an NIS host.

Ensures that the root user on a host can
be authenticated in an NIS environment.

“How to Set Up a Diffie-Hellman Key for an
NIS Host” on page 301

5. Give an NIS user a
key.

Enables a user to be authenticated in an
NIS environment.

“How to Set Up a Diffie-Hellman Key for an
NIS User” on page 302

6. Share NFS files
with authentication.

Enables an NFS server to securely protect
shared file systems using authentication.

“How to Share NFS Files With Diffie-Hellman
Authentication” on page 303

Administering Authentication With
Secure RPC
By requiring authentication for use of mounted NFS file systems, you increase the
security of your network.

298 System Administration Guide: Security Services • January 2005

� How to Restart the Secure RPC Keyserver

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Verify that the keyserv daemon is running.

svcs *keyserv*
STATE STIME FMRI

disabled Dec_14 svc:/network/rpc/keyserv

3. Enable the keyserver service if the service is not online.

svcadm enable network/rpc/keyserv

� How to Set Up a Diffie-Hellman Key for an NIS+
Host
This procedure should be done on every host in the NIS+ domain. After root has run
the keylogin command, the server has GSS-API acceptor credentials for mech_dh
and the client has GSS-API initiator credentials.

For a detailed description of NIS+ security, see System Administration Guide: Naming
and Directory Services (NIS+).

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Enable the publickey table in the name service.

Add the following line to the /etc/nsswitch.conf file:

publickey: nisplus

3. Initialize the NIS+ client.

nisinit -cH hostname

where hostname is the name of a trusted NIS+ server that contains an entry in its
tables for the client system.

4. Add the client to the cred table.

Steps

Steps

Chapter 15 • Using Authentication Services (Tasks) 299

Type the following commands:

nisaddcred local

nisaddcred des

5. Verify the setup by using the keylogin command.

If you are prompted for a password, the procedure has succeeded.

keylogin

Password:

Setting Up a New Key for root on an NIS+ Client
The following example uses the host pluto to set up earth as an NIS+ client. You
can ignore the warnings. The keylogin command is accepted, verifying that earth
is correctly set up as a secure NIS+ client.

nisinit -cH pluto
NIS Server/Client setup utility.
This system is in the example.com. directory.
Setting up NIS+ client ...
All done.
nisaddcred local
nisaddcred des
DES principal name : unix.earth@example.com
Adding new key for unix.earth@example.com (earth.example.com.)
Network password: <Type password>
Warning, password differs from login password.
Retype password: <Retype password>
keylogin
Password: <Type password>
#

� How to Set Up a Diffie-Hellman Key for an NIS+
User
This procedure should be done on every user in the NIS+ domain.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Add the user to the cred table on the root master server.

Type the following command:

nisaddcred -p unix.UID@domain-name -P username.domain-name. des

Example 15–1

Steps

300 System Administration Guide: Security Services • January 2005

Note that, in this case, the username.domain-name must end with a dot (.).

3. Verify the setup by logging in as the client and typing the keylogin command.

Setting Up a New Key for an NIS+ User

In the following example, a key for Diffie-Hellman authentication is given to the user
jdoe.

nisaddcred -p unix.1234@example.com -P jdoe.example.com. des
DES principal name : unix.1234@example.com
Adding new key for unix.1234@example.com (jdoe.example.com.)
Password: <Type password>
Retype password: <Retype password>
rlogin rootmaster -l jdoe
% keylogin
Password: <Type password>
%

� How to Set Up a Diffie-Hellman Key for an NIS
Host
This procedure should be done on every host in the NIS domain.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Enable the publickey map in the name service.

Add the following line to the /etc/nsswitch.conf file:

publickey: nis

3. Create a new key pair by using the newkey command.

newkey -h hostname

where hostname is the name of the client.

Setting Up a New Key for root on an NIS Client

In the following example, earth is set up as a secure NIS client.

newkey -h earth
Adding new key for unix.earth@example.com
New Password: <Type password>

Example 15–2

Steps

Example 15–3

Chapter 15 • Using Authentication Services (Tasks) 301

Retype password: <Retype password>
Please wait for the database to get updated...
Your new key has been successfully stored away.

#

� How to Set Up a Diffie-Hellman Key for an NIS
User
This procedure should be done for every user in the NIS domain.

Only system administrators, when logged in to the NIS master server, can generate a
new key for a user.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Create a new key for a user.

newkey -u username

where username is the name of the user. The system prompts for a password. You
can type a generic password. The private key is stored in an encrypted form by
using the generic password.

3. Tell the user to log in and type the chkey -p command.

This command allows users to re-encrypt their private keys with a password
known only to the user.

Note – The chkey command can be used to create a new key pair for a user.

Setting Up and Encrypting a New User Key in NIS

In this example, superuser sets up the key.

newkey -u jdoe
Adding new key for unix.12345@example.com
New Password: <Type password>
Retype password: <Retype password>
Please wait for the database to get updated...
Your new key has been successfully stored away.

#

Then the user jdoe re-encrypts the key with a private password.

Before You
Begin

Steps

Example 15–4

302 System Administration Guide: Security Services • January 2005

% chkey -p
Updating nis publickey database.
Reencrypting key for unix.12345@example.com
Please enter the Secure-RPC password for jdoe: <Type password>
Please enter the login password for jdoe: <Type password>
Sending key change request to centralexample...

� How to Share NFS Files With Diffie-Hellman
Authentication
This procedure protects shared file systems on an NFS server by requiring
authentication for access.

Diffie-Hellman public key authentication must be enabled on the network. To enable
authentication on the network, do one of the following:

� “How to Set Up a Diffie-Hellman Key for an NIS+ Host” on page 299
� “How to Set Up a Diffie-Hellman Key for an NIS Host” on page 301

1. Become superuser or assume a role that includes the System Management
profile.

The System Administrator role includes the System Management profile. To create
the role and assign the role to a user, see “Configuring RBAC (Task Map)” on page
196.

2. On the NFS server, share a file system with Diffie-Hellman authentication.

share -F nfs -o sec=dh /filesystem

where filesystem is the file system that is being shared.

The -o sec=dh option means that AUTH_DH authentication is now required to
access the file system.

3. On an NFS client, mount a file system with Diffie-Hellman authentication.

mount -F nfs -o sec=dh server:filesystem mount-point

server Is the name of the system that is sharing filesystem

filesystem Is the name of the file system that is being shared, such as opt

mount-point Is the name of the mount point, such as /opt

The -o sec=dh option mounts the file system with AUTH_DH authentication.

Before You
Begin

Steps

Chapter 15 • Using Authentication Services (Tasks) 303

304 System Administration Guide: Security Services • January 2005

CHAPTER 16

Using PAM

This chapter covers the Pluggable Authentication Module (PAM) framework. PAM
provides a method to “plug in” authentication services into the Solaris Operating
System (Solaris OS). PAM provides support for multiple authentication services when
accessing a system.

� “PAM (Overview)” on page 305
� “PAM (Tasks)” on page 308
� “PAM Configuration File (Reference)” on page 311

PAM (Overview)
The Pluggable Authentication Module (PAM) framework lets you “plug in” new
authentication services without changing system entry services, such as login, ftp,
and telnet. You can also use PAM to integrate UNIX login with other security
mechanisms such as Kerberos. Mechanisms for account, credential, session, and
password management can also be “plugged in” by using this framework.

Benefits of Using PAM
The PAM framework enables you to configure the use of system entry services (such
as, ftp, login, telnet, or rsh) for user authentication. Some benefits that PAM
provides are as follows:

� Flexible configuration policy

� Per-application authentication policy
� The ability to choose a default authentication mechanism
� The ability to require multiple passwords on high-security systems

305

� Ease of use for the end user

� No retyping of passwords if the passwords are the same for different
authentication services

� The ability to prompt the user for passwords for multiple authentication
services without requiring the user to type multiple commands

� The ability to pass optional options to the user authentication services

� The ability to implement a site-specific security policy without having to change
the system entry services

PAM Components
The PAM software consists of a library, various service modules, and a configuration
file. Solaris commands or daemons that take advantage of these PAM interfaces are
also included.

The following figure illustrates the relationship between the system entry applications,
the PAM library, the pam.conf file, and the PAM service modules.

ftp telnet login
Applications

PAM modules
pam_krb5.so.1 pam_dial_auth.so.1 pam_ldap.so.1

PAM library

pam.conf file

FIGURE 16–1 How PAM Works

The system entry applications, such as ftp, telnet, and login, use the PAM library
to call the configuration policy. The configuration policy is defined in the pam.conf
file. The pam.conf file defines which modules to use, and in what order the modules
are to be used with each application. Results from the modules are based on the
module responses and the configured control flags. These results are passed back
through the library to the application.

306 System Administration Guide: Security Services • January 2005

PAM Framework
The PAM framework provides a method for authenticating users with multiple
services by using stacking. Depending on the configuration, the user can be prompted
for passwords for each authentication method. The order in which the authentication
services are used is determined through the PAM configuration file.

The PAM library provides the framework to load the appropriate modules and to
manage the stacking process. The PAM library provides a generic structure to which
all of the modules can plug in. See the pam_sm(3PAM) man page for more
information.

Changes to PAM for the Solaris 10 Release
The Solaris 10 release includes the following changes to the Pluggable Authentication
Module (PAM) framework:

� The pam_authtok_check module now allows for strict password checking using
new tunable parameters in the /etc/default/passwd file. The new parameters
define:

� A list of comma separated dictionary files used for checking common dictionary
words in a password

� The minimum differences required between a new password and an old
password

� The minimum number of alphabetic or nonalphabetic characters that must be
used in a new password

� The minimum number of uppercase or lowercase letters that must be used in a
new password

� The number of allowable consecutive repeating characters

� The pam_unix_auth module implements account locking for local users. Account
locking is enabled by the LOCK_AFTER_RETRIES parameter in
/etc/security/policy.conf and the lock_after-retries key in
/etc/user_attr. See the policy.conf(4) and the user_attr(4) man pages
for more information.

� A new binding control flag has been defined. This control flag is documented in
the pam.conf(4) man page and in “PAM Control Flags” on page 312.

� The pam_unix module has been removed and replaced by a set of service modules
of equivalent or greater functionality. Many of these modules were introduced in
the Solaris 9 release. Here is a list of the replacement modules:

� pam_authtok_check
� pam_authtok_get
� pam_authtok_store
� pam_dhkeys

Chapter 16 • Using PAM 307

� pam_passwd_auth
� pam_unix_account
� pam_unix_auth
� pam_unix_cred
� pam_unix_session

� The functionality of the pam_unix_auth module has been split into two modules.
The pam_unix_auth module now verifies that the password is correct for the
user. The new pam_unix_cred module provides functions that establish user
credential information.

� Additions to the pam_krb5 module have been made to manage the Kerberos
credentials cache using the PAM framework.

� A new pam_deny module has been added. The module can be used to deny access
to services. By default, the pam_deny module is not used. For more information,
see the pam_deny(5) man page.

PAM (Tasks)
This section discusses some tasks that might be required to make the PAM framework
use a particular security policy. You should be aware of some security issues that are
associated with the PAM configuration file. For information about the security issues,
see “Planning for Your PAM Implementation” on page 309.

PAM (Task Map)

Task Description For Instructions

Plan for your PAM
installation.

Consider configuration issues and make
decisions about them before you start the
software configuration process.

“Planning for Your PAM
Implementation” on page 309

Add new PAM modules. Sometimes, site-specific modules must be
written and installed to cover requirements
that are not part of the generic software. This
procedure explains how to install these new
PAM modules.

“How to Add a PAM Module”
on page 310

Block access through
~/.rhosts.

Further increase security by preventing access
through ~/.rhosts.

“How to Prevent Rhost-Style
Access From Remote Systems
With PAM” on page 310

308 System Administration Guide: Security Services • January 2005

Task Description For Instructions

Initiate error logging. Start the logging of PAM error messages
through syslog.

“How to Log PAM Error
Reports” on page 311

Planning for Your PAM Implementation
As delivered, the pam.conf configuration file implements the standard Solaris
security policy. This policy should work in many situations. If you need to implement
a different security policy, here are the issues that you should focus on:

� Determine what your needs are, especially which PAM service modules you
should select.

� Identify the services that need special configuration options. Use other if
appropriate.

� Decide the order in which the modules should be run.

� Select the control flag for each module. See “PAM Control Flags” on page 312 for
more information about all of the control flags.

� Choose any options that are necessary for each module. The man page for each
module should list any special options.

Here are some suggestions to consider before you change the PAM configuration file:

� Use other entries for each module type so that every application does not have to
be included in /etc/pam.conf.

� Make sure to consider the security implications of the binding, sufficient, and
optional control flags.

� Review the man pages that are associated with the modules. These man pages can
help you understand how each module functions, what options are available, and
the interactions between stacked modules.

Caution – If the PAM configuration file is misconfigured or the file becomes
corrupted, no user might be able to log in. Because the sulogin command does
not use PAM, the root password would then be required to boot the machine into
single-user mode and fix the problem.

After you change the /etc/pam.conf file, review the file as much as possible
while you still have system access to correct problems. Test all the commands that
might have been affected by your changes. An example is adding a new module to
the telnet service. In this example, you would use the telnet command and
verify that your changes make the service behave as expected.

Chapter 16 • Using PAM 309

� How to Add a PAM Module
This procedure shows how to add a new PAM module. New modules can be created
to cover site-specific security policies or to support third party applications.

1. Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information
about roles, see “Configuring RBAC (Task Map)” on page 196.

2. Determine which control flags and which other options should be used.

Refer to “PAM Modules” on page 314 for information on the modules.

3. Ensure that the ownership and permissions are set so that the module file is
owned by root and the permissions are 555.

4. Edit the PAM configuration file, /etc/pam.conf, and add this module to the
appropriate services.

5. Verify that the module has been added properly.

You must test before the system is rebooted in case the configuration file is
misconfigured. Login using a direct service, such as rlogin or telnet, and run
the su command, before you reboot the system. The service might be a daemon
that is spawned only once when the system is booted. Then, you must reboot the
system before you can verify that the module has been added.

� How to Prevent Rhost-Style Access From Remote
Systems With PAM

1. Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information
about roles, see “Configuring RBAC (Task Map)” on page 196.

2. Remove all of the lines that include rhosts_auth.so.1 from the PAM
configuration file.

This step prevents the reading of the ~/.rhosts files during an rlogin session.
Therefore, this step prevents unauthenticated access to the local system from
remote systems. All rlogin access requires a password, regardless of the presence
or contents of any ~/.rhosts or /etc/hosts.equiv files.

3. Disable the rsh service.

To prevent other unauthenticated access to the ~/.rhosts files, remember to
disable the rsh service.

svcadm disable network/shell

Steps

Steps

310 System Administration Guide: Security Services • January 2005

� How to Log PAM Error Reports

1. Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information
about roles, see “Configuring RBAC (Task Map)” on page 196.

2. Configure the /etc/syslog.conf file for the level of logging that you need.

See the syslog.conf(4) for more information about the logging levels.

3. Refresh the configuration information for the syslog daemon.

svcadm refresh system/system-log

PAM Configuration File (Reference)
The PAM configuration file, pam.conf, determines the authentication service
modules to be used, and the order in which the modules are used. This file can be
modified to select authentication modules for each system entry application.

PAM Configuration File Syntax
The PAM configuration file consists of entries with the following syntax:

service-name module-type control-flag module-path module-options

service-name Is the name of the system entry service, for example, ftp, login,
telnet.

module-type Is the module type for the service. For more information, see “PAM
Module Types” on page 312.

control-flag Determines the continuation or failure behavior for the module.

module-path Specifies the path to the library object that implements the security
policy.

module-options Specifies the options that are passed to the service modules.

You can add comments to the pam.conf file by starting the line with a # (pound
sign). Use white spaces or tabs to delimit the fields.

Steps

Chapter 16 • Using PAM 311

Note – If an error is found in an entry in the PAM configuration file, a syslog error
message is generated. If the error is in an entry for a requested service, then the service
might return an error.

Service Names for PAM
The specific service names for each service should be documented in the man page for
that service. For instance the sshd(1M) man page lists all of the PAM service names
for the sshd command.

PAM Module Types
You need to understand the PAM module types because the types define the interface
to the module. Here are the types of PAM modules:

� Account modules check for password aging, account expiration, and access
restrictions. After the user’s identity is authenticated through the authentication
modules, the account modules determine if the user should be given access to the
system.

� Authentication modules provide authentication for the users. The modules also allow
for credentials to be set, refreshed, or destroyed.

� Password modules allow for changes to the user’s password.

� Session modules manage the opening and the closing of a login session. These
modules also can log activity or provide cleanup after the session is over.

PAM Control Flags
A request using a PAM service module returns one of three states:

� success – my security policy has been met
� failure – my security policy has not been met
� ignore – this request is not participating in the policy request

Each module in a stack can determine the success or failure of a request. To determine
the continuation or failure behavior for a module, you must select a control flag for
each entry in the PAM configuration file.

Continuation behavior defines if any following modules are checked. Depending on the
response from a particular module, you can decide to skip any additional modules.

312 System Administration Guide: Security Services • January 2005

Failure behavior defines how error messages are logged or reported. Failures are either
optional or required. A required failure causes that request to fail, even if other modules
succeed. An optional failure does not always cause the request to fail.

The control flags are as follows:

� binding – With this control flag, if the module is successful and no preceding
modules that are flagged as required have failed, then PAM skips the remaining
modules and returns success. If a failure is returned, PAM records a required
failure and then continues processing the stack.

The binding control flag is similar to the required control flag, except that no
additional module checking is done if the module is successful. A failure in a
module that uses this flag prevents the request from being successful, regardless of
the response of any other modules. A success in a module that uses this flag makes
the request successful if no preceding required modules failed.

� required – With this control flag, if the module is successful, PAM records a
required success and continues checking any following modules. If the module
fails, and if this failure is the first required failure, PAM saves the error message
and continues checking the stack. If this failure is not the first failure, PAM just
continues checking the stack. This flag allows for the entire sequence to be
processed, so that information that could assist an attacker is not disclosed. All the
attacker can find out is that the request failed.

The required control flag should be used when a particular module must
succeed for the request to be successful. A failure in a module that uses this flag
prevents the request from being successful, regardless of the response of any other
modules. A success in a module that uses this flag does not mean that the request is
successful. All of the responses from the other modules in the stack with
required, requisite, or binding control flags must be successful for the
request to succeed.

� requisite – With this control flag, if the module is successful, PAM records a
required success and continues checking any following modules. If the module
fails, PAM records a required failure, returns the error message of the first required
failure, and then skips any additional checking.

The requisite control flag is similar to the required control flag, except that no
additional module checking is done if the module fails. A failure in a module that
uses this flag prevents the request from being successful, regardless of the response
of any other modules. A success in a module that uses this flag does not mean that
the request is successful. All of the responses from the other modules in the stack
with required, requisite, or binding control flags must be successful for the
request to succeed.

� optional – With this control flag, if the module is successful, PAM records an
optional success and continues checking the stack. If the module fails, PAM records
an optional failure and continues checking the stack.

Chapter 16 • Using PAM 313

The optional control flag should be used when successful authentication in the
stack is adequate for a user to be authenticated. This flag should only be used if
this particular service does not need to succeed. The success or failure of the
request is determined by any required failures or successes.

If your users need to have permissions associated with a specific service to get their
work done, then you should not label the module as optional.

� sufficient – With this control flag, if the module is successful, and no preceding
modules that are flagged as required have failed, then PAM skips the remaining
modules and returns success. If the module fails, PAM records an optional failure
and continues checking the stack.

The sufficient control flag is similar to the optional control flag, except that
no additional module checking is done if the module succeeds. A success in a
module that uses this flag makes the request successful if no preceding required
modules failed. A failure in a module that uses this flag causes the request to fail if
no other modules succeeded.

More information about these control flags is provided in the following section, which
describes a generic /etc/pam.conf file.

PAM Modules
Every PAM module implements a specific function. When you set up PAM
authentication, you need to specify both the module and the module type, which
defines what the module does. More than one module type, such as auth, account,
session, or password, can be implemented by a single module.

The path of each module is determined by the instruction set that is available in the
installed Solaris release. For 32-bit modules, the path to the modules is
/usr/lib/security. For 64-bit modules, the path is /usr/lib/security/$ISA.
See the isalist(5) man page for more information.

A complete list of the Solaris PAM modules can be found by looking in
/usr/lib/security/$ISA. Each module has an associated man page which
describes the module types that apply. The man page also describes any special
options.

For security reasons, these module files must be owned by root and must not be
writable through group or other permissions. If the file is not owned by root, PAM
does not load the module.

Examples From the Generic pam.conf File
The generic /etc/pam.conf file includes the following entries:

314 System Administration Guide: Security Services • January 2005

login auth requisite pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth required pam_unix_cred.so.1
login auth required pam_unix_auth.so.1

login auth required pam_dial_auth.so.1

When the login command is run, authentication must succeed for the
pam_authtok_get, pam_dhkeys, pam_auth_cred, pam_auth_unix, and
pam_dial_auth modules. The requisite flag on the pam_authtok_get entry
means that if this module fails, no additional module checking is done. However, if
the module is successful, then the rest of the modules are checked. If authentication
for any of the modules fails, then the request for authentication also fails.

rlogin auth sufficient pam_rhosts_auth.so.1
rlogin auth requisite pam_authtok_get.so.1
rlogin auth required pam_dhkeys.so.1
rlogin auth required pam_unix_cred.so.1

rlogin auth required pam_unix_auth.so.1

For the rlogin command, the sufficient control flag indicates that authentication
through the pam_rhosts_auth module is adequate for the authentication request to
succeed. No additional checking needs to be done. Authentication through the
pam_authtok_get, pam_dhkeys, pam_auth_cred, and pam_unix_auth modules
must succeed if authentication through pam_rhosts_auth fails. A failure in the
pam_rhosts_auth module does not prevent successful authentication, although a
failure in the other modules would. Also, as in the entries for login, the requisite
control flag on the pam_authtok_get entry means that if this module fails, the
authentication request fails and no additional module checking is done.

other session required pam_unix_session.so.1

The other service name allows a default service to be set for any other commands
that are not included in the pam.conf file. The other service name simplifies
administration of the file, because many services that are using the same module can
be covered by only one entry. Also, the other service name, when used as a
“catch-all,” can ensure that each access is covered by one module.

The entry for the module-path is “root-relative.” If the file name that you specify for
module-path does not begin with a slash (/), the path /usr/lib/security/$ISA
precedes the file name. A full path name must be used for modules that are located in
other directories. The values for the module-options can be found in the man page for
each module.

Chapter 16 • Using PAM 315

316 System Administration Guide: Security Services • January 2005

CHAPTER 17

Using SASL

This chapter includes information about the Simple Authentication and Security Layer
(SASL).

� “SASL (Overview)” on page 317
� “SASL (Reference)” on page 318

SASL (Overview)
The Simple Authentication and Security Layer (SASL) is a framework that provides
authentication and optional security services to network protocols. An application
calls the SASL library, /usr/lib/libsasl.so, which provides a glue layer between
the application and the various SASL mechanisms. The mechanisms are used in the
authentication process and in providing optional security services. The version of
SASL delivered with the Solaris 10 release is derived from the Cyrus SASL with a few
changes.

SASL provides the following services:

� Loading of any plug-ins

� Determining the necessary security options from the application to aid in the
choice of a security mechanism

� Listing of plug-ins that are available to the application

� Choosing the best mechanism from a list of available mechanisms for a particular
authentication attempt

� Routing the authentication data between the application and the chosen
mechanism

� Providing information about the SASL negotiation back to the application

317

SASL (Reference)
The following section provides information about the implementation of SASL for the
Solaris 10 release.

SASL Plug-ins
SASL plug-ins provide support for security mechanisms, user-canonicalization, and
auxiliary property retrieval. By default, the dynamically loaded 32-bit plug-ins are
installed in /usr/lib/sasl, and the 64-bit plug-ins are installed in
/usr/lib/sasl/$ISA. The following security mechanism plug-ins are provided in
the Solaris 10 release:

crammd5.so.1 CRAM-MD5, which supports authentication only, no
authorization

digestmd5.so.1 DIGEST-MD5, which supports authentication, integrity, and
privacy, as well as authorization

gssapi.so.1 GSSAPI, which supports authentication, integrity, and privacy,
as well as authorization. The GSSAPI security mechanism
requires a functioning Kerberos infrastructure.

plain.so.1 PLAIN, which supports authentication and authorization.

In addition, the EXTERNAL security mechanism plug-in and the INTERNAL user
canonicalization plug-ins are built into libsasl.so.1. The EXTERNAL mechanism
supports authentication and authorization. The mechanism supports integrity and
privacy if the external security source provides it. The INTERNAL plug-in adds the
realm name if necessary to the username.

The Solaris 10 release is not supplying any auxprop plug-ins at this time. For the
CRAM-MD5 and DIGEST-MD5 mechanism plug-ins to be fully operational on the
server side, the user must provide an auxprop plug-in to retrieve clear text
passwords. The PLAIN plug-in requires additional support to verify the password.
The support for password verification can be one of the following: a callback to the
server application, an auxprop plug-in, saslauthd, or pwcheck. The salauthd
and pwcheck daemons are not provided in the Solaris releases. For better
interoperability, restrict server applications to those mechanisms that are fully
operational by using the mech_list SASL option.

318 System Administration Guide: Security Services • January 2005

SASL Environment Variable
By default, the client authentication name is set to getenv("LOGNAME"). This
variable can be reset by the client or by the plug-in.

SASL Options
The behavior of libsasl and the plug-ins can be modified on the server side by
using options that can be set in the /etc/sasl/app.conf file. The variable app is the
server-defined name for the application. The documentation for the server app should
specify the application name.

The following options are supported in the Solaris 10 release:

auto_transition Automatically transitions the user to other mechanisms
when the user does a successful plain text authentication.

auxprop_login Lists the name of auxiliary property plug-ins to use.

canon_user_plugin Selects the canon_user plug-in to use.

mech_list Lists the mechanisms that are allowed to be used by the
server application.

pwcheck_method Lists the mechanisms used to verify passwords. Currently,
auxprop is the only allowed value.

reauth_timeout Sets the length of time, in minutes, that authentication
information is cached for a fast reauthentication. This
option is used by the DIGEST-MD5 plug-in. Setting this
option to 0 disables reauthentication.

The following options are not supported in the Solaris 10 release:

plugin_list Lists available mechanisms. Not used because the option
changes the behavior of the dynamic loading of plugins.

saslauthd_path Defines the location of the saslauthd door, which is used for
communicating with the saslauthd daemon. The
saslauthd daemon is not included in the Solaris 10 release.
So, this option is also not included.

keytab Defines the location of the keytab file used by the GSSAPI
plug-in. Use the KRB5_KTNAME environment variable instead
to set the default keytab location.

The following options are options not found in Cyrus SASL. However, they have been
added for the Solaris 10 release:

Chapter 17 • Using SASL 319

use_authid Acquire the client credentials rather than use the default credentials
when creating the GSS client security context. By default, the default
client Kerberos identity is used.

log_level Sets the desired level of logging for a server.

320 System Administration Guide: Security Services • January 2005

CHAPTER 18

Using Solaris Secure Shell (Tasks)

Solaris Secure Shell enables a user to securely access a remote host over an unsecured
network. The shell provides commands for remote login and remote file transfer. The
following is a list of topics in this chapter.

� “Solaris Secure Shell (Overview)” on page 321
� “Solaris Secure Shell Enhancements in the Solaris 10 Release” on page 324
� “Configuring Solaris Secure Shell (Task Map)” on page 326
� “Using Solaris Secure Shell (Task Map)” on page 330

For reference information, see Chapter 19.

Solaris Secure Shell (Overview)
In Solaris Secure Shell, authentication is provided by the use of passwords, public
keys, or both. All network traffic is encrypted. Thus, Solaris Secure Shell prevents a
would-be intruder from being able to read an intercepted communication. Solaris
Secure Shell also prevents an adversary from spoofing the system.

Solaris Secure Shell can also be used as an on-demand virtual private network (VPN).
A VPN can forward X Window system traffic or can connect individual port numbers
between the local machines and remote machines over an encrypted network link.

With Solaris Secure Shell, you can perform these actions:

� Log in to another host securely over an unsecured network.
� Copy files securely between the two hosts.
� Run commands securely on the remote host.

Solaris Secure Shell supports two versions of the Secure Shell protocol. Version 1 is the
original version of the protocol. Version 2 is more secure, and it amends some of the
basic security design flaws of version 1. Version 1 is provided only to assist users who
are migrating to version 2. Users are strongly discouraged from using version 1.

321

Note – Hereafter in this text, v1 is used to represent version 1, and v2 is used to
represent version 2.

Solaris Secure Shell Authentication
Solaris Secure Shell provides public key and password methods for authenticating the
connection to the remote host. Public key authentication is a stronger authentication
mechanism than password authentication, because the private key never travels over
the network.

The authentication methods are tried in the following order. When the configuration
does not satisfy an authentication method, the next method is tried.

� GSS-API – Uses credentials for GSS-API mechanisms such as mech_krb5
(Kerberos V) and mech_dh (AUTH_DH) to authenticate clients and servers. For
more information on GSS-API, see “Introduction to GSS-API” in Solaris Security for
Developers Guide.

� Host-based authentication – Uses host keys and rhosts files. Uses the client’s RSA
and DSA public/private host keys to authenticate the client. Uses the rhosts files to
authorize clients to users.

� Public key authentication – Authenticates users with their RSA and DSA
public/private keys.

� Password authentication – Uses PAM to authenticate users. Keyboard
authentication method in v2 allows for arbitrary prompting by PAM. For more
information, see the SECURITY section in the sshd(1M) man page.

The following table shows the requirements for authenticating a user who is trying to
log into a remote host. The user is on the local host, the client. The remote host, the
server, is running the sshd daemon. The table shows the Solaris Secure Shell
authentication methods, the compatible protocol versions, and the host requirements.

TABLE 18–1 Authentication Methods for Solaris Secure Shell

Authentication Method
(Protocol Version) Local Host (Client) Requirements Remote Host (Server) Requirements

GSS-API (v2) Initiator credentials for the GSS mechanism. Acceptor credentials for the GSS mechanism.
For more information, see “Acquiring GSS
Credentials in Solaris Secure Shell” on page
344.

322 System Administration Guide: Security Services • January 2005

TABLE 18–1 Authentication Methods for Solaris Secure Shell (Continued)
Authentication Method
(Protocol Version) Local Host (Client) Requirements Remote Host (Server) Requirements

Host-based (v2) User account

Local host private key in
/etc/ssh/ssh_host_rsa_key or
/etc/ssh/ssh_host_dsa_key

HostbasedAuthentication yes in
/etc/ssh/ssh_config

User account

Local host public key in
/etc/ssh/known_hosts or
~/.ssh/known_hosts

HostbasedAuthentication yes in
/etc/ssh/sshd_config

IgnoreRhosts no in
/etc/ssh/sshd_config

Local host entry in /etc/shosts.equiv,
/etc/hosts.equiv, ~/.rhosts, or
~/.shosts

RSA or DSA public
key (v2)

User account

Private key in ~/.ssh/id_rsa or
~/.ssh/id_dsa

User’s public key in ~/.ssh/id_rsa.pub
or ~/.ssh/id_dsa.pub

User account

User’s public key in
~/.ssh/authorized_keys

RSA public key (v1) User account

Private key in ~/.ssh/identity

User’s public key in
~/.ssh/identity.pub

User account

User’s public key in
~/.ssh/authorized_keys

Keyboard-interactive
(v2)

User account User account

Supports PAM, including arbitrary
prompting and password changing when
password aging is triggered.

Password-based (v1
or v2)

User account User account

Supports PAM.

.rhosts only (v1) User account User account

IgnoreRhosts no in
/etc/ssh/sshd_config

Local host entry in /etc/shosts.equiv,
/etc/hosts.equiv, ~/.shosts, or
~/.rhosts

Chapter 18 • Using Solaris Secure Shell (Tasks) 323

TABLE 18–1 Authentication Methods for Solaris Secure Shell (Continued)
Authentication Method
(Protocol Version) Local Host (Client) Requirements Remote Host (Server) Requirements

.rhosts with RSA
(v1) on server only

User account

Local host public key in
/etc/ssh/ssh_host_rsa1_key

User account

Local host public key in
/etc/ssh/ssh_known_hosts or
~/.ssh/known_hosts

IgnoreRhosts no in
/etc/ssh/sshd_config

Local host entry in /etc/shosts.equiv,
/etc/hosts.equiv, ~/.shosts, or
~/.rhosts

Solaris Secure Shell in the Enterprise
For a comprehensive discussion of Secure Shell on a Solaris system, see Secure Shell in
the Enterprise, by Jason Reid, ISBN 0-13-142900-0, June 2003. The book is part of the
Sun BluePrints Series, which is published by Sun Microsystems Press.

For online information, navigate to Sun’s BigAdmin System Administration Portal
web site, http://www.sun.com/bigadmin. Click Docs, then Sun BluePrints under
Misc./Comprehensive. Click Sun BluePrints OnLine, then Archives by Subject, then
Security. The archives include the following articles:

� Role Based Access Control and Secure Shell – A Closer Look At Two Solaris Operating
Environment Security Features

� Integrating the Secure Shell Software

� Configuring the Secure Shell Software

Solaris Secure Shell Enhancements in the
Solaris 10 Release
Since the Solaris 9 release, the following changes have been introduced to Solaris
Secure Shell:

� Solaris Secure Shell is based on OpenSSH 3.5p1. The Solaris implementation also
includes features and bug fixes from versions up to OpenSSH 3.8p1.

� The default value of X11Forwarding is yes in the /etc/ssh/sshd_config file.

� The following keywords have been introduced:

324 System Administration Guide: Security Services • January 2005

http://www.sun.com/bigadmin

� GSSAPIAuthentication
� GSSAPIKeyExchange
� GSSAPIDelegateCredentials
� GSSAPIStoreDelegatedCredentials
� KbdInteractiveAuthentication

The GSSAPI keywords enable Solaris Secure Shell to use GSS credentials for
authentication. The KbdInteractiveAuthentication keyword supports
arbitrary prompting and password changing in PAM. For a complete list of
keywords and their default values, see “Keywords in Solaris Secure Shell” on page
347.

� The ARCFOUR and AES128-CTR ciphers are now available. ARCFOUR is also
known as RC4. The AES cipher is AES in counter mode.

� The sshd daemon uses the variables in /etc/default/login and the login
command. The /etc/default/login variables can be overridden by values in
the sshd_config file. For more information, see “Solaris Secure Shell and Login
Environment Variables” on page 351 and the sshd_config(4) man page.

Solaris Secure Shell (Task Map)
The following task map points to task maps for configuring Solaris Secure Shell and
for using Solaris Secure Shell.

Task Description For Instructions

Configure Solaris Secure
Shell

Guides administrators in configuring Solaris
Secure Shell for users.

“Configuring Solaris Secure Shell
(Task Map)” on page 326

Use Solaris Secure Shell Guides users in using Solaris Secure Shell. “Using Solaris Secure Shell (Task
Map)” on page 330

Chapter 18 • Using Solaris Secure Shell (Tasks) 325

Configuring Solaris Secure Shell (Task
Map)
The following task map points to procedures for configuring Solaris Secure Shell.

Task Description For Instructions

Configure host-based
authentication

Configures host-based authentication on
the client and server.

“How to Set Up Host-Based Authentication
for Solaris Secure Shell” on page 326

Configure a host to use
v1 and v2

Creates public key files for hosts that use
v1 and v2 protocols.

“How to Enable Solaris Secure Shell v1”
on page 328

Configure port
forwarding

Enables users to use port forwarding. “How to Configure Port Forwarding in
Solaris Secure Shell” on page 329

Configuring Solaris Secure Shell
By default, host-based authentication and the use of both protocols are not enabled in
Solaris Secure Shell. Changing these defaults requires administrative intervention.
Also, for port forwarding to work requires administrative intervention.

� How to Set Up Host-Based Authentication for
Solaris Secure Shell
The following procedure sets up a public key system where the client’s public key is
used for authentication on the server. The user must also create a public/private key
pair.

In the procedure, the terms client and local host refer to the machine where a user types
the ssh command. The terms server and remote host refer to the machine that the client
is trying to reach.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

Steps

326 System Administration Guide: Security Services • January 2005

2. On the client, enable host-based authentication.
In the client configuration file, /etc/ssh/ssh_config, type the following entry:

HostbasedAuthentication yes

3. On the server, enable host-based authentication.
In the server configuration file, /etc/ssh/sshd_config, type the same entry:

HostbasedAuthentication yes

4. On the server, configure a file that enables the client to be recognized as a trusted
host.
For more information, see the FILES section of the sshd(1M) man page.

� Add the client as an entry to the server’s /etc/shosts.equiv file.

client-host

� Or, you can instruct users to add an entry for the client to their ~/.shosts
file on the server.

client-host

5. On the server, ensure that the sshd daemon can access the list of trusted hosts.
Set IgnoreRhosts to no in the /etc/ssh/sshd_config file.

sshd_config

IgnoreRhosts no

6. Ensure that users of Solaris Secure Shell at your site have accounts on both
hosts.

7. Do one of the following to put the client’s public key on the server.

� Modify the sshd_config file on the server, then instruct your users to add
the client’s public host keys to their ~/.ssh/known_hosts file.

sshd_config

IgnoreUserKnownHosts no

For user instructions, see “How to Generate a Public/Private Key Pair for Use
With Solaris Secure Shell” on page 331.

� Copy the client’s public key to the server.
The host keys are stored in the /etc/ssh directory. The keys are typically
generated by the sshd daemon on first boot.

a. Add the key to the /etc/ssh/ssh_known_hosts file on the server.
On the client, type the command on one line with no backslash.

cat /etc/ssh/ssh_host_dsa_key | ssh RemoteHost \

’cat >> /etc/ssh/ssh_known_hosts && echo "Host key copied"’

b. When you are prompted, supply your login password.

Chapter 18 • Using Solaris Secure Shell (Tasks) 327

When the file is copied, the message “Host key copied” is displayed.

Setting Up Host-based Authentication
In the following example, each host is configured as a server and as a client. A user on
either host can initiate an ssh connection to the other host. The following
configuration makes each host a server and a client:

� On each host, the Solaris Secure Shell configuration files contain the following
entries:

/etc/ssh/ssh_config
HostBasedAuthentication yes
#
/etc/ssh/sshd_config
HostBasedAuthentication yes

IgnoreRhosts no

� On each host, the shosts.equiv file contains an entry for the other host:

/etc/hosts.equiv on machine2

machine1

/etc/hosts.equiv on machine1

machine2

� The public key for each host is in the /etc/ssh/ssh_known_hosts file on the
other host:

/etc/ssh/ssh_known_hosts on machine2

... machine1

/etc/ssh/ssh_known_hosts on machine1

... machine2

� Users have an account on both hosts:

/etc/passwd on machine1

jdoe:x:3111:10:J Doe:/home/jdoe:/bin/sh

/etc/passwd on machine2

jdoe:x:3111:10:J Doe:/home/jdoe:/bin/sh

� How to Enable Solaris Secure Shell v1
This procedure is useful when a host interoperates with hosts that run v1 and v2.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

Example 18–1

Steps

328 System Administration Guide: Security Services • January 2005

2. Configure the host to use both Solaris Secure Shell protocols.

Edit the /etc/ssh/sshd_config file.

Protocol 2

Protocol 2,1

3. Provide a separate file for the host key for v1.

Add a HostKey entry to the /etc/ssh/sshd_config file.

HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key

HostKey /etc/ssh/ssh_host_rsa1_key

4. Generate a host key for v1.

ssh-keygen -t rsa1 -f /etc/ssh/ssh_host_rsa1_key -N ’’

-t rsa1 Indicates the RSA algorithm for v1.

-f Indicates the file that holds the host key.

-N ’’ Indicates that no passphrase is required.

5. Restart the sshd daemon.

svcadm restart network/ssh:default

You can also reboot the system.

� How to Configure Port Forwarding in Solaris
Secure Shell
Port forwarding enables a local port be forwarded to a remote host. Effectively, a
socket is allocated to listen to the port on the local side. Similarly, a port can be
specified on the remote side.

Note – Solaris Secure Shell port forwarding must use TCP connections. Solaris Secure
Shell does not support UDP connections for port forwarding.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Configure the remote Solaris Secure Shell server to allow port forwarding.

Steps

Chapter 18 • Using Solaris Secure Shell (Tasks) 329

Change the value of AllowTcpForwarding to yes in the
/etc/ssh/sshd_config file.

Port forwarding

AllowTcpForwarding yes

3. Restart the Solaris Secure Shell service.

remoteHost# svcadm restart network/ssh:default

For information on managing persistent services, see Chapter 9, “Managing
Services (Overview),” in System Administration Guide: Basic Administration and the
svcadm(1M) man page.

4. Verify that port forwarding can be used.

remoteHost# /usr/bin/pgrep -lf sshd

1296 ssh -L 2001:remoteHost:23 remoteHost

Using Solaris Secure Shell (Task Map)
The following task map points to user procedures for using Solaris Secure Shell.

Task Description For Instructions

Create a public/private
key pair

Enables access to Solaris Secure Shell for sites
that require public-key authentication.

“How to Generate a Public/Private
Key Pair for Use With Solaris Secure
Shell” on page 331

Change your passphrase Changes the phrase that authenticates your
private key.

“How to Change the Passphrase for
a Solaris Secure Shell Private Key”
on page 333

Log in with Solaris Secure
Shell

Provides encrypted Solaris Secure Shell
communication when logging in remotely. The
process is similar to using the rsh command.

“How to Log In to a Remote Host
With Solaris Secure Shell” on page
334

Log in to Solaris Secure
Shell without being
prompted for a password

Enables login by using an agent which
provides your password to Solaris Secure
Shell.

“How to Reduce Password Prompts
in Solaris Secure Shell” on page 335

“How to Set Up the ssh-agent
Command to Run Automatically”
on page 336

Use port forwarding in
Solaris Secure Shell

Specifies a local port or a remote port to be
used in a Solaris Secure Shell connection over
TCP.

“How to Use Port Forwarding in
Solaris Secure Shell” on page 337

330 System Administration Guide: Security Services • January 2005

Task Description For Instructions

Copy files with Solaris
Secure Shell

Securely copies files between hosts. “How to Copy Files With Solaris
Secure Shell” on page 338

Securely connect from a
host inside a firewall to a
host outside the firewall

Uses Solaris Secure Shell commands that are
compatible with HTTP or SOCKS5 to connect
hosts that are separated by a firewall.

“How to Set Up Default
Connections to Hosts Outside a
Firewall” on page 339

Using Solaris Secure Shell
Solaris Secure Shell provides secure access between a local shell and a remote shell.
For more information, see the ssh_config(4) and ssh(1) man pages.

� How to Generate a Public/Private Key Pair for Use
With Solaris Secure Shell
Users must generate a public/private key pair when their site implements host-based
authentication or user public-key authentication. For additional options, see the
ssh-keygen(1) man page.

Determine from your system administrator if host-based authentication is configured.

1. Start the key generation program.

myLocalHost% ssh-keygen -t rsa
Generating public/private rsa key pair.

...

where -t is the type of algorithm, one of rsa, dsa, or rsa1.

2. Specify the path to the file that will hold the key.

By default, the file name id_rsa, which represents an RSA v2 key, appears in
parentheses. You can select this file by pressing the Return key. Or, you can type an
alternative file name.

Enter file in which to save the key (/home/jdoe/.ssh/id_rsa): <Press
Return>

The file name of the public key is created automatically by appending the string
.pub to the name of the private key file.

3. Type a passphrase for using your key.

Before You
Begin

Steps

Chapter 18 • Using Solaris Secure Shell (Tasks) 331

This passphrase is used for encrypting your private key. A null entry is strongly
discouraged. Note that the passphrase is not displayed when you type it in.

Enter passphrase (empty for no passphrase): <Type passphrase>

4. Retype the passphrase to confirm it.

Enter same passphrase again: <Type passphrase>
Your identification has been saved in /home/jdoe/.ssh/id_rsa.
Your public key has been saved in /home/jdoe/.ssh/id_rsa.pub.
The key fingerprint is:

0e:fb:3d:57:71:73:bf:58:b8:eb:f3:a3:aa:df:e0:d1 jdoe@myLocalHost

5. Check the results.

Check that the path to the key file is correct.

% ls ~/.ssh
id_rsa

id_rsa.pub

At this point, you have created a public/private key pair.

6. Choose the appropriate option:

� If your administrator has configured host-based authentication, you might
need to copy the local host’s public key to the remote host.

You can now log in to the remote host. For details, see “How to Log In to a
Remote Host With Solaris Secure Shell” on page 334.

a. Type the command on one line with no backslash.

% cat /etc/ssh/ssh_host_dsa_key | ssh RemoteHost \

’cat >> ~./ssh/known_hosts && echo "Host key copied"’

b. When you are prompted, supply your login password.

Enter password: <Type password>
Host key copied

%

� If your site uses user authentication with public keys, populate your
authorized_keys file on the remote host.

a. Copy your public key to the remote host.

Type the command on one line with no backslash.

myLocalHost% cat $HOME/.ssh/id_rsa.pub | ssh myRemoteHost \

’cat >> .ssh/authorized_keys && echo "Key copied"’

b. When you are prompted, supply your login password.

When the file is copied, the message “Key copied” is displayed.

Enter password: Type login password
Key copied

332 System Administration Guide: Security Services • January 2005

myLocalHost%

7. (Optional) Reduce the prompting for passphrases.

For a procedure, see “How to Reduce Password Prompts in Solaris Secure Shell”
on page 335. For more information, see the ssh-agent(1) and ssh-add(1) man
pages.

Establishing a v1 RSA Key for a User

In the following example, the user can contact hosts that run v1 of the Solaris Secure
Shell protocol. To be authenticated by v1 hosts, the user creates a v1 key, then copies
the public key portion to the remote host.

myLocalHost% ssh-keygen -t rsa1 -f /home/jdoe/.ssh/identity
Generating public/private rsa key pair.
...
Enter passphrase (empty for no passphrase): <Type passphrase>
Enter same passphrase again: <Type passphrase>
Your identification has been saved in /home/jdoe/.ssh/identity.
Your public key has been saved in /home/jdoe/.ssh/identity.pub.
The key fingerprint is:
...
myLocalHost% ls ~/.ssh
id_rsa
id_rsa.pub
identity
identity.pub
myLocalHost% cat $HOME/.ssh/identity.pub | ssh myRemoteHost \

’cat >> .ssh/authorized_keys && echo "Key copied"’

� How to Change the Passphrase for a Solaris Secure
Shell Private Key
The following procedure does not change the private key. The procedure changes the
authentication mechanism for the private key, the passphrase. For more information,
see the ssh-keygen(1) man page.

� Change your passphrase.

Type the ssh-keygen command with the -p option, and answer the prompts.

myLocalHost% ssh-keygen -p
Enter file which contains the private key (/home/jdoe/.ssh/id_rsa): <Press Return>
Enter passphrase (empty for no passphrase): <Type passphrase>
Enter same passphrase again: <Type passphrase>

where -p requests changing the passphrase of a private key file.

Example 18–2

Step

Chapter 18 • Using Solaris Secure Shell (Tasks) 333

� How to Log In to a Remote Host With Solaris
Secure Shell

1. Start a Solaris Secure Shell session.

Type the ssh command, and specify the name of the remote host.

myLocalHost% ssh myRemoteHost

A prompt questions the authenticity of the remote host:

The authenticity of host ’myRemoteHost’ can’t be established.
RSA key fingerprint in md5 is: 04:9f:bd:fc:3d:3e:d2:e7:49:fd:6e:18:4f:9c:26

Are you sure you want to continue connecting(yes/no)?

This prompt is normal for initial connections to remote hosts.

2. If prompted, verify the authenticity of the remote host key.

� If you cannot confirm the authenticity of the remote host, type no and contact
your system administrator.

Are you sure you want to continue connecting(yes/no)? no

The administrator is responsible for updating the global
/etc/ssh/ssh_known_hosts file. An updated ssh_known_hosts file
prevents this prompt from appearing.

� If you confirm the authenticity of the remote host, answer the prompt and
continue to the next step.

Are you sure you want to continue connecting(yes/no)? yes

3. Authenticate yourself to Solaris Secure Shell.

a. When prompted, type your passphrase.

Enter passphrase for key ’/home/jdoe/.ssh/id_rsa’: <Type passphrase>

b. When prompted, type your account password.

jdoe@myRemoteHost’s password: <Type password>
Last login: Fri Jul 20 14:24:10 2001 from myLocalHost

myRemoteHost%

4. Conduct transactions on the remote host.

The commands that you send are encrypted. Any responses that you receive are
encrypted.

5. Close the Solaris Secure Shell connection.

When you are finished, type exit or use your usual method for exiting your shell.

myRemoteHost% exit
myRemoteHost% logout

Steps

334 System Administration Guide: Security Services • January 2005

Connection to myRemoteHost closed

myLocalHost%

� How to Reduce Password Prompts in Solaris
Secure Shell
If you do not want to type your passphrase and your password to use Solaris Secure
Shell, you can use the agent daemon. Start the daemon at the beginning of the session.
Then, store your private keys with the agent daemon by using the ssh-add
command. If you have different accounts on different hosts, add the keys that you
need for the session.

You can start the agent daemon manually when needed, as described in the following
procedure. Or, you can set the agent daemon to run automatically at the start of every
session as described in “How to Set Up the ssh-agent Command to Run
Automatically” on page 336.

1. Start the agent daemon.

myLocalHost% ssh-agent

2. Verify that the agent daemon has been started.

myLocalHost% eval ‘ssh-agent‘

Agent pid 9892

3. Add your private key to the agent daemon.

Type the ssh-add command.

myLocalHost% ssh-add
Enter passphrase for /home/jdoe/.ssh/id_rsa: <Type passphrase>
Identity added: /home/jdoe/.ssh/id_rsa(/home/jdoe/.ssh/id_rsa)

myLocalHost%

4. Start a Solaris Secure Shell session.

myLocalHost% ssh myRemoteHost

You are not prompted for a passphrase.

Using ssh-add Options

In this example, jdoe adds two keys to the agent daemon. The -l option is used to
list all keys that are stored in the daemon. At the end of the session, the -D option is
used to remove all the keys from the agent daemon.

myLocalHost% ssh-agent
myLocalHost% ssh-add
Enter passphrase for /home/jdoe/.ssh/id_rsa: <Type passphrase>

Steps

Example 18–3

Chapter 18 • Using Solaris Secure Shell (Tasks) 335

Identity added: /home/jdoe/.ssh/id_rsa(/home/jdoe/.ssh/id_rsa)
myLocalHost% ssh-add /home/jdoe/.ssh/id_dsa
Enter passphrase for /home/jdoe/.ssh/id_dsa: <Type passphrase>
Identity added:
/home/jdoe/.ssh/id_dsa(/home/jdoe/.ssh/id_dsa)

myLocalHost% ssh-add -l
md5 1024 0e:fb:3d:53:71:77:bf:57:b8:eb:f7:a7:aa:df:e0:d1
/home/jdoe/.ssh/id_rsa(RSA)
md5 1024 c1:d3:21:5e:40:60:c5:73:d8:87:09:3a:fa:5f:32:53
/home/jdoe/.ssh/id_dsa(DSA)

User conducts Solaris Secure Shell transactions

myLocalHost% ssh-add -D
Identity removed:
/home/jdoe/.ssh/id_rsa(/home/jdoe/.ssh/id_rsa.pub)

/home/jdoe/.ssh/id_dsa(DSA)

� How to Set Up the ssh-agent Command to Run
Automatically
You can avoid providing your passphrase and password whenever you use Solaris
Secure Shell by automatically starting an agent daemon, ssh-agent. You can start the
agent daemon from the .dtprofile script. To add your passphrase and password to
the agent daemon, see Example 18–3.

1. Start the agent daemon automatically in a user startup script.

Add the following lines to the end of the $HOME/.dtprofile script:

if ["$SSH_AUTH_SOCK" = "" -a -x /usr/bin/ssh-agent]; then
eval ‘/usr/bin/ssh-agent‘

fi

2. Terminate the agent daemon when you exit the CDE session.

Add the following lines to the $HOME/.dt/sessions/sessionexit script:

if ["$SSH_AGENT_PID" != "" -a -x /usr/bin/ssh-agent]; then
/usr/bin/ssh-agent -k

fi

This entry ensures that no one can use the Solaris Secure Shell agent after a CDE
session is terminated.

Steps

336 System Administration Guide: Security Services • January 2005

� How to Use Port Forwarding in Solaris Secure
Shell
You can specify that a local port be forwarded to a remote host. Effectively, a socket is
allocated to listen to the port on the local side. The connection from this port is made
over a secure channel to the remote host. For example, you might specify port 143 to
obtain email remotely with IMAP4. Similarly, a port can be specified on the remote
side.

To use port forwarding, the administrator must have enabled port forwarding on the
remote Solaris Secure Shell server. For details, see “How to Configure Port Forwarding
in Solaris Secure Shell” on page 329.

� To use secure port forwarding, choose one of the following options:

� To set a local port to receive secure communication from a remote port,
specify both ports.

Specify the local port that listens for remote communication. Also, specify the
remote host and the remote port that forward the communication.

myLocalHost% ssh -L localPort:remoteHost:remotePort

� To set a remote port to receive a secure connection from a local port, specify
both ports.

Specify the remote port that listens for remote communication. Also, specify the
local host and the local port that forward the communication.

myLocalHost% ssh -R remotePort:localhost:localPort

Using Local Port Forwarding to Receive Mail

The following example demonstrates how you can use local port forwarding to receive
mail securely from a remote server.

myLocalHost% ssh -L 9143:myRemoteHost:143 myRemoteHost

This command forwards connections from port 9143 on myLocalHost to port 143.
Port 143 is the IMAP v2 server port on myRemoteHost. When the user launches a
mail application, the user needs to specify the local port number, as shown in the
following dialog box.

Before You
Begin

Step

Example 18–4

Chapter 18 • Using Solaris Secure Shell (Tasks) 337

Do not confuse localhost in the dialog box with myLocalHost. myLocalHost is a
hypothetical host name. localhost is a keyword that identifies your local system.

Using Remote Port Forwarding to Communicate Outside of a
Firewall

This example demonstrates how a user in an enterprise environment can forward
connections from a host on an external network to a host inside a corporate firewall.

myLocalHost% ssh -R 9022:myLocalHost:22 myOutsideHost

This command forwards connections from port 9022 on myOutsideHost to port 22,
the sshd server, on the local host.

myOutsideHost% ssh -p 9022 localhost

myLocalHost%

� How to Copy Files With Solaris Secure Shell
The following procedure shows how to use the scp command to copy encrypted files
between hosts. You can copy encrypted files either between a local host and a remote
host, or between two remote hosts. The command operates similarly to the rcp
command, except that the scp command prompts for authentication. For more
information, see the scp(1) man page.

You can also use the sftp, a more secure form of the ftp command. For more
information, see the sftp(1) man page.

1. Start the secure copy program.

Example 18–5

Steps

338 System Administration Guide: Security Services • January 2005

Specify the source file, the user name at the remote destination, and the destination
directory.

myLocalHost% scp myfile.1 jdoe@myRemoteHost:~

2. Supply your passphrase when prompted.

Enter passphrase for key ’/home/jdoe/.ssh/id_rsa’: <Type passphrase>
myfile.1 25% |******* | 640 KB 0:20 ETA

myfile.1

After you type the passphrase, a progress meter is displayed. See the second line in
the preceding output. The progress meter displays:

� The file name

� The percentage of the file that has been transferred

� A series of asterisks that indicate the percentage of the file that has been
transferred

� The quantity of data transferred

� The estimated time of arrival, or ETA, of the complete file (that is, the remaining
amount of time)

� How to Set Up Default Connections to Hosts
Outside a Firewall
You can use Solaris Secure Shell to make a connection from a host inside a firewall to a
host outside the firewall. This task is done by specifying a proxy command for ssh
either in a configuration file or as an option on the command line. For the
command-line option, see Example 18–6.

In general, you can customize your ssh interactions through a configuration file.

� You can customize either your own personal file in ~/.ssh/config.

� Or, you can use the settings in the administrative configuration file,
/etc/ssh/ssh_config.

The files can be customized with two types of proxy commands. One proxy command
is for HTTP connections. The other proxy command is for SOCKS5 connections. For
more information, see the ssh_config(4) man page.

1. Specify the proxy commands and hosts in a configuration file.

Use the following syntax to add as many lines as you need:

[Host outside-host]
ProxyCommand proxy-command [-h proxy-server] \

[-p proxy-port] outside-host|%h outside-port|%p

Steps

Chapter 18 • Using Solaris Secure Shell (Tasks) 339

Host outside-host
Limits the proxy command specification to instances when a remote host name
is specified on the command line. If you use a wildcard for outside-host, you
apply the proxy command specification to a set of hosts.

proxy-command
Specifies the proxy command. The command can be either of the following:

� /usr/lib/ssh/ssh-http-proxy-connect for HTTP connections
� /usr/lib/ssh/ssh-socks5-proxy-connect for SOCKS5 connections

-h proxy-server and -p proxy-port
These options specify a proxy server and a proxy port, respectively. If present,
the proxies override any environment variables that specify proxy servers and
proxy ports, such as HTTPPROXY, HTTPPROXYPORT, SOCKS5_PORT,
SOCKS5_SERVER, and http_proxy. The http_proxy variable specifies a
URL. If the options are not used, then the relevant environment variables must
be set. For more information, see the ssh-socks5-proxy-connect(1) and
ssh-http-proxy-connect(1) man pages.

outside-host
Designates a specific host to connect to. Use the %h substitution argument to
specify the host on the command line.

outside-port
Designates a specific port to connect to. Use the %p substitution argument to
specify the port on the command line. By specifying %h and %p without using
the Host outside-host option, the proxy command is applied to the host
argument whenever the ssh command is invoked.

2. Run Solaris Secure Shell, specifying the outside host.

For example, type the following:

myLocalHost% ssh myOutsideHost

This command looks for a proxy command specification for myOutsideHost in
your personal configuration file. If the specification is not found, then the
command looks in the system-wide configuration file, /etc/ssh/ssh_config.
The proxy command is substituted for the ssh command.

Connecting to Hosts Outside a Firewall From the Command Line
“How to Set Up Default Connections to Hosts Outside a Firewall” on page 339
explains how to specify a proxy command in a configuration file. In this example, a
proxy command is specified on the ssh command line.

% ssh -o’Proxycommand=/usr/lib/ssh/ssh-http-proxy-connect \

-h myProxyServer -p 8080 myOutsideHost 22’ myOutsideHost

The -o option to the ssh command provides a command-line method of specifying a
proxy command. This example command does the following:

� Substitutes the HTTP proxy command for ssh

Example 18–6

340 System Administration Guide: Security Services • January 2005

� Uses port 8080 and myProxyServer as the proxy server
� Connects to port 22 on myOutsideHost

Chapter 18 • Using Solaris Secure Shell (Tasks) 341

342 System Administration Guide: Security Services • January 2005

CHAPTER 19

Solaris Secure Shell (Reference)

This chapter describes the configuration options in Solaris Secure Shell. The following
is a list of the reference information in this chapter.

� “A Typical Solaris Secure Shell Session” on page 343
� “Client and Server Configuration in Solaris Secure Shell” on page 346
� “Keywords in Solaris Secure Shell” on page 347
� “Maintaining Known Hosts in Solaris Secure Shell” on page 352
� “Solaris Secure Shell Packages and Initialization” on page 352
� “Solaris Secure Shell Files” on page 353
� “Solaris Secure Shell Commands” on page 355

For procedures to configure Solaris Secure Shell, see Chapter 18.

A Typical Solaris Secure Shell Session
The Solaris Secure Shell daemon (sshd) is normally started at boot time when
network services are started. The daemon listens for connections from clients. A
Solaris Secure Shell session begins when the user runs an ssh, scp, or sftp
command. A new sshd daemon is forked for each incoming connection. The forked
daemons handle key exchange, encryption, authentication, command execution, and
data exchange with the client. These session characteristics are determined by
client-side configuration files and server-side configuration files. Command-line
arguments can override the settings in the configuration files.

The client and server must authenticate themselves to each other. After successful
authentication, the user can execute commands remotely and copy data between
hosts.

343

Session Characteristics in Solaris Secure Shell
The server-side behavior of the sshd daemon is controlled by keyword settings in the
/etc/ssh/sshd_config file. For example, the sshd_config file controls which
types of authentication are permitted for accessing the server. The server-side behavior
can also be controlled by the command-line options when the sshd daemon is started.

The behavior on the client side is controlled by Solaris Secure Shell keywords in this
order of precedence:

� Command-line options
� User’s configuration file, ~/.ssh/config
� System-wide configuration file, /etc/ssh/ssh_config

For example, a user can override a system-wide configuration Cipher setting of
blowfish by specifying -c 3des on the command line.

Authentication and Key Exchange in Solaris Secure
Shell
The Solaris Secure Shell protocols, v1 and v2, both support client user/host
authentication and server host authentication. Both protocols involve the exchange of
session cryptographic keys for the protection of Solaris Secure Shell sessions. Each
protocol provides various methods for authentication and key exchange. Some
methods are optional. Solaris Secure Shell supports a number of client authentication
mechanisms, as shown in Table 18–1. Servers are authenticated by using known host
public keys.

For the v1 protocol, Solaris Secure Shell supports user authentication with passwords.
The protocol also supports user public keys and authentication with trusted host
public keys. Server authentication is done with a host public key. For the v1 protocol,
all public keys are RSA keys. Session key exchanges involve the use of an ephemeral
server key that is periodically regenerated.

For the v2 protocol, Solaris Secure Shell supports user authentication and generic
interactive authentication, which usually involves passwords. The protocol also
supports authentication with user public keys and with trusted host public keys. The
keys can be RSA or DSA. Session key exchanges consist of Diffie-Hellman ephemeral
key exchanges that are signed in the server authentication step. Additionally, Solaris
Secure Shell can use GSS credentials for authentication.

Acquiring GSS Credentials in Solaris Secure Shell
To use GSS-API for authentication in Solaris Secure Shell, the server must have
GSS-API acceptor credentials and the client must have GSS-API initiator credentials.
Support is available for mech_dh and for mech_krb5.

344 System Administration Guide: Security Services • January 2005

For mech_dh, the server has GSS-API acceptor credentials if root has run the
keylogin command.

For mech_krb5, the server has GSS-API acceptor credentials when the host principal
that corresponds to the server has a valid entry in /etc/krb5/krb5.keytab.

The client has initiator credentials for mech_dh if one of the following has been done:

� The keylogin command has been run.
� The pam_dhkeys module is used in the pam.conf file.

The client has initiator credentials for mech_krb5 if one of the following has been
done:

� The kinit command has been run.
� The pam_krb5 module is used in the pam.conf file.

For the use of mech_dh in secure RPC, see Chapter 15. For the use of mech_krb5, see
Chapter 20. For more information on mechanisms, see the mech(4) and
mech_spnego(5) man pages.

Command Execution and Data Forwarding in
Solaris Secure Shell
After authentication is complete, the user can use Solaris Secure Shell, generally by
requesting a shell or executing a command. Through the ssh command options, the
user can make requests. Requests can include allocating a pseudo-tty, forwarding X11
connections or TCP/IP connections, or enabling an ssh-agent authentication
program over a secure connection. The basic components of a user session are as
follows:

1. The user requests a shell or the execution of a command, which begins the session
mode.

In this mode, data is sent or received through the terminal on the client side. On
the server side, data is sent through the shell or a command.

2. When data transfer is complete, the user program terminates.

3. All X11 forwarding and TCP/IP forwarding is stopped, except for those
connections that already exist. Existing X11 connections and TCP/IP connections
remain open.

4. The server sends an exit status message to the client. When all connections are
closed, such as forwarded ports that had remained open, the client closes the
connection to the server. Then, the client exits.

Chapter 19 • Solaris Secure Shell (Reference) 345

Client and Server Configuration in
Solaris Secure Shell
The characteristics of a Solaris Secure Shell session are controlled by configuration
files. The configuration files can be overridden to a certain degree by options on the
command line.

Client Configuration in Solaris Secure Shell
In most cases, the client-side characteristics of a Solaris Secure Shell session are
governed by the system-wide configuration file, /etc/ssh/ssh_config. The
settings in the ssh_config file can be overridden by the user’s configuration file,
~/.ssh/config. In addition, the user can override both configuration files on the
command line.

The settings in the server’s /etc/ssh/sshd_config file determine which client
requests are permitted by the server. For a list of server configuration settings, see
“Keywords in Solaris Secure Shell” on page 347. For detailed information, see the
sshd_config(4) man page.

The keywords in the client configuration file are listed in “Keywords in Solaris Secure
Shell” on page 347. If the keyword has a default value, the value is given. These
keywords are described in detail in the ssh(1), scp(1), sftp(1), and ssh_config(4)
man pages. For a list of keywords in alphabetical order and their equivalent
command-line overrides, see Table 19–8.

Server Configuration in Solaris Secure Shell
The server-side characteristics of a Solaris Secure Shell session are governed by the
/etc/ssh/sshd_config file. The keywords in the server configuration file are listed
in “Keywords in Solaris Secure Shell” on page 347. If the keyword has a default value,
the value is given. For a full description of the keywords, see the sshd_config(4)
man page.

346 System Administration Guide: Security Services • January 2005

Keywords in Solaris Secure Shell
The following tables list the keywords and their default values, if any. The keywords
are in alphabetical order. The location of keywords on the client is the ssh_config
file. Keywords that apply to the server are in the sshd_config file. Some keywords
are set in both files. If the keyword applies to only one protocol version, the version is
listed.

TABLE 19–1 Keywords in Solaris Secure Shell Configuration Files (A to Escape)

Keyword Default Value Location Protocol

AllowGroups No default. Server

AllowTcpForwarding no Server

AllowUsers No default. Server

AuthorizedKeysFile ~/.ssh/authorized_keys Server

Banner /etc/issue Server

Batchmode no Client

BindAddress No default. Client

CheckHostIP yes Client

Cipher blowfish, 3des Client v1

Ciphers aes128-ctr, aes128-cbc,
3des-cbc, blowfish-cbc,
arcfour

Both v2

ClearAllForwardings No default. Client

ClientAliveInterval 0 Server v2

ClientAliveCountMax 3 Server v2

Compression yes Both

CompressionLevel No default. Client

ConnectionAttempts 1 Client

DenyGroups No default. Server

DenyUsers No default. Server

DynamicForward No default. Client

EscapeChar ~ Client

Chapter 19 • Solaris Secure Shell (Reference) 347

TABLE 19–2 Keywords in Solaris Secure Shell Configuration Files (Fall to Local)

Keyword Default Value Location Protocol

FallBackToRsh no Client

ForwardAgent no Client

ForwardX11 no Client

GatewayPorts no Both

GlobalKnownHostsFile /etc/ssh/ssh_known_hostsClient

GSSAPIAuthentication yes Both v2

GSSAPIDelegateCredentials no Client v2

GSSAPIKeyExchange yes Both v2

GSSAPIStoreDelegateCredentials no Client v2

Host * For more information, see
“Host-Specific Parameters in
Solaris Secure Shell”
on page 350.

Client

HostbasedAuthentication no Both v2

HostbasedUsesNamesFromPacketOnly no Server v2

HostKey /etc/ssh/ssh_host_key Server v1

HostKey /etc/ssh/host_rsa_key,
/etc/ssh/host_dsa_key

Server v2

HostKeyAlgorithms ssh-rsa, ssh-dss Client v2

HostKeyAlias No default. Client v2

IdentityFile ~/.ssh/identity Client v1

IdentityFile ~/.ssh/id_dsa,
~/.ssh/id_rsa

Client v2

IgnoreRhosts yes Server

IgnoreUserKnownHosts yes Server

KbdInteractiveAuthentication yes Both

KeepAlive yes Both

KeyRegenerationInterval 3600 (seconds) Server

ListenAddress No default. Server

LocalForward No default. Client

348 System Administration Guide: Security Services • January 2005

TABLE 19–3 Keywords in Solaris Secure Shell Configuration Files (Login to R)

Keyword Default Value Location Protocol

LoginGraceTime 600 (seconds) Server

LogLevel info Both

LookupClientHostname yes Server

MACs hmac-sha1,hmac-md5 Both v2

MaxAuthTries 6 Server

MaxAuthTriesLog No default. Server

MaxStartups 10:30:60 Server

NoHostAuthenticationForLocalHost no Client

NumberOfPasswordPrompts 3 Client

PAMAuthenticationViaKBDInt yes Server v2

PasswordAuthentication yes Both

PermitEmptyPasswords no Server

PermitRootLogin no Server

PermitUserEnvironment no Server

PreferredAuthentications gssapi-keyex,
gssapi-with-mic,
hostbased, publickey,
keyboard-interactive,
password

Client v2

Port 22 Both

PrintMotd no Server

Protocol 2 Both

ProxyCommand No default. Client

PubkeyAuthentication yes Both v2

RemoteForward No default. Client

RhostsAuthentication no Both v1

RhostsRSAAuthentication no Both v1

RSAAuthentication no Both v1

Chapter 19 • Solaris Secure Shell (Reference) 349

TABLE 19–4 Keywords in Solaris Secure Shell Configuration Files (S to X)

Keyword Default Value Location Protocol

ServerKeyBits 768 Server

StrictHostKeyChecking ask Client

StrictModes yes Server

Subsystem sftp
/usr/lib/ssh/sftp-server

Server

SyslogFacility auth Server

UseLogin no Deprecated and ignored. Server

User No default. Client

UserKnownHostsFile ~/.ssh/known_hosts Client

VerifyReverseMapping no Server

X11Forwarding yes Server

X11DisplayOffset 10 Server

X11UseLocalHost yes Server

XAuthLocation No default. Both

Host-Specific Parameters in Solaris Secure Shell
If it is useful to have different Solaris Secure Shell characteristics for different local
hosts, the administrator can define separate sets of parameters in the
/etc/ssh/ssh_config file to be applied according to host or regular expression.
This task is done by grouping entries in the file by Host keyword. If the Host
keyword is not used, the entries in the client configuration file apply to whichever
local host a user is working on.

350 System Administration Guide: Security Services • January 2005

Solaris Secure Shell and Login Environment
Variables
When the following Solaris Secure Shell keywords are not set in the sshd_config
file, they get their value from equivalent entries in the /etc/default/login file:

Entry in /etc/default/login Keyword and Value in sshd_config

CONSOLE=* PermitRootLogin=without-password

#CONSOLE=* PermitRootLogin=yes

PASSREQ=YES PermitEmptyPasswords=no

PASSREQ=NO PermitEmptyPasswords=yes

#PASSREQ PermitEmptyPasswords=no

TIMEOUT=secs LoginGraceTime=secs

#TIMEOUT LoginGraceTime=300

RETRIES and
SYSLOG_FAILED_LOGINS

Apply only to password and
keyboard-interactive authentication methods.

When the following variables are set by the login command, the sshd daemon uses
those values. When the variables are not set, the daemon uses the default value.

TIMEZONE Controls the setting of the TZ environment variable. When not set, the
sshd daemon uses value of TZ when the daemon was started.

ALTSHELL Controls the setting of the SHELL environment variable. The default is
ALTSHELL=YES, where the sshd daemon uses the value of the user’s
shell. When ALTSHELL=NO, the SHELL value is not set.

PATH Controls the setting of the PATH environment variable. When the value
is not set, the default path is /usr/bin.

SUPATH Controls the setting of the PATH environment variable for root.When
the value is not set, the default path is /usr/sbin:/usr/bin.

For more information, see the login(1) and sshd(1M) man pages.

Chapter 19 • Solaris Secure Shell (Reference) 351

Maintaining Known Hosts in Solaris
Secure Shell
Each host that needs to communicate securely with another host must have the
server’s public key stored in the local host’s /etc/ssh/ssh_known_hosts file.
Although a script could be used to update the /etc/ssh/ssh_known_hosts files,
such a practice is heavily discouraged because a script opens a major security
vulnerability.

The /etc/ssh/ssh_known_hosts file should only be distributed by a secure
mechanism as follows:

� Over a secure connection, such as Solaris Secure Shell, IPsec, or Kerberized ftp
from a known and trusted machine

� At system install time

To avoid the possibility of an intruder gaining access by inserting bogus public keys
into a known_hosts file, you should use a JumpStart™ server as the known and
trusted source of the ssh_known_hosts file. The ssh_known_hosts file can be
distributed during installation. Later, scripts that use the scp command can be used to
pull in the latest version. This approach is secure because each host already has the
public key from the JumpStart server.

Solaris Secure Shell Packages and
Initialization
Solaris Secure Shell depends on core Solaris packages and the following packages:

� SUNWgss – Contains Generic Security Service (GSS) software
� SUNWtcpd – Contains TCP wrappers
� SUNWopenssl-libraries – Contains OpenSSL libraries
� SUNWzlib – Contains the zip compression library

The following packages install Solaris Secure Shell:

� SUNWsshr – Contains client files and utilities for the root (/) directory

� SUNWsshdr – Contains server files and utilities for the root (/) directory

� SUNWsshcu – Contains common source files for the /usr directory

� SUNWsshdu – Contains server files for the /usr directory

352 System Administration Guide: Security Services • January 2005

� SUNWsshu – Contains client files and utilities for the /usr directory

Upon reboot after installation, the sshd daemon is running. The daemon creates host
keys on the system. A Solaris system that runs the sshd daemon is a Solaris Secure
Shell server.

Solaris Secure Shell Files
The following table shows the important Solaris Secure Shell files and the suggested
file permissions.

TABLE 19–5 Solaris Secure Shell Files

File Name Description
Suggested Permissions and
Owner

/etc/ssh/sshd_config Contains configuration data for sshd, the
Solaris Secure Shell daemon.

-rw-r--r-- root

/etc/ssh/ssh_host_key Contains the host private key (v1). -rw-r--r-- root

/etc/ssh/ssh_host_dsa_key or
/etc/ssh/ssh_host_rsa_key

Contains the host private key (v2). -rw-r--r-- root

host-private-key.pub Contains the host public key, for example,
/etc/ssh/ssh_host_rsa_key.pub. Is used
to copy the host key to the local known_hosts
file.

-rw-r--r-- root

/var/run/sshd.pid Contains the process ID of the Solaris Secure
Shell daemon, sshd. If multiple daemons are
running, the file contains the last daemon that
was started.

-rw-r--r-- root

~/.ssh/authorized_keys Holds the public keys of the user who is
allowed to log in to the user account.

-rw-rw-r-- username

/etc/ssh/ssh_known_hosts Contains the host public keys for all hosts with
which the client can communicate securely. The
file is populated by the administrator.

-rw-r--r-- root

~/.ssh/known_hosts Contains the host public keys for all hosts with
which the client can communicate securely. The
file is maintained automatically. Whenever the
user connects with an unknown host, the
remote host key is added to the file.

-rw-r--r-- username

Chapter 19 • Solaris Secure Shell (Reference) 353

TABLE 19–5 Solaris Secure Shell Files (Continued)

File Name Description
Suggested Permissions and
Owner

/etc/default/login Provides defaults for the sshd daemon when
corresponding sshd_config parameters are
not set.

-r--r--r-- root

/etc/nologin If this file exists, the sshd daemon only
permits root to log in. The contents of this file
are displayed to users who are attempting to
log in.

-rw-r--r-- root

~/.rhosts Contains the host-user name pairs that specify
the hosts to which the user can log in without a
password. This file is also used by the
rlogind and rshd daemons.

-rw-r--r-- username

~/.shosts Contains the host-user name pairs that specify
the hosts to which the user can log in without a
password. This file is not used by other
utilities. For more information, see the
sshd(1M)man page in the FILES section.

-rw-r--r-- username

/etc/hosts.equiv Contains the hosts that are used in .rhosts
authentication. This file is also used by the
rlogind and rshd daemons.

-rw-r--r-- root

/etc/ssh/shosts.equiv Contains the hosts that are used in host-based
authentication. This file is not used by other
utilities.

-rw-r--r-- root

~/.ssh/environment Contains initial assignments at login. By
default, this file is not read. The
PermitUserEnvironment keyword in the
sshd_config file must be set to yes for this
file to be read.

-rw------- username

~/.ssh/rc Contains initialization routines that are run
before the user shell starts. For a sample
initialization routine, see the sshd man page.

-rw------- username

/etc/ssh/sshrc Contains host-specific initialization routines
that are specified by an administrator.

-rw-r--r-- root

/etc/ssh/ssh_config Configures system settings on the client
system.

-rw-r--r-- root

~/.ssh/config Configures user settings. Overrides system
settings.

-rw------- username

The following table lists the Solaris Secure Shell files that can be overridden by
keywords or command options.

354 System Administration Guide: Security Services • January 2005

TABLE 19–6 Overrides for the Location of Solaris Secure Shell Files

File Name Keyword Override Command-Line Override

/etc/ssh/ssh_config ssh -F config-file

scp -F config-file

~/.ssh/config ssh -F config-file

/etc/ssh/host_rsa_key

/etc/ssh/host_dsa_key

HostKey

~/.ssh/identity

~/.ssh/id_dsa ~/.ssh/id_rsa

IdentityFile ssh -i id-file

scp -i id-file

~/.ssh/authorized_keys AuthorizedKeysFile

/etc/ssh/ssh_known_hosts GlobalKnownHostsFile

~/.ssh/known_hosts UserKnownHostsFile

IgnoreUserKnownHosts

Solaris Secure Shell Commands
The following table summarizes the major Solaris Secure Shell commands.

TABLE 19–7 Commands in Solaris Secure Shell

Command Description Man Page

ssh Logs a user in to a remote machine and securely executes commands on a
remote machine. This command is the Solaris Secure Shell replacement
for the rlogin and rsh commands. The ssh command enables secure
encrypted communications between two untrusted hosts over an insecure
network. X11 connections and arbitrary TCP/IP ports can also be
forwarded over the secure channel.

ssh(1)

sshd Is the daemon for Solaris Secure Shell. The daemon listens for connections
from clients and enables secure encrypted communications between two
untrusted hosts over an insecure network.

sshd(1M)

ssh-add Adds RSA or DSA identities to the authentication agent, ssh-agent.
Identities are also called keys.

ssh-add(1)

Chapter 19 • Solaris Secure Shell (Reference) 355

TABLE 19–7 Commands in Solaris Secure Shell (Continued)
Command Description Man Page

ssh-agent Holds private keys that are used for public key authentication. The
ssh-agent program is started at the beginning of an X-session or a login
session. All other windows and other programs are started as clients of
the ssh-agent program. Through the use of environment variables, the
agent can be located and used for authentication when users use the ssh
command to log in to other systems.

ssh-agent(1)

ssh-keygen Generates and manages authentication keys for Solaris Secure Shell. ssh-keygen(1)

ssh-keyscan Gathers the public keys of a number of Solaris Secure Shell hosts. Aids in
building and verifying ssh_known_hosts files.

ssh-keyscan(1)

ssh-keysign Is used by the ssh command to access the host keys on the local host.
Generates the digital signature that is required during host-based
authentication with Solaris Secure Shell v2. The command is invoked by
the ssh command, not by the user.

ssh-keysign(1M)

scp Securely copies files between hosts on a network over an encrypted ssh
transport. Unlike the rcp command, the scp command prompts for
passwords or passphrases, if password information is needed for
authentication.

scp(1)

sftp Is an interactive file transfer program that is similar to the ftp command.
Unlike the ftp command, the sftp command performs all operations
over an encrypted ssh transport. The command connects, logs in to the
specified host name, and then enters interactive command mode.

sftp(1)

The following table lists the command options that override Solaris Secure Shell
keywords. The keywords are specified in the ssh_config and sshd_config files.

TABLE 19–8 Command-Line Equivalents for Solaris Secure Shell Keywords

Keyword ssh Command-Line Override scp Command-Line Override

BatchMode scp -B

BindAddress ssh -b bind-addr scp -a bind-addr

Cipher ssh -c cipher scp -c cipher

Ciphers ssh -c cipher-spec scp -c cipher-spec

Compression ssh -C scp -C

DynamicForward ssh -D SOCKS4-port

EscapeChar ssh -e escape-char

ForwardAgent ssh -A to enable

ssh -a to disable

356 System Administration Guide: Security Services • January 2005

TABLE 19–8 Command-Line Equivalents for Solaris Secure Shell Keywords (Continued)
Keyword ssh Command-Line Override scp Command-Line Override

ForwardX11 ssh -X to enable

ssh -x to disable

GatewayPorts ssh -g

IPv4 ssh -4 scp -4

IPv6 ssh -6 scp -6

LocalForward ssh -L localport:remotehost:remoteport

MACS ssh -m mac-spec

Port ssh -p port scp -P port

Protocol ssh -1 for v1 only

ssh -2 for v2 only

RemoteForward ssh -R remoteport:localhost:localport

Chapter 19 • Solaris Secure Shell (Reference) 357

358 System Administration Guide: Security Services • January 2005

PART VI Kerberos Service

This section provides information on the configuration, management and use of the
Kerberos service.

359

360 System Administration Guide: Security Services • January 2005

CHAPTER 20

Introduction to the Kerberos Service

This chapter introduces the Kerberos Service. The following is a list of the overview
information in this chapter.

� “What Is the Kerberos Service?” on page 361
� “How the Kerberos Service Works” on page 362
� “Kerberos Security Services” on page 369
� “The Components of Various Kerberos Releases” on page 370

What Is the Kerberos Service?
The Kerberos service is a client-server architecture that provides secure transactions over
networks. The service offers strong user authentication, as well as integrity and
privacy. Authentication guarantees that the identities of both the sender and the
recipient of a network transaction are true. The service can also verify the validity of
data being passed back and forth (integrity) and encrypt the data during transmission
(privacy). Using the Kerberos service, you can log in to other machines, execute
commands, exchange data, and transfer files securely. Additionally, the service
provides authorization services, which allows administrators to restrict access to
services and machines. Moreover, as a Kerberos user, you can regulate other people’s
access to your account.

The Kerberos service is a single-sign-on system, which means that you only need to
authenticate yourself to the service once per session, and all subsequent transactions
during the session are automatically secured. After the service has authenticated you,
you do not need to authenticate yourself every time you use a Kerberos-based
command such as ftp or rsh, or to access data on an NFS file system. Thus, you do
not have to send your password over the network, where it can be intercepted, each
time you use these services.

361

The Solaris Kerberos service is based on the Kerberos V5 network authentication
protocol that was developed at the Massachusetts Institute of Technology (MIT).
People who have used Kerberos V5 product should therefore find the Solaris version
very familiar. Because the Kerberos V5 protocol is a de facto industry standard for
network security, the Solaris version promotes interoperability with other systems. In
other words, because the Solaris Kerberos service works with systems that use the
Kerberos V5 protocol, the service allows for secure transactions even over
heterogeneous networks. Moreover, the service provides authentication and security
both between domains and within a single domain.

The Kerberos service allows for flexibility in running Solaris applications. You can
configure the service to allow both Kerberos-based and non-Kerberos-based requests
for network services such as the NFS service, telnet, and ftp. As a result, current
Solaris applications still work even if they are running on systems on which the
Kerberos service is not enabled. Of course, you can also configure the Kerberos service
to allow only Kerberos-based network requests.

The Kerberos service provides a security mechanism which allows the use of Kerberos
for authentication, integrity, and privacy when using applications that use the Generic
Security Service Application Programming Interface (GSS-API). However, applications
do not have to remain committed to the Kerberos service if other security mechanisms
are developed. Because the service is designed to integrate modularly into the
GSS-API, applications that use the GSS-API can utilize whichever security mechanism
best suits their needs.

How the Kerberos Service Works
The following is an overview of the Kerberos authentication system. For a more
detailed description, see “How the Kerberos Authentication System Works” on page
520.

From the user’s standpoint, the Kerberos service is mostly invisible after the Kerberos
session has been started. Commands such as rsh or ftp work about the same.
Initializing a Kerberos session often involves no more than logging in and providing a
Kerberos password.

The Kerberos system revolves around the concept of a ticket. A ticket is a set of
electronic information that identifies a user or a service such as the NFS service. Just as
your driver’s license identifies you and indicates what driving privileges you have, so
a ticket identifies you and your network access privileges. When you perform a
Kerberos-based transaction (for example, if you remote log in to another machine),
you transparently send a request for a ticket to a Key Distribution Center, or KDC. The
KDC accesses a database to authenticate your identity and returns a ticket that grants
you permission to access the other machine. “Transparently” means that you do not

362 System Administration Guide: Security Services • January 2005

need to explicitly request a ticket. The request happens as part of the rlogin
command. Because only an authenticated client can get a ticket for a specific service,
another client cannot use rlogin under an assumed identity.

Tickets have certain attributes associated with them. For example, a ticket can be
forwardable, which means that it can be used on another machine without a new
authentication process. A ticket can also be postdated, which means that it is not valid
until a specified time. How tickets can be used, for example, to specify which users are
allowed to obtain which types of ticket, is set by policies. Policies are determined when
the Kerberos service is installed or administered.

Note – You will frequently see the terms credential and ticket. In the greater Kerberos
world, they are often used interchangeably. Technically, however, a credential is a
ticket plus the session key for that session. This difference is explained in more detail in
“Gaining Access to a Service Using Kerberos” on page 520.

The following sections further explain the Kerberos authentication process.

Initial Authentication: the Ticket-Granting Ticket
Kerberos authentication has two phases: an initial authentication that allows for all
subsequent authentications, and the subsequent authentications themselves.

The following figure shows how the initial authentication takes place.

Chapter 20 • Introduction to the Kerberos Service 363

1. At login (or with kinit),
Client requests a TGT
that allows it to obtain
tickets for services.

2. KDC checks
database,
sends TGT.

3. Client uses password
to decrypt TGT, thus
proving identity; can
now use the TGT to
obtain other tickets.

Client

KDC

TGT

TGT = Ticket-granting ticket
KDC = Key Distribution Center

FIGURE 20–1 Initial Authentication for a Kerberos Session

1. A client (a user, or a service such as NFS) begins a Kerberos session by requesting a
ticket-granting ticket (TGT) from the Key Distribution Center (KDC). This request is
often done automatically at login.

A ticket-granting ticket is needed to obtain other tickets for specific services. Think
of the ticket-granting ticket as similar to a passport. Like a passport, the
ticket-granting ticket identifies you and allows you to obtain numerous “visas,”
where the “visas” (tickets) are not for foreign countries but for remote machines or
network services. Like passports and visas, the ticket-granting ticket and the other
various tickets have limited lifetimes. The difference is that “Kerberized”
commands notice that you have a passport and obtain the visas for you. You don’t
have to perform the transactions yourself.

Another analogy for the ticket-granting ticket is that of a three-day ski pass that is
good at four different ski resorts. You show the pass at whichever resort you decide
to go to and you receive a lift ticket for that resort, as long as the pass has not
expired. Once you have the lift ticket, you can ski all you want at that resort. If you
go to another resort the next day, you once again show your pass, and you get an
additional lift ticket for the new resort. The difference is that the Kerberos-based
commands notice that you have the weekend ski pass, and they get the lift ticket
for you. So you don’t have to perform the transactions yourself.

2. The KDC creates a ticket–granting ticket and sends it back, in encrypted form, to
the client. The client decrypts the ticket-granting ticket by using the client’s
password.

364 System Administration Guide: Security Services • January 2005

3. Now in possession of a valid ticket-granting ticket, the client can request tickets for
all sorts of network operations, such as rlogin or telnet, for as long as the
ticket-granting ticket lasts. This ticket usually lasts for a few hours. Each time the
client performs a unique network operation, it requests a ticket for that operation
from the KDC.

Subsequent Kerberos Authentications
After the client has received the initial authentication, each subsequent authentication
follows the pattern that is shown in the following figure.

1. Client requests ticket for
server; sends TGT to
KDC as proof of identity.

2. KDC sends client
ticket for server.

3. Client sends
ticket to server.

4. Server allows
access for client.

Client

KDCTGT

TGT = Ticket-granting ticket
KDC = Key Distribution Center

Server

FIGURE 20–2 Obtaining Access to a Service Using Kerberos Authentication

1. The client requests a ticket for a particular service, for example, to remote log in to
another machine, from the KDC by sending the KDC its ticket-granting ticket as
proof of identity.

2. The KDC sends the ticket for the specific service to the client.

Chapter 20 • Introduction to the Kerberos Service 365

For example, suppose user joe wants to access an NFS file system that has been
shared with krb5 authentication required. Because he is already authenticated
(that is, he already has a ticket-granting ticket), as he attempts to access the files,
the NFS client system automatically and transparently obtains a ticket from the
KDC for the NFS service.

For example, suppose the user joe uses rlogin on the server boston. Because he
is already authenticated, that is, he already has a ticket-granting ticket, he
automatically and transparently obtains a ticket as part of the rlogin command.
This ticket allows him to remote log in to boston as often as he wants until the
ticket expires. If joe wants to remote log in to the machine denver, he obtains
another ticket, as in Step 1.

3. The client sends the ticket to the server.

When using the NFS service, the NFS client automatically and transparently sends
the ticket for the NFS service to the NFS server.

4. The server allows the client access.

These steps make it appear that the server doesn’t ever communicate with the KDC.
The server does, though; it registers itself with the KDC, just as the first client does.
For simplicity’s sake, that part has been left out.

The Kerberos Remote Applications
The Kerberos-based (or “Kerberized”) commands that a user such as joe can use are
the following:

� ftp
� rcp
� rdist
� rlogin
� rsh
� ssh
� telnet

These applications are the same as the Solaris applications of the same name.
However, they have been extended to use Kerberos principals to authenticate
transactions, thereby providing Kerberos-based security. See “Kerberos Principals”
on page 366 for information on principals.

These commands are discussed further in “Kerberos User Commands” on page 503.

Kerberos Principals
A client in the Kerberos service is identified by its principal. A principal is a unique
identity to which the KDC can assign tickets. A principal can be a user, such as joe, or
a service, such as nfs or telnet.

366 System Administration Guide: Security Services • January 2005

By convention, a principal name is divided into three components: the primary, the
instance, and the realm. A typical Kerberos principal would be, for example,
joe/admin@ENG.EXAMPLE.COM. In this example:

� joe is the primary. The primary can be a user name, as shown here, or a service,
such as nfs. The primary can also be the word host, which signifies that this
principal is a service principal that is set up to provide various network services,
ftp, rcp, rlogin, and so on.

� admin is the instance. An instance is optional in the case of user principals, but it is
required for service principals. For example, if the user joe sometimes acts as a
system administrator, he can use joe/admin to distinguish himself from his usual
user identity. Likewise, if joe has accounts on two different hosts, he can use two
principal names with different instances, for example,
joe/denver.example.com and joe/boston.example.com. Notice that the
Kerberos service treats joe and joe/admin as two completely different principals.

In the case of a service principal, the instance is the fully qualified host name.
bigmachine.eng.example.com is an example of such an instance. The
primary/instance for this example might be
ftp/bigmachine.eng.example.com or
host/bigmachine.eng.example.com.

� ENG.EXAMPLE.COM is the Kerberos realm. Realms are discussed in “Kerberos
Realms” on page 367.

The following are all valid principal names:

� joe
� joe/admin
� joe/admin@ENG.EXAMPLE.COM
� ftp/host.eng.example.com@ENG.EXAMPLE.COM
� host/eng.example.com@ENG.EXAMPLE.COM

Kerberos Realms
A realm is a logical network, similar to a domain, that defines a group of systems
under the same master KDC. Figure 20–3 shows how realms can relate to one another.
Some realms are hierarchical, where one realm is a superset of the other realm.
Otherwise, the realms are nonhierarchical (or “direct”) and the mapping between the
two realms must be defined. A feature of the Kerberos service is that it permits
authentication across realms. Each realm only needs to have a principal entry for the
other realm in its KDC. This Kerberos feature is called cross-realm authentication.

Chapter 20 • Introduction to the Kerberos Service 367

Hierarchical

Non-hierarchical
ENG.EXAMPLE.COM

EXAMPLE.COM

SEAMCO.COM

FIGURE 20–3 Kerberos Realms

Kerberos Realms and Servers
Each realm must include a server that maintains the master copy of the principal
database. This server is called the master KDC server. Additionally, each realm should
contain at least one slave KDC server, which contains duplicate copies of the principal
database. Both the master KDC server and the slave KDC server create tickets that are
used to establish authentication.

The realm can also include two additional types of Kerberos servers. A Kerberos
network application server is a server that provides access to Kerberized applications
(such as ftp, telnet and rsh). Realms can also include NFS servers, which provide
NFS services by using Kerberos authentication. If you have installed SEAM 1.0 or
1.0.1, the realm might include a Kerberos network application server.

The following figure shows what a hypothetical realm might contain.

368 System Administration Guide: Security Services • January 2005

EXAMPLE.COM

Master KDC

Clients

Slave KDCs

Application servers

FIGURE 20–4 A Typical Kerberos Realm

Kerberos Security Services
In addition to providing secure authentication of users, the Kerberos service provides
two security services:

� Integrity – Just as authentication ensures that clients on a network are who they
claim to be, integrity ensures that the data they send is valid and has not been
tampered with during transit. Integrity is done through cryptographic
checksumming of the data. Integrity also includes user authentication.

� Privacy – Privacy takes security a step further. Privacy not only includes verifying
the integrity of transmitted data, but it encrypts the data before transmission,
protecting it from eavesdroppers. Privacy authenticates users, as well.

Currently, of the various Kerberized applications which are part of the Kerberos
service, only the ftp command allows users to change security service at runtime
(“on the fly”). Developers can design their RPC-based applications to choose a
security service by using the RPCSEC_GSS programming interface.

Chapter 20 • Introduction to the Kerberos Service 369

The Components of Various Kerberos
Releases
Components of the Kerberos service have been included in many releases. Originally,
the Kerberos service and changes to the base operating system to support the Kerberos
service were released using the product name “Sun Enterprise Authentication
Mechanism” which was shortened to SEAM. As more parts of the SEAM product were
included in the Solaris software, the contents of the SEAM release decreased. For the
Solaris 10 release, all parts of the SEAM product are included, so there is no longer a
need for the SEAM product. The SEAM product name exists in the documentation for
historical reasons.

The following table describes which components are included in each release. Each
product release is listed in chronological order. All components are described in the
following sections.

TABLE 20–1 Kerberos Release Contents

Release Name Contents

SEAM 1.0 in Solaris Easy Access Server 3.0 Full release of the Kerberos service for the
Solaris 2.6 and 7 releases

The Kerberos service in the Solaris 8 release Kerberos client software only

SEAM 1.0.1 in the Solaris 8 Admin Pack Kerberos KDC and remote applications for the
Solaris 8 release

The Kerberos service in the Solaris 9 release Kerberos KDC and client software only

SEAM 1.0.2 Kerberos remote applications for the Solaris 9
release

The Kerberos service in the Solaris 10 release Full release of the Kerberos service with
enhancements

Kerberos Components
Similar to the MIT distribution of the Kerberos V5 product, the Solaris Kerberos
service includes the following:

� Key Distribution Center (KDC) (master):

� Kerberos database administration daemon – kadmind.
� Kerberos ticket processing daemon – krb5kdc.

� Slave KDCs.

370 System Administration Guide: Security Services • January 2005

� Database administration programs – kadmin and kadmin.local.
� Database propagation software – kprop.
� User programs for obtaining, viewing, and destroying tickets – kinit, klist, and

kdestroy.
� User program for changing your Kerberos password – kpasswd.
� Remote applications – ftp, rcp, rdist, rlogin, rsh, ssh, and telnet.
� Remote application daemons – ftpd, rlogind, rshd, sshd, and telnetd.
� Administration utilities – ktutil and kdb5_util.
� The Generic Security Service Application Programming Interface (GSS-API) –

Enables applications to use multiple security mechanisms without requiring you to
recompile the application every time a new mechanism is added. Because GSS-API
is machine-independent, it is appropriate for applications on the Internet. GSS-API
provides applications with the ability to include the integrity and privacy security
services, as well as authentication.

� The RPCSEC_GSS Application Programming Interface (API) – Enables NFS
services to use Kerberos authentication. RPCSEC_GSS is a security flavor that
provides security services that are independent of the mechanisms being used.
RPCSEC_GSS sits on top of the GSS-API layer. Any pluggable GSS_API-based
security mechanism can be used by applications that use RPCSEC_GSS.

� Several libraries.

In addition, the Solaris Kerberos service includes the following:

� SEAM Administration Tool (gkadmin) – Enables you to administer the KDC. This
Java™ technology-based GUI enables an administrator to perform the tasks that
are usually performed through the kadmin command.

� The Pluggable Authentication Module (PAM) – Enables applications to use various
authentication mechanisms. PAM can be used to make logins and logouts
transparent to the user.

� Kernel modules – Provides kernel implementations of the GSS-API and
RPCSEC_GSS APIs for NFS.

Kerberos Enhancements in the Solaris 10 Release
These Kerberos enhancements are included in the Solaris 10 Release. Several of the
enhancements were introduced in prior Software Express releases and updated in the
Solaris 10 Beta releases.

� Kerberos protocol support is provided in remote applications, such as ftp, rcp,
rdist, rlogin, rsh, ssh, and telnet. See the man pages for each command or
daemon and the krb5_auth_rules(5) man page for more information.

� The Kerberos principal database can now be transferred by incremental update
instead of by transferring the entire database each time. Incremental propagation
provides these advantages:

Chapter 20 • Introduction to the Kerberos Service 371

� Increased database consistencies across servers
� The need for fewer resources (network, CPU, and so forth)
� Much more timely propagation of updates
� An automated method of propagation

� A new script to help automatically configure a Kerberos client is now available.
The script helps an administrator quickly and easily set up a Kerberos client. For
procedures using the new script, see “Configuring Kerberos Clients” on page 407.
Also, see the kclient(1M) man page for more information.

� Several new encryption types have been added to the Kerberos service. These new
encryption types increase security and enhance compatibility with other Kerberos
implementations that support these encryption types. See “Using Kerberos
Encryption Types” on page 523 for more information. The encryption types
include:

� The AES encryption type can be used for high speed, high security encryption
of Kerberos sessions. The use of AES is enabled through the Cryptographic
Framework.

� ARCFOUR-HMAC provides better compatibility with other Kerberos
implementations.

� Triple DES (3DES) with SHA1 increases security. This encryption type also
enhances interoperability with other Kerberos implementations that support
this encryption type.

� The KDC software, the user commands, and user applications now support the use
of the TCP network protocol. This enhancement provides more robust operation
and better interoperability with other Kerberos implementations, including
Microsoft’s Active Directory. The KDC now listens on both the traditional UDP
ports as well as TCP ports so it can respond to requests using either protocol. The
user commands and applications first try UDP when sending a request to the KDC,
and if that fails, then try TCP.

� Support for IPv6 was added to the KDC software, which includes the kinit,
klist and kprop commands. Support for IPv6 addresses is provided by default.
There are no configuration parameters to change to enable IPv6 support. No IPv6
support is available for the kadmin and kadmind commands.

� A new -e option has been included to several subcommands of the kadmin
command. This new option allows for the selection of the encryption type during
the creation of principals. See the kadmin(1M) man page for more information.

� Additions to the pam_krb5 module manage the Kerberos credentials cache by
using the PAM framework. See the pam_krb5(5) man page for more information.

� Support is provided for auto-discovery of the Kerberos KDC, admin server,
kpasswd server, and host or domain name-to-realm mappings by using DNS
lookups. This enhancement reduces some of the steps needed to install a Kerberos
client. The client is able to locate a KDC server by using DNS instead of by reading
a configuration file. See the krb5.conf(4) man page for more information.

� A new PAM module called pam_krb5_migrate has been introduced. The new
module helps in the automatic migration of users to the local Kerberos realm, if
they do not already have Kerberos accounts. See the pam_krb5_migrate(5) man

372 System Administration Guide: Security Services • January 2005

page for more information.

� The ~/.k5login file can now be used with the GSS applications ftp and ssh.
For more information, see the gss_auth_rules(5) man page.

� The kproplog utility has been updated to output all attribute names per log entry.
For more information, see the kproplog(1M) man page.

� A new configuration file option makes the strict TGT verification feature optionally
configurable on a per-realm basis. See the krb5.conf(4) man page for more
information.

� Extensions to the password-changing utilities enable the Solaris Kerberos V5
administration server to accept password change requests from clients that do not
run Solaris software. See the kadmind(1M) man page for more information.

� The default location of the replay cache has been moved from RAM-based file
systems to persistent storage in /var/krb5/rcache/. The new location protects
against replays if a system is rebooted. Performance enhancements were made to
the rcache code. However, overall replay cache performance might be slower due
to the use of persistent storage.

� The replay cache can now be configured to use file or memory only storage. Refer
to the krb5envvar(5) man page for more information about environment
variables that can be configured for key table and credential cache types or
locations.

� The GSS credential table is no longer necessary for the Kerberos GSS mechanism.
For more information, see “Mapping GSS Credentials to UNIX Credentials”
on page 381 or the gsscred(1M), gssd(1M), and gsscred.conf(4) man pages.

� The Kerberos utilities, kinit and ktutil, are now based on MIT Kerberos
version 1.2.1. This change added new options to the kinit command and new
subcommands to the ktutil command. For more information, see the kinit(1)
and ktutil(1) man pages.

� The Solaris Kerberos Key Distribution Center (KDC) and kadmind is now based
on MIT Kerberos version 1.2.1. The KDC now defaults to a btree-based database,
which is more reliable than the current hash-based database. See the
kdb5_util(1M) man page for more information.

� The kpropd, kadmind, krb5kdc and ktkt_warnd daemons are managed by the
Service Management Facility. Administrative actions on this service, such as
enabling, disabling, or restarting, can be performed using the svcadm command.
The service’s status for all daemons can be queried using the svcs command. For
an overview of the Service Management Facility refer to Chapter 9, “Managing
Services (Overview),” in System Administration Guide: Basic Administration.

Kerberos Components in the Solaris 9 Release
The Solaris 9 release includes all components included in “Kerberos Components”
on page 370, except for the remote applications.

Chapter 20 • Introduction to the Kerberos Service 373

SEAM 1.0.2 Components
The SEAM 1.0.2 release includes the remote applications. These applications are the
only part of SEAM 1.0 that have not been incorporated into the Solaris 9 release. The
components for the remote applications are as follows:

� Client applications – ftp, rcp, rlogin, rsh, and telnet
� Server daemons – ftpd, rlogind, rshd, and telnetd

Kerberos Components in the Solaris 8 Release
The Solaris 8 release includes only the client-side portions of the Kerberos service, so
many components are not included. This product enables systems that run the Solaris
8 release to become Kerberos clients without requiring you to install SEAM 1.0.1
separately. To use these capabilities, you must install a KDC that uses either Solaris
Easy Access Server 3.0 or the Solaris 8 Admin Pack, the MIT distribution, or Windows
2000. The client-side components are not useful without a configured KDC to
distribute tickets. The following components are included in this release:

� User programs for obtaining, viewing, and destroying tickets – kinit, klist, and
kdestroy.

� User program for changing your Kerberos password – kpasswd.

� Key table administration utility – ktutil.

� Additions to the Pluggable Authentication Module (PAM) – Enables applications to
use various authentication mechanisms. PAM can be used to make logins and
logouts transparent to the user.

� GSS_API plug–ins – Provides Kerberos protocol and cryptographic support.

� NFS client and server support.

SEAM 1.0.1 Components
The SEAM 1.0.1 release includes all components of the SEAM 1.0 release that are not
already included in the Solaris 8 release. The components are as follows:

� Key Distribution Center (KDC) (master):

� Kerberos database administration daemon – kadmind
� Kerberos ticket processing daemon – krb5kdc

� Slave KDCs.

� Database administration programs – kadmin and kadmin.local.

� Database propagation software – kprop.

� Remote applications – ftp, rcp, rlogin, rsh, and telnet.

� Remote application daemons – ftpd, rlogind, rshd, and telnetd.

374 System Administration Guide: Security Services • January 2005

� Administration utility – kdb5_util.

� SEAM Administration Tool (gkadmin) – Enables you to administer the KDC. This
Java technology-based GUI enables an administrator to perform the tasks that are
usually performed through the kadmin command.

� A preconfiguration procedure – Enables you to set the parameters for installing
and configuring SEAM 1.0.1, which makes SEAM installation automatic. This
procedure is especially useful for multiple installations.

� Several libraries.

SEAM 1.0 Components
The SEAM 1.0 release includes all of the items included in “Kerberos Components”
on page 370 as well as the following:

� A utility (gsscred) and a daemon (gssd) – These programs help map UNIX user
IDs (UIDs) to principal names. These programs are needed because NFS servers
use UNIX UIDs to identify users and not principal names, which are stored in a
different format.

� The Generic Security Service Application Programming Interface (GSS-API) –
Enables applications to use multiple security mechanisms without requiring you to
recompile the application every time a new mechanism is added. Because GSS-API
is machine-independent, it is appropriate for applications on the Internet. GSS-API
provides applications with the ability to include the integrity and privacy security
services, as well as authentication.

� The RPCSEC_GSS Application Programming Interface (API) – Enables NFS
services to use Kerberos authentication. RPCSEC_GSS is a security flavor that
provides security services that are independent of the mechanisms being used.
RPCSEC_GSS sits on top of the GSS-API layer. Any pluggable GSS_API-based
security mechanism can be used by applications that use RPCSEC_GSS.

� A preconfiguration procedure – Enables you to set the parameters for installing
and configuring SEAM 1.0, which makes installation automatic. This procedure is
especially useful for multiple installations.

Chapter 20 • Introduction to the Kerberos Service 375

376 System Administration Guide: Security Services • January 2005

CHAPTER 21

Planning for the Kerberos Service

This chapter should be studied by administrators who are involved in the installation
and maintenance of the Kerberos service. The chapter discusses several installation
and configuration options that administrators must resolve before they install or
configure the service.

This is a list of the topics that a system administrator or other knowledgeable support
staff should study:

� “Why Plan for Kerberos Deployments?” on page 377
� “Kerberos Realms” on page 378
� “Mapping Host Names Onto Realms” on page 379
� “Client and Service Principal Names” on page 379
� “Ports for the KDC and Admin Services” on page 380
� “The Number of Slave KDCs” on page 380
� “Which Database Propagation System to Use” on page 382
� “Clock Synchronization Within a Realm” on page 383
� “Client Installation Options” on page 383
� “Kerberos Encryption Types” on page 383
� “Online Help URL in the SEAM Administration Tool” on page 384

Why Plan for Kerberos Deployments?
Before you install the Kerberos service, you must resolve several configuration issues.
Although changing the configuration after the initial install is not impossible, doing so
becomes more difficult with each new client that is added to the system. In addition,
some changes require a full re-installation, so it is better to consider long-term goals
when you plan your Kerberos configuration.

377

Deploying a Kerberos infrastructure involves such tasks as installing KDCs, creating
keys for your hosts, and migrating users. Reconfiguring a Kerberos deployment can be
as hard as performing an initial deployment, so plan a deployment carefully to avoid
having to re-configure.

Kerberos Realms
A realm is logical network, similar to a domain, that defines a group of systems that are
under the same master KDC. As with establishing a DNS domain name, issues such as
the realm name, the number and size of each realm, and the relationship of a realm to
other realms for cross-realm authentication should be resolved before you configure
the Kerberos service.

Realm Names
Realm names can consist of any ASCII string. Usually, the realm name is the same as
your DNS domain name, except that the realm name is in uppercase. This convention
helps differentiate problems with the Kerberos service from problems with the DNS
namespace, while using a name that is familiar. If you do not use DNS or you choose
to use a different string, then you can use any string. However, the configuration
process requires more work. The use of realm names that follow the standard Internet
naming structure is wise.

Number of Realms
The number of realms that your installation requires depends on several factors:

� The number of clients to be supported. Too many clients in one realm makes
administration more difficult and eventually requires that you split the realm. The
primary factors that determine the number of clients that can be supported are as
follows:

� The amount of Kerberos traffic that each client generates
� The bandwidth of the physical network
� The speed of the hosts

Because each installation will have different limitations, no rule exists for
determining the maximum number of clients.

� How far apart the clients are. Setting up several small realms might make sense if
the clients are in different geographic regions.

� The number of hosts that are available to be installed as KDCs. Each realm should
have at least two KDC servers, one master server and one slave server.

378 System Administration Guide: Security Services • January 2005

Alignment of Kerberos realms with administrative domains is recommended. Note
that a Kerberos V realm can span multiple sub-domains of the DNS domain to which
the realm corresponds.

Realm Hierarchy
When you are configuring multiple realms for cross-realm authentication, you need to
decide how to tie the realms together. You can establish a hierarchical relationship
among the realms, which provides automatic paths to the related domains. Of course,
all realms in the hierarchical chain must be configured properly. The automatic paths
can ease the administration burden. However, if there are many levels of domains, you
might not want to use the default path because it requires too many transactions.

You can also choose to establish the connection directly. A direct connection is most
useful when too many levels exist between two hierarchical realms or when no
hierarchal relationship exists. The connection must be defined in the
/etc/krb5/krb5.conf file on all hosts that use the connection. So, some additional
work is required. For an introduction, see “Kerberos Realms” on page 367. For the
configuration procedures for multiple realms, see “Configuring Cross-Realm
Authentication” on page 396.

Mapping Host Names Onto Realms
The mapping of host names onto realm names is defined in the domain_realm
section of the krb5.conf file. These mappings can be defined for a whole domain
and for individual hosts, depending on the requirements.

DNS can also be used to look up information about the KDCs. Using DNS makes it
easier to change the information because you will not need to edit the krb5.conf file
on all of the clients each time you make a change. See the krb5.conf(4) man page for
more information.

Client and Service Principal Names
When you are using the Kerberos service, it is strongly recommended that DNS
services already be configured and running on all hosts. If DNS is used, it must be
enabled on all hosts or on none of them. If DNS is available, then the principal should
contain the Fully Qualified Domain Name (FQDN) of each host. For example, if the

Chapter 21 • Planning for the Kerberos Service 379

host name is boston, the DNS domain name is example.com, and the realm name is
EXAMPLE.COM, then the principal name for the host should be
host/boston.example.com@EXAMPLE.COM. The examples in this book require
that DNS is configured and use the FQDN for each host.

For the principal names that include the FQDN of a host, it is important to match the
string that describes the DNS domain name in the /etc/resolv.conf file. The
Kerberos service requires that the DNS domain name be in lowercase letters when you
are specifying the FQDN for a principal. The DNS domain name can include
uppercase and lowercase letters, but only use lowercase letters when you are creating
a host principal. For example, it doesn’t matter if the DNS domain name is
example.com, Example.COM, or any other variation. The principal name for the host
would still be host/boston.example.com@EXAMPLE.COM.

The Kerberos service can run without DNS services. However, some key capabilities,
such as the ability to communicate with other realms, will not work. If DNS is not
configured, then a simple host name can be used as the instance name. In this case, the
principal would be host/boston@EXAMPLE.COM. If DNS is enabled later, all host
principals must be deleted and replaced in the KDC database.

In addition, the Service Management Facility has been configured so that many of the
daemons or commands do not start if the DNS service is not running. The
kdb5_util, kadmind, and kpropd daemons, as well as the kprop command all are
configured to depend on the DNS service. To fully utilize the features available using
the Kerberos service and SMF, you must configure DNS on all hosts.

Ports for the KDC and Admin Services
By default, port 88 and port 750 are used for the KDC, and port 749 is used for the
KDC administration daemon. Different port numbers can be used. However, if you
change the port numbers, then the /etc/services and /etc/krb5/krb5.conf
files must be changed on every client. In addition, the /etc/krb5/kdc.conf file on
each KDC must be updated.

The Number of Slave KDCs
Slave KDCs generate credentials for clients just as the master KDC does. Slave KDCs
provide backup if the master becomes unavailable. Each realm should have at least
one slave KDC. Additional slave KDCs might be required, depending on these factors:

� The number of physical segments in the realm. Normally, the network should be
set up so that each segment can function, at least minimally, without the rest of the
realm. To do so, a KDC must be accessible from each segment. The KDC in this

380 System Administration Guide: Security Services • January 2005

instance could be either a master or a slave.

� The number of clients in the realm. By adding more slave KDC servers, you can
reduce the load on the current servers.

It is possible to add too many slave KDCs. Remember that the KDC database must be
propagated to each server, so the more KDC servers that are installed, the longer it can
take to get the data updated throughout the realm. Also, because each slave retains a
copy of the KDC database, more slaves increase the risk of a security breach.

In addition, one or more slave KDCs can easily be configured to be swapped with the
master KDC. The advantage of configuring at least one slave KDC in this way is that if
the master KDC fails for any reason, you will have a system preconfigured that will be
easy to swap as the master KDC. For instructions on how to configure a swappable
slave KDC, see “Swapping a Master KDC and a Slave KDC” on page 419.

Mapping GSS Credentials to UNIX
Credentials
The Kerberos service provides a default mapping of GSS credential names to UNIX
user IDs (UIDs) for GSS applications that require this mapping, such as NFS. GSS
credential names are equivalent to Kerberos principal names when using the Kerberos
service. The default mapping algorithm is to take a one component Kerberos principal
name and use that component, which is the primary name of the principal, to look up
the UID. The look up occurs in the default realm or any realm that is allowed by using
the auth_to_local_realm parameter in /etc/krb5.conf. For example, the user
principal name bob@EXAMPLE.COM is mapped to the UID of the UNIX user named
bob using the password table. The user principal name bob/admin@EXAMPLE.COM
would not be mapped, because the principal name includes an instance component of
admin. If the default mappings for the user credentials are sufficient, the GSS
credential table does not need to be populated. In past releases, populating the GSS
credential table was required to get the NFS service to work. If the default mapping is
not sufficient, for example if you want to map a principal name which contains an
instance component, then other methods should be used. For more information see:

� “How to Create a Credential Table” on page 403
� “How to Add a Single Entry to the Credential Table” on page 403
� “How to Provide Credential Mapping Between Realms” on page 404
� “Observing Mapping from GSS Credentials to UNIX Credentials” on page 455

Chapter 21 • Planning for the Kerberos Service 381

Automatic User Migration to a Kerberos
Realm
UNIX users who do not have valid user accounts in the default Kerberos realm can be
automatically migrated using the PAM framework. Specifically, the
pam_krb5_migrate module would be used in the authentication stack of the PAM
service. Services would be setup up so that whenever a user, who does not have a
Kerberos principal, performs a successful log in to a system using their password, a
Kerberos principal would be automatically created for that user. The new principal
would use the same password. See “Configuring Automatic Migration of Users in a
Kerberos Realm” on page 416 for instructions on how to use the pam_krb5_migrate
module.

Which Database Propagation System to
Use
The database that is stored on the master KDC must be regularly propagated to the
slave KDCs. You can configure the propagation of the database to be incremental. The
incremental process propagates only updated information to the slave KDCs, rather
than the entire database. For more information about database propagation, see
“Administering the Kerberos Database” on page 424.

If you do not use incremental propagation, one of the first issues to resolve is how
often to update the slave KDCs. The need to have up-to-date information that is
available to all clients must be weighed against the amount of time it takes to
complete the update.

In large installations with many KDCs in one realm, one or more slaves can propagate
the data so that the process is done in parallel. This strategy reduces the amount of
time that the update takes, but it also increases the level of complexity in
administering the realm. For a complete description of this strategy, see “Setting Up
Parallel Propagation” on page 437.

382 System Administration Guide: Security Services • January 2005

Clock Synchronization Within a Realm
All hosts that participate in the Kerberos authentication system must have their
internal clocks synchronized within a specified maximum amount of time. Known as
clock skew, this feature provides another Kerberos security check. If the clock skew is
exceeded between any of the participating hosts, requests are rejected.

One way to synchronize all the clocks is to use the Network Time Protocol (NTP)
software. See “Synchronizing Clocks Between KDCs and Kerberos Clients” on page
418 for more information. Other ways of synchronizing the clocks are available, so the
use of NTP is not required. However, some form of synchronization should be used to
prevent access failures because of clock skew.

Client Installation Options
A new feature in the Solaris 10 release is the kclient installation utility. The utility
can be run in interactive mode or noninteractive mode. In interactive mode, the user is
prompted for Kerberos-specific parameter values, which allows the user to make
changes to the existing installation when installing the client. In noninteractive mode,
a file with previously set parameter values is used. Also, command-line options can be
used in the noninteractive mode. Both interactive and noninteractive modes require
less steps than the manual process, which should make the process quicker and less
prone to error. See “Configuring Kerberos Clients” on page 407 for a description of all
the client installation processes.

Kerberos Encryption Types
An encryption type is an identifier that specifies the encryption algorithm, encryption
mode, and hash algorithms used in the Kerberos service. The keys in the Kerberos
service have an associated encryption type to identify the cryptographic algorithm
and mode to be used when the service performs cryptographic operations with the
key. Here are the supported encryption types in the Solaris 10 release:

� des-cbc-md5
� des-cbc-crc
� des3-cbc-sha1
� arcfour-hmac-md5

Chapter 21 • Planning for the Kerberos Service 383

� arcfour-hmac-md5-exp
� aes128-cts-hmac-sha1-96

Note – In addition, the aes256-cts-hmac-sha1-96 encryption type can be used
with the Kerberos service if the unbundled Strong Cryptographic packages are
installed.

If you want to change the encryption type, you should do so when creating a new
principal database. Because of the interaction between the KDC, the server, and the
client, changing the encryption type on an existing database is difficult. Leave these
parameters unset unless you are re-creating the database. Refer to “Using Kerberos
Encryption Types” on page 523 for more information.

Note – If you have a master KDC installed that is not running the Solaris 10 release, the
slave KDCs must be upgraded to the Solaris 10 release before you upgrade the master
KDC. A Solaris 10 master KDC will use the new encryption types, which an older
slave will not be able to handle.

Online Help URL in the SEAM
Administration Tool
The online help URL is used by the SEAM Administration Tool, so the URL should be
defined properly to enable the “Help Contents“ menu to work. The HTML version of
this manual can be installed on any appropriate server. Alternately, you can decide to
use the collections at http://docs.sun.com.

The URL is specified in the krb5.conf file when configuring a host to use the Kerberos
service. The URL should point to the section titled “SEAM Administration Tool” in the
“Administering Principals and Policies (Tasks)” chapter in this book. You can choose
another HTML page, if another location is more appropriate.

384 System Administration Guide: Security Services • January 2005

http://docs.sun.com

CHAPTER 22

Configuring the Kerberos Service
(Tasks)

This chapter provides configuration procedures for KDC servers, network application
servers, NFS servers, and Kerberos clients. Many of these procedures require
superuser access, so they should be used by system administrators or advanced users.
Cross-realm configuration procedures and other topics related to KDC servers are also
covered.

The following topics are covered.

� “Configuring the Kerberos Service (Task Map)” on page 385
� “Configuring KDC Servers” on page 387
� “Configuring Cross-Realm Authentication” on page 396
� “Configuring Kerberos Network Application Servers” on page 399
� “Configuring Kerberos NFS Servers” on page 401
� “Configuring Kerberos Clients” on page 407
� “Synchronizing Clocks Between KDCs and Kerberos Clients” on page 418
� “Swapping a Master KDC and a Slave KDC” on page 419
� “Administering the Kerberos Database” on page 424
� “Increasing Security on Kerberos Servers” on page 439

Configuring the Kerberos Service (Task
Map)
Parts of the configuration process depend on other parts and must be done in a
specific order. These procedures often establish services that are required to use the
Kerberos service. Other procedures are not dependent on any order, and can be done
when appropriate. The following task map shows a suggested order for a Kerberos
installation.

385

Task Description For Instructions

1. Plan for your Kerberos
installation.

Lets you resolve configuration issues before
you start the software configuration process.
Planning ahead saves you time and other
resources in the long run.

Chapter 21

2. (Optional) Install NTP. Configures the Network Time Protocol (NTP)
software, or another clock synchronization
protocol. In order for the Kerberos service to
work properly, the clocks on all systems in the
realm must be synchronized.

“Synchronizing Clocks Between
KDCs and Kerberos Clients”
on page 418

3. Configure the master KDC
server.

Configures and builds the master KDC server
and database for a realm.

“How to Configure a Master
KDC” on page 387

4. Configure a slave KDC
server.

Configures and builds a slave KDC server for
a realm.

“How to Configure a Slave
KDC” on page 392

5. (Optional) Increase security
on the KDC servers.

Prevents security breaches on the KDC
servers.

“How to Restrict Access to KDC
Servers” on page 440

6. (Optional) Configure
swappable KDC servers.

Makes the task of swapping the master KDC
and a slave KDC easier.

“How to Configure a Swappable
Slave KDC” on page 420

Configuring Additional Kerberos
Services (Task Map)
Once the required steps have been completed, the following procedures can be used,
when appropriate.

Task Description For Instructions

Configure cross-realm
authentication.

Enables communications from one realm to
another realm.

“Configuring Cross-Realm
Authentication” on page 396

Configure Kerberos
application servers.

Enables a server to support services such as
ftp, telnet, and rsh using Kerberos
authentication.

“Configuring Kerberos Network
Application Servers” on page 399

Configure Kerberos clients. Enables a client to use Kerberos services. “Configuring Kerberos Clients”
on page 407

Configure Kerberos NFS
server.

Enables a server to share a file system that
requires Kerberos authentication.

“Configuring Kerberos NFS
Servers” on page 401

386 System Administration Guide: Security Services • January 2005

Task Description For Instructions

Increase security on an
application server.

Increases security on an application server by
restricting access to authenticated transactions
only.

“How to Enable Only Kerberized
Applications” on page 439

Configuring KDC Servers
After you install the Kerberos software, you must configure the KDC servers.
Configuring a master KDC and at least one slave KDC provides the service that issues
credentials. These credentials are the basis for the Kerberos service, so the KDCs must
be installed before you attempt other tasks.

The most significant difference between a master KDC and a slave KDC is that only
the master KDC can handle database administration requests. For instance, changing a
password or adding a new principal must be done on the master KDC. These changes
can then be propagated to the slave KDCs. Both the slave KDC and master KDC
generate credentials. This feature provides redundancy in case the master KDC cannot
respond.

� How to Configure a Master KDC
In this procedure, incremental propagation is configured. In addition, the following
configuration parameters are used:

� Realm name = EXAMPLE.COM

� DNS domain name = example.com

� Master KDC = kdc1.example.com

� admin principal = kws/admin

� Online help URL =
http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

Note – Adjust the URL to point to the “SEAM Administration Tool” section, as
described in “Online Help URL in the SEAM Administration Tool” on page 384.

This procedure requires that DNS must be running. For specific naming instructions if
this master is to be swappable, see “Swapping a Master KDC and a Slave KDC”
on page 419.

1. Become superuser on the master KDC.

Before You
Begin

Steps

Chapter 22 • Configuring the Kerberos Service (Tasks) 387

2. Edit the Kerberos configuration file (krb5.conf).

You need to change the realm names and the names of the servers. See the
krb5.conf(4) man page for a full description of this file.

kdc1 # cat /etc/krb5/krb5.conf
[libdefaults]

default_realm = EXAMPLE.COM

[realms]
EXAMPLE.COM = {
kdc = kdc1.example.com
admin_server = kdc1.example.com

}

[domain_realm]
.example.com = EXAMPLE.COM

#
if the domain name and realm name are equivalent,
this entry is not needed
#
[logging]

default = FILE:/var/krb5/kdc.log
kdc = FILE:/var/krb5/kdc.log

[appdefaults]
gkadmin = {

help_url = http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

}

In this example, the lines for default_realm, kdc, admin_server, and all
domain_realm entries were changed. In addition, the line that defines the
help_url was edited.

Note – If you want to restrict the encryption types, you can set the
default_tkt_enctypes or default_tgs_enctypes lines. Refer to “Using
Kerberos Encryption Types” on page 523 for a description of the issues involved
with restricting the encryption types.

3. Edit the KDC configuration file (kdc.conf).

You need to change the realm name. See the kdc.conf(4) man page for a full
description of this file.

kdc1 # cat /etc/krb5/kdc.conf
[kdcdefaults]

kdc_ports = 88,750

[realms]
EXAMPLE.COM= {

profile = /etc/krb5/krb5.conf
database_name = /var/krb5/principal

388 System Administration Guide: Security Services • January 2005

admin_keytab = /etc/krb5/kadm5.keytab
acl_file = /etc/krb5/kadm5.acl
kadmind_port = 749
max_life = 8h 0m 0s
max_renewable_life = 7d 0h 0m 0s
sunw_dbprop_enable = true

sunw_dbprop_master_ulogsize = 1000 }

In this example, the realm name definition in the realms section was changed.
Also, in the realms section, lines to enable incremental propagation and to select
the number of updates the KDC master keeps in the log were added.

Note – If you want to restrict the encryption types, you can set the
permitted_enctypes, supported_enctypes, or master_key_type lines.
Refer to “Using Kerberos Encryption Types” on page 523 for a description of the
issues involved with restricting the encryption types.

4. Create the KDC database by using the kdb5_util command.
The kdb5_util command creates the KDC database. Also, when used with the -s
option, this command creates a stash file that is used to authenticate the KDC to
itself before the kadmind and krb5kdc daemons are started.

kdc1 # /usr/sbin/kdb5_util create -r EXAMPLE.COM -s
Initializing database ’/var/krb5/principal’ for realm ’EXAMPLE.COM’
master key name ’K/M@EXAMPLE.COM’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key: <Type the key>
Re-enter KDC database master key to verify: <Type it again>

The -r option followed by the realm name is not required if the realm name is
equivalent to the domain name in the server’s namespace.

5. Edit the Kerberos access control list file (kadm5.acl).
Once populated, the /etc/krb5/kadm5.acl file should contain all principal
names that are allowed to administer the KDC.

kws/admin@EXAMPLE.COM *

The entry gives the kws/admin principal in the EXAMPLE.COM realm the ability to
modify principals or policies in the KDC. The default installation includes an
asterisk (*) to match all admin principals. This default could be a security risk, so it
is more secure to include a list of all of the admin principals. See the
kadm5.acl(4) man page for more information.

6. Start the kadmin.local command and add principals.
The next substeps create principals that are used by the Kerberos service.

kdc1 # /usr/sbin/kadmin.local

kadmin.local:

a. Add administration principals to the database.

Chapter 22 • Configuring the Kerberos Service (Tasks) 389

You can add as many admin principals as you need. You must add at least one
admin principal to complete the KDC configuration process. For this example, a
kws/admin principal is added. You can substitute an appropriate principal
name instead of “kws.”

kadmin.local: addprinc kws/admin
Enter password for principal kws/admin@EXAMPLE.COM: <Type the password>
Re-enter password for principal kws/admin@EXAMPLE.COM: <Type it again>
Principal "kws/admin@EXAMPLE.COM" created.

kadmin.local:

b. Create the kiprop principals.

The kiprop principal is used to authorize updates from the master KDC.

kadmin.local: addprinc -randkey kiprop/kdc1.example.com
Principal "kiprop/kdc1.example.com@EXAMPLE.COM" created.

kadmin.local:

c. Create a keytab file for the kadmind service.

This command sequence creates a special keytab file with principal entries for
kadmin and changepw. These principals are needed for the kadmind service.
Note that when the principal instance is a host name, the FQDN must be
specified in lowercase letters, regardless of the case of the domain name in the
/etc/resolv.conf file.

kadmin.local: ktadd -k /etc/krb5/kadm5.keytab kadmin/kdc1.example.com
Entry for principal kadmin/kdc1.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/kdc1.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/kdc1.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/kdc1.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab changepw/kdc1.example.com
EEntry for principal changepw/kdc1.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal changepw/kdc1.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal changepw/kdc1.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal changepw/kdc1.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab kadmin/changepw
Entry for principal kadmin/changepw with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/changepw with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/changepw with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/changepw with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.

kadmin.local:

390 System Administration Guide: Security Services • January 2005

d. Add the kiprop principal for the master KDC server to the kadmind keytab
file.

Adding the kiprop principal to the kadm5.keytab file allows the kadmind
command to authenticate itself when incremental propagation is started.

kadmin.local: ktadd -k /etc/krb5/kadm5.keytab kiprop/kdc1.example.com
Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.

kadmin.local:

e. Quit kadmin.local.

You have added all of the required principals for the next steps.

kadmin.local: quit

7. Start the Kerberos daemons.

kdc1 # svcadm enable -r network/security/krb5kdc

kdc1 # svcadm enable -r network/security/kadmin

8. Start kadmin and add more principals.

At this point, you can add principals by using the SEAM Administration Tool. To
do so, you must log in with one of the admin principal names that you created
earlier in this procedure. However, the following command-line example is shown
for simplicity.

kdc1 # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin:

a. Create the master KDC host principal.

The host principal is used by Kerberized applications, such as klist and
kprop. Solaris 10 clients use this principal when mounting an authenticated
NFS file system. Note that when the principal instance is a host name, the
FQDN must be specified in lowercase letters, regardless of the case of the
domain name in the /etc/resolv.conf file.

kadmin: addprinc -randkey host/kdc1.example.com
Principal "host/kdc1.example.com@EXAMPLE.COM" created.

kadmin:

b. (Optional) Create the kclient principal.

Chapter 22 • Configuring the Kerberos Service (Tasks) 391

This principal is used by the kclient utility during the installation of a
Kerberos client. If you do not plan on using this utility, then you do not need to
add the principal. The users of the kclient utility need to use this password.

kadmin: addprinc clntconfig/admin
Enter password for principal clntconfig/admin@EXAMPLE.COM: <Type the password>
Re-enter password for principal clntconfig/admin@EXAMPLE.COM: <Type it again>
Principal "clntconfig/admin@EXAMPLE.COM" created.

kadmin:

c. Add the master KDC’s host principal to the master KDC’s keytab file.

Adding the host principal to the keytab file allows this principal to be used
automatically.

kadmin: ktadd host/kdc1.example.com
Entry for principal host/kdc1.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/kdc1.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/kdc1.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/kdc1.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin:

d. Quit kadmin.

kadmin: quit

9. (Optional) Synchronize the master KDCs clock by using NTP or another clock
synchronization mechanism.

Installing and using the Network Time Protocol (NTP) is not required. However,
every clock must be within the default time that is defined in the libdefaults
section of the krb5.conf file for authentication to succeed. See “Synchronizing
Clocks Between KDCs and Kerberos Clients” on page 418 for information about
NTP.

10. Configure Slave KDCs.

To provide redundancy, make sure to install at least on slave KDC. See “How to
Configure a Slave KDC” on page 392 for specific instructions.

� How to Configure a Slave KDC
In this procedure, a new slave KDC named kdc2 is configured. Also, incremental
propagation is configured. This procedure uses the following configuration
parameters:

� Realm name = EXAMPLE.COM

� DNS domain name = example.com

392 System Administration Guide: Security Services • January 2005

� Master KDC = kdc1.example.com

� Slave KDC = kdc2.example.com

� admin principal = kws/admin

� Online help URL =
http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

Note – Adjust the URL to point to the “SEAM Administration Tool” section, as
described in the “Online Help URL in the SEAM Administration Tool” on page
384.

The master KDC must be configured. For specific instructions if this slave is to be
swappable, see “Swapping a Master KDC and a Slave KDC” on page 419.

1. On the master KDC, become superuser.

2. On the master KDC, start kadmin.

You must log in with one of the admin principal names that you created when you
configured the master KDC.

kdc1 # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin:

a. On the master KDC, add slave host principals to the database, if not already
done.

For the slave to function, it must have a host principal. Note that when the
principal instance is a host name, the FQDN must be specified in lowercase
letters, regardless of the case of the domain name in the /etc/resolv.conf
file.

kadmin: addprinc -randkey host/kdc2.example.com
Principal "host/kdc2@EXAMPLE.COM" created.

kadmin:

b. On the master KDC, create the kiprop principal.

The kiprop principal is used to authorize incremental propagation from the
master KDC.

kadmin: addprinc -randkey kiprop/kdc2.example.com
Principal "kiprop/kdc2.example.com@EXAMPLE.COM" created.

kadmin:

c. Quit kadmin.

kadmin: quit

3. On the master KDC, edit the Kerberos configuration file (krb5.conf).

Before You
Begin

Steps

Chapter 22 • Configuring the Kerberos Service (Tasks) 393

You need to add an entry for each slave. See the krb5.conf(4) man page for a full
description of this file.

kdc1 # cat /etc/krb5/krb5.conf
.
.
[realms]

EXAMPLE.COM = {
kdc = kdc1.example.com
kdc = kdc2.example.com
admin_server = kdc1.example.com

}

4. On the master KDC, add an kiprop entry to kadm5.acl.

This entry allows the master KDC to receive requests for incremental propagation
for the kdc2 server.

kdc1 # cat /etc/krb5/kadm5.acl
*/admin@EXAMPLE.COM *

kiprop/kdc2.example.com@EXAMPLE.COM p

5. On the master KDC, restart kadmind to use the new entries in the kadm5.acl
file.

kdc1 # svcadm restart network/security/kadmin

6. On all slave KDCs, copy the KDC administration files from the master KDC
server.

This step needs to be followed on all slave KDCs, because the master KDC server
has updated information that each KDC server needs. You can use ftp or a similar
transfer mechanism to grab copies of the following files from the master KDC:

� /etc/krb5/krb5.conf
� /etc/krb5/kdc.conf

7. On all slave KDCs, add an entry for the master KDC and each slave KDC into
the database propagation configuration file, kpropd.acl.

This information needs to be updated on all slave KDC servers.

kdc2 # cat /etc/krb5/kpropd.acl
host/kdc1.example.com@EXAMPLE.COM

host/kdc2.example.com@EXAMPLE.COM

8. On all slave KDCs, make sure that the Kerberos access control list file,
kadm5.acl, is not populated.

An unmodified kadm5.acl file would look like:

kdc2 # cat /etc/krb5/kadm5.acl

*/admin@___default_realm___ *

If the file has kiprop entries, remove them.

9. On the new slave, change an entry in kdc.conf.

394 System Administration Guide: Security Services • January 2005

Replace the sunw_dbprop_master_ulogsize entry with an entry defining
sunw_dbprop_slave_poll. The entry sets the poll time to 2 minutes.

kdc1 # cat /etc/krb5/kdc.conf
[kdcdefaults]

kdc_ports = 88,750

[realms]
EXAMPLE.COM= {

profile = /etc/krb5/krb5.conf
database_name = /var/krb5/principal
admin_keytab = /etc/krb5/kadm5.keytab
acl_file = /etc/krb5/kadm5.acl
kadmind_port = 749
max_life = 8h 0m 0s
max_renewable_life = 7d 0h 0m 0s
sunw_dbprop_enable = true
sunw_dbprop_slave_poll = 2m

}

10. On the new slave, start the kadmin command.

You must log in with one of the admin principal names that you created when you
configured the master KDC.

kdc2 # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin:

a. Add the slave’s host principal to the slave’s keytab file by using kadmin.

This entry allows kprop and other Kerberized applications to function. Note
that when the principal instance is a host name, the FQDN must be specified in
lowercase letters, regardless of the case of the domain name in the
/etc/resolv.conf file.

kadmin: ktadd host/kdc2.example.com
Entry for principal host/kdc2.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/kdc2.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/kdc2.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/kdc2.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin:

b. Add the kiprop principal to the slave KDC’s keytab file.

Adding the kiprop principal to the krb5.keytab file allows the kpropd
command to authenticate itself when incremental propagation is started.

kadmin: ktadd kiprop/kdc2.example.com
Entry for principal kiprop/kdc2.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal kiprop/kdc2.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.

Chapter 22 • Configuring the Kerberos Service (Tasks) 395

Entry for principal kiprop/kdc2.example.com with kvno 3, encryption type ARCFOUR
with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

Entry for principal kiprop/kdc2.example.com with kvno 3, encryption type DES cbc mode
with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin:

c. Quit kadmin.

kadmin: quit

11. On the new slave, start the Kerberos propagation daemon.

kdc2 # /usr/lib/krb5/kpropd

12. On the new slave, create a stash file by using kdb5_util.

kdc2 # /usr/sbin/kdb5_util stash
kdb5_util: Cannot find/read stored master key while reading master key
kdb5_util: Warning: proceeding without master key

Enter KDC database master key: <Type the key>

13. Kill the Kerberos propagation daemon.

kdc2 # pkill kpropd

14. (Optional) On the new slave KDC, synchronize the master KDCs clock by using
NTP or another clock synchronization mechanism.

Installing and using the Network Time Protocol (NTP) is not required. However,
every clock must be within the default time that is defined in the libdefaults
section of the krb5.conf file for authentication to succeed. See “Synchronizing
Clocks Between KDCs and Kerberos Clients” on page 418 for information about
NTP.

15. On the new slave, start the KDC daemon (krb5kdc).

When the krb5kdc service is enabled, kpropd also starts if the system is
configured as a slave.

kdc2 # svcadm enable network/security/krb5kdc

Configuring Cross-Realm Authentication
You have several ways of linking realms together so that users in one realm can be
authenticated in another realm. Normally, cross-realm authentication is accomplished
by establishing a secret key that is shared between the two realms. The relationship of
the realms can be either hierarchal or directional (see “Realm Hierarchy” on page 379).

396 System Administration Guide: Security Services • January 2005

� How to Establish Hierarchical Cross-Realm
Authentication
The example in this procedure uses two realms, ENG.EAST.EXAMPLE.COM and
EAST.EXAMPLE.COM. Cross-realm authentication will be established in both
directions. This procedure must be completed on the master KDC in both realms.

The master KDC for each realm must be configured. To fully test the authentication
process, several clients or slave KDCs must be installed.

1. Become superuser on the first master KDC.

2. Create ticket-granting ticket service principals for the two realms.

You must log in with one of the admin principal names that was created when you
configured the master KDC.

/usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin: addprinc krbtgt/ENG.EAST.EXAMPLE.COM@EAST.EXAMPLE.COM
Enter password for principal krgtgt/ENG.EAST.EXAMPLE.COM@EAST.EXAMPLE.COM: <Type password>
kadmin: addprinc krbtgt/EAST.EXAMPLE.COM@ENG.EAST.EXAMPLE.COM
Enter password for principal krgtgt/EAST.EXAMPLE.COM@ENG.EAST.EXAMPLE.COM: <Type password>
kadmin: quit

Note – The password that is specified for each service principal must be identical in
both KDCs. Thus, the password for the service principal
krbtgt/ENG.EAST.EXAMPLE.COM@EAST.EXAMPLE.COM must be the same in
both realms.

3. Add entries to the Kerberos configuration file (krb5.conf) to define domain
names for every realm.

cat /etc/krb5/krb5.conf
[libdefaults]
.
.
[domain_realm]

.eng.east.example.com = ENG.EAST.EXAMPLE.COM

.east.example.com = EAST.EXAMPLE.COM

In this example, domain names for the ENG.EAST.EXAMPLE.COM and
EAST.EXAMPLE.COM realms are defined. It is important to include the subdomain
first, because the file is searched top down.

4. Copy the Kerberos configuration file to all clients in this realm.

For cross-realm authentication to work, all systems (including slave KDCs and
other servers) must have the new version of the Kerberos configuration file

Before You
Begin

Steps

Chapter 22 • Configuring the Kerberos Service (Tasks) 397

(/etc/krb5/krb5.conf) installed.

5. Repeat all of these steps in the second realm.

� How to Establish Direct Cross-Realm
Authentication
The example in this procedure uses two realms, ENG.EAST.EXAMPLE.COM and
SALES.WEST.EXAMPLE.COM. Cross-realm authentication will be established in both
directions. This procedure must be completed on the master KDC in both realms.

The master KDC for each realm must be configured. To fully test the authentication
process, several clients or slave KDCs must be installed.

1. Become superuser on one of the master KDC servers.

2. Create ticket-granting ticket service principals for the two realms.

You must log in with one of the admin principal names that was created when you
configured the master KDC.

/usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin: addprinc krbtgt/ENG.EAST.EXAMPLE.COM@SALES.WEST.EXAMPLE.COM
Enter password for principal
krgtgt/ENG.EAST.EXAMPLE.COM@SALES.WEST.EXAMPLE.COM: <Type the password>

kadmin: addprinc krbtgt/SALES.WEST.EXAMPLE.COM@ENG.EAST.EXAMPLE.COM
Enter password for principal
krgtgt/SALES.WEST.EXAMPLE.COM@ENG.EAST.EXAMPLE.COM: <Type the password>

kadmin: quit

Note – The password that is specified for each service principal must be identical in
both KDCs. Thus, the password for the service principal
krbtgt/ENG.EAST.EXAMPLE.COM@SALES.WEST.EXAMPLE.COM must be the
same in both realms.

3. Add entries in the Kerberos configuration file to define the direct path to the
remote realm.

This example shows the clients in the ENG.EAST.EXAMPLE.COM realm. You would
need to swap the realm names to get the appropriate definitions in the
SALES.WEST.EXAMPLE.COM realm.

cat /etc/krb5/krb5.conf
[libdefaults]
.

Before You
Begin

Steps

398 System Administration Guide: Security Services • January 2005

.
[capaths]

ENG.EAST.EXAMPLE.COM = {
SALES.WEST.EXAMPLE.COM = .

}

SALES.WEST.EXAMPLE.COM = {
ENG.EAST.EXAMPLE.COM = .

}

4. Copy the Kerberos configuration file to all clients in the current realm.

For cross-realm authentication to work, all systems (including slave KDCs and
other servers) must have the new version of the Kerberos configuration file
(/etc/krb5/krb5.conf) installed.

5. Repeat all of these steps for the second realm.

Configuring Kerberos Network
Application Servers
Network application servers are hosts that provide access using one or more of the
following network applications: ftp, rcp, rlogin, rsh, and telnet. Only a few
steps are required to enable the Kerberos version of these commands on a server.

� How to Configure a Kerberos Network Application
Server
This procedure uses the following configuration parameters:

� Application server = boston
� admin principal = kws/admin
� DNS domain name = example.com
� Realm name = EXAMPLE.COM

This procedure requires that the master KDC has been configured. To fully test the
process, several clients must be installed.

1. Install the Kerberos client software.

2. (Optional) Install the NTP client or another clock synchronization mechanism.

See “Synchronizing Clocks Between KDCs and Kerberos Clients” on page 418 for
information about NTP.

Before You
Begin

Steps

Chapter 22 • Configuring the Kerberos Service (Tasks) 399

3. Add principals for the new server and update the server’s keytab.

The following command reports the existence of the host principal:

boston # klist -k |grep host
4 host/boston.example.com@EXAMPLE.COM
4 host/boston.example.com@EXAMPLE.COM
4 host/boston.example.com@EXAMPLE.COM

4 host/boston.example.com@EXAMPLE.COM

If the command does not return a principal, then create new principals using the
following steps.

How to use the SEAM Administration Tool to add a principal is explained in “How
to Create a New Kerberos Principal” on page 468. The example in the following
steps shows how to add the required principals using the command line. You must
log in with one of the admin principal names that you created when configuring
the master KDC.

boston # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin:

a. Create the server’s host principal.

kadmin: addprinc -randkey host/boston.example.com
Principal "host/boston.example.com" created.

kadmin:

b. Add the server’s host principal to the server’s keytab.

If the kadmin command is not running, restart it with a command similar to
the following: /usr/sbin/kadmin -p kws/admin

kadmin: ktadd host/boston.example.com
Entry for principal host/boston.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/boston.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/boston.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/boston.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin:

c. Quit kadmin.

kadmin: quit

400 System Administration Guide: Security Services • January 2005

Configuring Kerberos NFS Servers
NFS services use UNIX user IDs (UIDs) to identify a user and cannot directly use GSS
credentials. To translate the credential to a UID, a credential table that maps user
credentials to UNIX UIDs might need to be created. See “Mapping GSS Credentials to
UNIX Credentials” on page 381 for more information on the default credential
mapping. The procedures in this section focus on the tasks that are necessary to
configure a Kerberos NFS server, to administer the credential table, and to initiate
Kerberos security modes for NFS-mounted file systems. The following task map
describes the tasks that are covered in this section.

TABLE 22–1 Configuring Kerberos NFS Servers (Task Map)

Task Description For Instructions

Configure a Kerberos NFS
server.

Enables a server to share a file system that
requires Kerberos authentication.

“How to Configure Kerberos
NFS Servers” on page 401

Create a credential table. Generates a credential table which can be used
to provide mapping from GSS credentials to
UNIX user IDs, if the default mapping is not
sufficient.

“How to Create a Credential
Table” on page 403

Change the credential table
that maps user credentials to
UNIX UIDs.

Updates information in the credential table. “How to Add a Single Entry to
the Credential Table” on page
403

Create credential mappings
between two like realms.

Provides instructions on how to map UIDs
from one realm to another if the realms share a
password file.

“How to Provide Credential
Mapping Between Realms”
on page 404

Share a file system with
Kerberos authentication.

Shares a file system with security modes so
that Kerberos authentication is required.

“How to Set Up a Secure NFS
Environment With Multiple
Kerberos Security Modes”
on page 405

� How to Configure Kerberos NFS Servers
In this procedure, the following configuration parameters are used:

� Realm name = EXAMPLE.COM
� DNS domain name = example.com
� NFS server = denver.example.com
� admin principal = kws/admin

1. Complete the prerequisites for configuring a Kerberos NFS server.
The master KDC must be configured. To fully test the process, you need several
clients.

Steps

Chapter 22 • Configuring the Kerberos Service (Tasks) 401

2. (Optional) Install the NTP client or another clock synchronization mechanism.

Installing and using the Network Time Protocol (NTP) is not required. However,
every clock must be within the default time that is defined in the libdefaults
section of the krb5.conf file for authentication to succeed. See “Synchronizing
Clocks Between KDCs and Kerberos Clients” on page 418 for information about
NTP.

3. Start kadmin.

You can use the SEAM Administration Tool to add a principal, as explained in
“How to Create a New Kerberos Principal” on page 468. To do so, you must log in
with one of the admin principal names that you created when you configured the
master KDC. However, the following example shows how to add the required
principals by using the command line.

denver # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin:

a. Create the server’s NFS service principal.

Note that when the principal instance is a host name, the FQDN must be
specified in lowercase letters, regardless of the case of the domain name in the
/etc/resolv.conf file.
Repeat this step for each unique interface on the system that might be used to
access NFS data. If a host has multiple interfaces with unique names, each
unique name must have its own NFS service principal.

kadmin: addprinc -randkey nfs/denver.example.com
Principal "nfs/denver.example.com" created.

kadmin:

b. Add the server’s NFS service principal to the server’s keytab file.

Repeat this step for each unique service principal created in Step a.

kadmin: ktadd nfs/denver.example.com
Entry for principal nfs/denver.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/denver.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs denver.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/denver.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin:

c. Quit kadmin.

kadmin: quit

4. (Optional) Create special GSS credential maps, if needed.

Normally, the Kerberos service generates appropriate maps between the GSS
credentials and the UNIX UIDs. The default mapping is described in “Mapping

402 System Administration Guide: Security Services • January 2005

GSS Credentials to UNIX Credentials” on page 381. If the default mapping is not
sufficient, see “How to Create a Credential Table” on page 403 for more
information.

5. Share the NFS file system with Kerberos security modes.

See “How to Set Up a Secure NFS Environment With Multiple Kerberos Security
Modes” on page 405 for more information.

� How to Create a Credential Table
The gsscred credential table is used by an NFS server to map Kerberos credentials to
a UID. For NFS clients to mount file systems from an NFS server with Kerberos
authentication, this table must be created if the default mapping is not sufficient.

1. Edit /etc/gss/gsscred.conf and change the security mechanism.

Change the mechanism to files.

2. Create the credential table by using the gsscred command.

gsscred -m kerberos_v5 -a

The gsscred command gathers information from all sources that are listed with
the passwd entry in the /etc/nsswitch.conf file. You might need to
temporarily remove the files entry, if you do not want the local password entries
included in the credential table. See the gsscred(1M) man page for more
information.

� How to Add a Single Entry to the Credential Table
This procedure requires that the gsscred table has already been created on the NFS
server. See “How to Create a Credential Table” on page 403 for instructions.

1. Become superuser on the NFS server.

2. Add an entry to the credential table by using the gsscred command.

gsscred -m mech [-n name [-u uid]] -a

mech Defines the security mechanism to be used.

name Defines the principal name for the user, as defined in the KDC.

uid Defines the UID for the user, as defined in the password database.

-a Adds the UID to principal name mapping.

Steps

Before You
Begin

Steps

Chapter 22 • Configuring the Kerberos Service (Tasks) 403

Adding a Multiple Component Principal to the Credential Table

In the following example, an entry is added for a principal named sandy/admin,
which is mapped to UID 3736.

gsscred -m kerberos_v5 -n sandy/admin -u 3736 -a

Adding a Principal in a Different Domain to the Credential Table

In the following example, an entry is added for a principal named
sandy/admin@EXAMPLE.COM, which is mapped to UID 3736.

gsscred -m kerberos_v5 -n sandy/admin@EXAMPLE.COM -u 3736 -a

� How to Provide Credential Mapping Between
Realms
This procedure provides appropriate credential mapping between realms that use the
same password file. In this example, the realms CORP.EXAMPLE.COM and
SALES.EXAMPLE.COM use the same password file. The credentials for
bob@CORP.EXAMPLE.COM and bob@SALES.EXAMPLE.COM are mapped to the same
UID.

1. Become superuser.

2. On the client system, add entries to the krb5.conf file.

cat /etc/krb5/krb5.conf
[libdefaults]

default_realm = CORP.EXAMPLE.COM
.
[realms]

CORP.EXAMPLE.COM = {
.
auth_to_local_realm = SALES.EXAMPLE.COM
.

}

See “Observing Mapping from GSS Credentials to UNIX Credentials” on page 455 to
help with the process of troubleshooting credential mapping problems.

Example 22–1

Example 22–2

Steps

Troubleshooting

404 System Administration Guide: Security Services • January 2005

� How to Set Up a Secure NFS Environment With
Multiple Kerberos Security Modes
This procedure enables a NFS server to provide secure NFS access using different
security modes or flavors. When a client negotiates a security flavor with the NFS
server, the first flavor that is offered by the server that the client has access to is used.
This flavor is used for all subsequent client requests of the file system shared by the
NFS server.

1. Become superuser on the NFS server.

2. Verify that there is an NFS service principal in the keytab file.

The klist command reports if there is a keytab file and displays the principals. If
the results show that no keytab file exists or that no NFS service principal exists,
you need to verify the completion of all the steps in “How to Configure Kerberos
NFS Servers” on page 401.

klist -k
Keytab name: FILE:/etc/krb5/krb5.keytab
KVNO Principal
---- ---

3 nfs/denver.example.com@EXAMPLE.COM
3 nfs/denver.example.com@EXAMPLE.COM
3 nfs/denver.example.com@EXAMPLE.COM

3 nfs/denver.example.com@EXAMPLE.COM

3. Enable Kerberos security modes in the /etc/nfssec.conf file.

Edit the /etc/nfssec.conf file and remove the “#” that is placed in front of the
Kerberos security modes.

cat /etc/nfssec.conf
.
.
#
Uncomment the following lines to use Kerberos V5 with NFS
#
krb5 390003 kerberos_v5 default - # RPCSEC_GSS
krb5i 390004 kerberos_v5 default integrity # RPCSEC_GSS

krb5p 390005 kerberos_v5 default privacy # RPCSEC_GSS

4. Edit the /etc/dfs/dfstab file and add the sec= option with the required
security modes to the appropriate entries.

share -F nfs -o sec=mode file_system

mode Specifies the security modes to be used when sharing the file system.
When using multiple security modes, the first mode in the list is
used as the default.

file_system Defines the path to the file system to be shared.

Steps

Chapter 22 • Configuring the Kerberos Service (Tasks) 405

All clients that attempt to access files from the named file system require Kerberos
authentication. To access files, the user principal on the NFS client should be
authenticated.

5. Make sure that the NFS service is running on the server.

If this command is the first share command or set of share commands that you
have initiated, the NFS daemons are likely not running. The following command
restarts the daemons:

svcadm restart network/nfs/server

6. (Optional) If the automounter is being used, edit the auto_master database to
select a security mode other than the default.

You need not follow this procedure if you are not using the automounter to access
the file system or if the default selection for the security mode is acceptable.

file_system auto_home -nosuid,sec=mode

7. (Optional) Manually issue the mount command to access the file system by using
a non-default mode.

Alternatively, you could use the mount command to specify the security mode, but
this alternative does not take advantage of the automounter.

mount -F nfs -o sec=mode file_system

Sharing a File System With One Kerberos Security Mode

In this example, the dfstab file line means that Kerberos authentication must succeed
before any files can be accessed through the NFS service.

grep krb /etc/dfs/dfstab

share -F nfs -o sec=krb5 /export/home

Sharing a File System With Multiple Kerberos Security Modes

In this example, all three Kerberos security modes have been selected. If no security
mode is specified when a mount request is made, the first mode that is listed is used
on all NFS V3 clients (in this case, krb5). See the nfssec(5) man page for more
information.

grep krb /etc/dfs/dfstab

share -F nfs -o sec=krb5:krb5i:krb5p /export/home

Example 22–3

Example 22–4

406 System Administration Guide: Security Services • January 2005

Configuring Kerberos Clients
Kerberos clients include any host, that is not a KDC server, on the network that needs
to use Kerberos services. This section provides procedures for installing a Kerberos
client, as well as specific information about using root authentication to mount NFS
file systems.

Configuring Kerberos Clients (Task Map)
The following task map includes all of the procedures associated with setting up
Kerberos clients. Each row includes a task identifier, a description of why you would
want to do that task, followed by a link to the task.

Task Description For Instructions

Establish a Kerberos client
installation profile.

Generates a client installation profile that can
be used to automatically install a Kerberos
client.

“How to Create a Kerberos
Client Installation Profile”
on page 407

Configure a Kerberos client. Manually installs a Kerberos client. Use this
procedure if each client installation requires
unique installation parameters.

“How to Manually Configure a
Kerberos Client” on page 410

Automatically installs a Kerberos client. Use
this procedure if the installation parameters
for each client are the same.

“How to Automatically
Configure a Kerberos Client”
on page 408

Interactively installs a Kerberos client. Use this
procedure if only a few of the installation
parameters need to change.

“How to Interactively Configure
a Kerberos Client” on page 409

Allow a client to access a NFS
file system as the root user

Creates a root principal on the client, so that
the client can mount a NFS file system shared
with root access. Also, allows for the client to
set up non-interactive root access to the NFS
file system, so that cron jobs can run.

“How to Access a Kerberos
Protected NFS File System as the
root User” on page 415

� How to Create a Kerberos Client Installation Profile
This procedure creates a kclient profile that can be used when you install a Kerberos
client. By using the kclient profile, you reduce the likelihood of typing errors. Also,
using the profile reduces user intervention as compared to the interactive process.

1. Become superuser.Steps

Chapter 22 • Configuring the Kerberos Service (Tasks) 407

2. Create a kclient installation profile.
A sample kclient profile could look similar to the following:

client# cat /net/kdc1.example.com/export/install/profile
REALM EXAMPLE.COM
KDC kdc1.example.com
ADMIN clntconfig
FILEPATH /net/kdc1.example.com/export/install/krb5.conf
NFS 1
DNSLOOKUP none

� How to Automatically Configure a Kerberos Client
This procedure uses an installation profile. See “How to Create a Kerberos Client
Installation Profile” on page 407.

1. Become superuser.

2. Run the kclient installation script.
You need to provide the password for the clntconfig principal to complete the
process.

client# /usr/sbin/kclient -p /net/kdc1.example.com/export/install/krb5.conf

Starting client setup

kdc1.example.com

Setting up /etc/krb5/krb5.conf.

Obtaining TGT for clntconfig/admin ...
Password for clntconfig/admin@EXAMPLE.COM: <Type the password>

nfs/client.example.com entry ADDED to KDC database.
nfs/client.example.com entry ADDED to keytab.

host/client.example.com entry ADDED to KDC database.
host/client.example.com entry ADDED to keytab.

Copied /net/kdc1.example.com/export/clientinstall/krb5.conf.

Setup COMPLETE.

client#

Automatically Configuring a Kerberos Client With Command-Line
Overrides
The following example overrides the DNSARG and the KDC parameters that are set in
the installation profile.

Before You
Begin

Steps

Example 22–5

408 System Administration Guide: Security Services • January 2005

/usr/sbin/kclient -p /net/kdc1.example.com/export/install/krb5.conf\
-d dns_fallback -k kdc2.example.com

Starting client setup

kdc1.example.com

Setting up /etc/krb5/krb5.conf.

Obtaining TGT for clntconfig/admin ...
Password for clntconfig/admin@EXAMPLE.COM: <Type the password>

nfs/client.example.com entry ADDED to KDC database.
nfs/client.example.com entry ADDED to keytab.

host/client.example.com entry ADDED to KDC database.
host/client.example.com entry ADDED to keytab.

Copied /net/kdc1.example.com/export/install/krb5.conf.

Setup COMPLETE.

client#

� How to Interactively Configure a Kerberos Client
This procedure uses the kclient installation utility without a installation profile.

1. Become superuser.

2. Run the kclient installation script.

You need to provide the following information:

� Kerberos realm name
� KDC master host name
� Administrative principal name
� Password for the administrative principal

Running the kclient Installation Utility
The following output shows the results of running the kclient command.

client# /usr/sbin/kclient

Starting client setup

Do you want to use DNS for kerberos lookups ? [y/n]: n

Steps

Example 22–6

Chapter 22 • Configuring the Kerberos Service (Tasks) 409

No action performed.
Enter the Kerberos realm: EXAMPLE.COM
Specify the KDC hostname for the above realm: kdc1.example.com

Setting up /etc/krb5/krb5.conf.

Enter the krb5 administrative principal to be used: clntconfig/admin
Obtaining TGT for clntconfig/admin ...
Password for clntconfig/admin@EXAMPLE.COM: <Type the password>
Do you plan on doing Kerberized nfs ? [y/n]: n

host/client.example.com entry ADDED to KDC database.
host/client.example.com entry ADDED to keytab.

Do you want to copy over the master krb5.conf file ? [y/n]: y
Enter the pathname of the file to be copied: \
/net/kdc1.example.com/export/install/krb5.conf

Copied /net/kdc1.example.com/export/install/krb5.conf.

Setup COMPLETE !

#

� How to Manually Configure a Kerberos Client
In this procedure, the following configuration parameters are used:

� Realm name = EXAMPLE.COM

� DNS domain name = example.com

� Master KDC = kdc1.example.com

� Slave KDC = kdc2.example.com

� Client = client.example.com

� admin principal = kws/admin

� User principal = mre

� Online help URL =
http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

Note – Adjust the URL to point to the “SEAM Administration Tool” section, as
described in the “Online Help URL in the SEAM Administration Tool” on page
384.

1. Become superuser.

2. Edit the Kerberos configuration file (krb5.conf).

Steps

410 System Administration Guide: Security Services • January 2005

To change the file from the Kerberos default version, you need to change the realm
names and the server names. You also need to identify the path to the help files for
gkadmin.

kdc1 # cat /etc/krb5/krb5.conf
[libdefaults]

default_realm = EXAMPLE.COM

[realms]
EXAMPLE.COM = {
kdc = kdc1.example.com
kdc = kdc2.example.com
admin_server = kdc1.example.com

}

[domain_realm]
.example.com = EXAMPLE.COM

#
if the domain name and realm name are equivalent,
this entry is not needed
#
[logging]

default = FILE:/var/krb5/kdc.log
kdc = FILE:/var/krb5/kdc.log

[appdefaults]
gkadmin = {

help_url = http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

Note – If you want to restrict the encryption types, you can set the
default_tkt_enctypes or default_tgs_enctypes lines. Refer to “Using
Kerberos Encryption Types” on page 523 for a description of the issues involved
with restricting the encryption types.

3. (Optional) Change the process used to locate the KDCs.

By default, the mapping of host and domain name to kerberos realm is used to
locate the KDCs. You can change this behavior by adding dns_lookup_kdc,
dns_lookup_realm, or dns_fallback to the libdefaults section of the
krb5.conf file. See the krb5.conf(4) man page for more information.

4. (Optional) Synchronize the client’s clock with the master KDC’s clock by using
NTP or another clock synchronization mechanism.

Installing and using the Network Time Protocol (NTP) is not required. However,
every clock must be within the default time that is defined in the libdefaults
section of the krb5.conf file for authentication to succeed. See “Synchronizing
Clocks Between KDCs and Kerberos Clients” on page 418 for information about
NTP.

5. Start kadmin.

Chapter 22 • Configuring the Kerberos Service (Tasks) 411

You can use the SEAM Administration Tool to add a principal, as explained in
“How to Create a New Kerberos Principal” on page 468. To do so, you must log in
with one of the admin principal names that you created when you configured the
master KDC. However, the following example shows how to add the required
principals by using the command line.

denver # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin:

a. (Optional) Create a user principal if a user principal does not already exist.

You need to create a user principal only if the user associated with this host
does not already have a principal assigned to him or her.

kadmin: addprinc mre
Enter password for principal mre@EXAMPLE.COM: <Type the password>
Re-enter password for principal mre@EXAMPLE.COM: <Type it again>
kadmin:

b. (Optional) Create a root principal.

If the client does not require root access to a remote file system which is
mounted using the NFS service, then you can skip this step. The root principal
should be a two component principal with the second component the host
name of the Kerberos client system to avoid the creation of a realm wide root
principal. Note that when the principal instance is a host name, the FQDN must
be specified in lowercase letters, regardless of the case of the domain name in
the /etc/resolv.conf file.

kadmin: addprinc -randkey root/client.example.com
Principal "root/client.example.com" created.

kadmin:

c. Create a host principal.

The host principal is used to authenticate applications.

kadmin: addprinc -randkey host/denver.example.com
Principal "host/denver.example.com@EXAMPLE.COM" created.

kadmin:

d. (Optional) Add the server’s NFS service principal to the server’s keytab file.

This step is only required if the client needs to access NFS file systems using
Kerberos authentication.

kadmin: ktadd nfs/denver.example.com
Entry for principal nfs/denver.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/denver.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/denver.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/denver.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

412 System Administration Guide: Security Services • January 2005

kadmin:

e. (Optional) Add the root principal to the server’s keytab file.

This step is required if you added a root principal so that the client can have
root access to file systems mounted using the NFS service. This step is also
required if non-interactive root access is needed, such as running cron jobs as
root.

kadmin: ktadd root/client.example.com
Entry for principal root/client.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal root/client.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal root/client.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal root/client.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin:

f. Add the host principal to the server’s keytab file.

kadmin: ktadd host/denver.example.com
Entry for principal host/denver.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/denver.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/denver.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/denver.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin:

g. Quit kadmin.

kadmin: quit

6. (Optional) To use Kerberos with NFS, enable Kerberos security modes in the
/etc/nfssec.conf file.

Edit the /etc/nfssec.conf file and remove the “#” that is placed in front of the
Kerberos security modes.

cat /etc/nfssec.conf
.
.
#
Uncomment the following lines to use Kerberos V5 with NFS
#
krb5 390003 kerberos_v5 default - # RPCSEC_GSS
krb5i 390004 kerberos_v5 default integrity # RPCSEC_GSS

krb5p 390005 kerberos_v5 default privacy # RPCSEC_GSS

7. If you want the client to warn users about Kerberos ticket expiration, create an
entry in the /etc/krb5/warn.conf file.

See the warn.conf(4) man page for more information.

Chapter 22 • Configuring the Kerberos Service (Tasks) 413

Setting Up a Kerberos Client Using a Non-Kerberos KDC

A Kerberos client can be set up to work with a non-Kerberos KDC. In this case, a line
must be included in the /etc/krb5/krb5.conf file in the realms section. This line
changes the protocol that is used when the client is communicating with the Kerberos
password-changing server. The format of this line follows.

[realms]
EXAMPLE.COM = {
kdc = kdc1.example.com
kdc = kdc2.example.com
admin_server = kdc1.example.com
kpasswd_protocol = SET_CHANGE

}

DNS TXT Records for the Mapping of Host and Domain Name to
Kerberos Realm
@ IN SOA kdc1.example.com root.kdc1.example.com (

1989020501 ;serial
10800 ;refresh
3600 ;retry
3600000 ;expire
86400) ;minimum

IN NS kdc1.example.com.
kdc1 IN A 192.146.86.20
kdc2 IN A 192.146.86.21

_kerberos.example.com. IN TXT "EXAMPLE.COM"
_kerberos.kdc1.example.com. IN TXT "EXAMPLE.COM"

_kerberos.kdc2.example.com. IN TXT "EXAMPLE.COM"

DNS SRV Records for Kerberos Server Locations

This example defines the records for the location of the master KDC, the admin server,
and the kpasswd servers.

@ IN SOA kdc1.example.com root.kdc1.example.com (
1989020501 ;serial
10800 ;refresh
3600 ;retry
3600000 ;expire
86400) ;minimum

IN NS kdc1.example.com.
kdc1 IN A 192.146.86.20
kdc2 IN A 192.146.86.21

_kerberos._upd.EXAMPLE.COM IN SRV 0 0 88 kdc1.example.com
_kerberos-adm._upd.EXAMPLE.COM IN SRV 0 0 749 kdc1.example.com

_kpasswd._upd.EXAMPLE.COM IN SRV 0 0 749 kdc1.example.com

Example 22–7

Example 22–8

Example 22–9

414 System Administration Guide: Security Services • January 2005

� How to Access a Kerberos Protected NFS File
System as the root User
This procedure allows a client to access a NFS file system that requires Kerberos
authentication with the root ID privilege. In particular, if the NFS file system is
shared with options like: -o sec=krb5,root=client1.sun.com.

1. Become superuser.

2. Start kadmin.

You can use the SEAM Administration Tool to add a principal, as explained in
“How to Create a New Kerberos Principal” on page 468. To do so, you must log in
with one of the admin principal names that you created when you configured the
master KDC. However, the following example shows how to add the required
principals by using the command line.

denver # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin:

a. Create a root principal for the NFS client.

This principal is used to provide root equivalent access to NFS mounted file
systems that require Kerberos authentication. The root principal should be a
two component principal with the second component the host name of the
Kerberos client system to avoid the creation of a realm wide root principal.
Note that when the principal instance is a host name, the FQDN must be
specified in lowercase letters, regardless of the case of the domain name in the
/etc/resolv.conf file.

kadmin: addprinc -randkey root/client.example.com
Principal "root/client.example.com" created.

kadmin:

b. Add the root principal to the server’s keytab file.

This step is required if you added a root principal so that the client can have
root access to file systems mounted using the NFS service. This step is also
required if non-interactive root access is needed, such as running cron jobs as
root.

kadmin: ktadd root/client.example.com
Entry for principal root/client.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal root/client.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal root/client.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal root/client.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin:

Steps

Chapter 22 • Configuring the Kerberos Service (Tasks) 415

c. Quit kadmin.

kadmin: quit

� Configuring Automatic Migration of Users in a
Kerberos Realm
Users, who do not have a Kerberos principal, can be automatically migrated to an
existing Kerberos realm. The migration is achieved by using the PAM framework for
the service in use by stacking the pam_krb5_migrate module in the service’s
authentication stack in /etc/pam.conf.

In this example, the rlogin and other PAM service names are configured to use the
automatic migration. The following configuration parameters are used:

� Realm name = EXAMPLE.COM
� Master KDC = kdc1.example.com
� Machine hosting the migration service = server1.example.com
� Migration service principal = host/server1.example.com

Setup server1 as a Kerberos client of the realm EXAMPLE.COM. See “Configuring
Kerberos Clients” on page 407 for more information.

1. Check to see if a host service principal for server1 exists.

The host service principal in the keytab file of server1 is used to authenticate
the server to the master KDC.

server1 # klist -k
Keytab name: FILE:/etc/krb5/krb5.keytab

KVNO Principal
---- --

3 host/server1.example.com@EXAMPLE.COM
3 host/server1.example.com@EXAMPLE.COM
3 host/server1.example.com@EXAMPLE.COM

3 host/server1.example.com@EXAMPLE.COM

2. Make changes to the PAM configuration file.

Add the pam_krb5_migrate PAM module to the authentication stack for the
rlogin and other service names. Any user using rlogin, telnet, or ssh,
without a Kerberos principal, would automatically have a principal created for
them.

cat /etc/pam.conf
.
.
#
rlogin service (explicit because of pam_rhost_auth)
#

Before You
Begin

Steps

416 System Administration Guide: Security Services • January 2005

rlogin auth sufficient pam_rhosts_auth.so.1
rlogin auth requisite pam_authtok_get.so.1
rlogin auth required pam_dhkeys.so.1
rlogin auth required pam_unix_cred.so.1
rlogin auth required pam_unix_auth.so.1
rlogin auth sufficient pam_krb5.so.1
rlogin auth optional pam_krb5_migrate.so.1
#
.
.
#
Default definitions for Authentication management
Used when service name is not explicitly mentioned for authentication
#
other auth requisite pam_authtok_get.so.1
other auth required pam_dhkeys.so.1
other auth required pam_unix_cred.so.1
other auth required pam_unix_auth.so.1
other auth sufficient pam_krb5.so.1

other auth optional pam_krb5_migrate.so.1

3. (Optional) Force an immediate password change, if needed.

The newly created Kerberos accounts can have their password expiration time set
to the current time (now), in order to force an immediate Kerberos password
change. To set the expiration time to now add the expire_pw option to the lines
which use the pam_krb5_migrate module. See the pam_krb5_migrate(5) man
page for more information.

cat /etc/pam.conf
.
.
rlogin auth optional pam_krb5_migrate.so.1 expire_pw
#
.
.

other auth optional pam_krb5_migrate.so.1 expire_pw

4. On the master KDC, update the access control file.

The following entries grant migrate and inquire privileges to the
host/server1.example.com service principal for all users, excepting the root
user. It is important that users who should not be migrated are listed in the
kadm5.acl file using the U privilege. These entries need to be before the permit all
or ui entry. See the kadm5.acl(4) man page for more information.

kdc1 # cat /etc/krb5/kadm5.acl
host/server1.example.com@EXAMPLE.COM U root
host/server1.example.com@EXAMPLE.COM ui *

*/admin@EXAMPLE.COM *

5. On the master KDC, restart the Kerberos administration daemon.

This step allows the kadmind daemon to use the new kadm5.acl entries.

kdc1 # svcadm restart network/security/kadmin

Chapter 22 • Configuring the Kerberos Service (Tasks) 417

6. On the master KDC, add entries to the pam.conf file.

The following entries enable the kadmind daemon to use the k5migrate PAM
service, to validate UNIX user password for accounts that require migration.

grep k5migrate /etc/pam.conf
k5migrate auth required pam_unix_auth.so.1

k5migrate account required pam_unix_account.so.1

Synchronizing Clocks Between KDCs
and Kerberos Clients
All hosts that participate in the Kerberos authentication system must have their
internal clocks synchronized within a specified maximum amount of time (known as
clock skew). This requirement provides another Kerberos security check. If the clock
skew is exceeded between any of the participating hosts, client requests are rejected.

The clock skew also determines how long application servers must keep track of all
Kerberos protocol messages, in order to recognize and reject replayed requests. So, the
longer the clock skew value, the more information that application servers have to
collect.

The default value for the maximum clock skew is 300 seconds (five minutes). You can
change this default in the libdefaults section of the krb5.conf file.

Note – For security reasons, do not increase the clock skew beyond 300 seconds.

Because maintaining synchronized clocks between the KDCs and Kerberos clients is
important, you should use the Network Time Protocol (NTP) software to synchronize
them. NTP public domain software from the University of Delaware is included in the
Solaris software, starting with the Solaris 2.6 release.

Note – Another way to synchronize clocks is to use the rdate command and cron
jobs, a process that can be less involved than using NTP. However, this section focuses
on using NTP. And, if you use the network to synchronize the clocks, the clock
synchronization protocol must itself be secure.

NTP enables you to manage precise time or network clock synchronization, or both, in
a network environment. NTP is basically a server-client implementation. You pick one
system to be the master clock (the NTP server). Then, you set up all your other
systems (the NTP clients) to synchronize their clocks with the master clock.

418 System Administration Guide: Security Services • January 2005

To synchronize the clocks, NTP uses the xntpd daemon, which sets and maintains a
UNIX system time-of-day in agreement with Internet standard time servers. The
following shows an example of this server-client NTP implementation.

xntpd

07:02:59

NTP Client
(Master KDC)

xntpd

07:02:59

NTP Client
(Application Server)

xntpd

07:02:59

NTP Client
(Slave KDC)

xntpd

07:02:59

NTP Client
(Kerberos Client)

xntpd

07:02:59

NTP Server

FIGURE 22–1 Synchronizing Clocks by Using NTP

Ensuring that the KDCs and Kerberos clients maintain synchronized clocks involves
implementing the following steps:

1. Setting up an NTP server on your network. This server can be any system, except
the master KDC. See “Managing Network Time Protocol (Tasks)” in System
Administration Guide: Network Services to find the NTP server task.

2. As you configure the KDCs and Kerberos clients on the network, setting them up
to be NTP clients of the NTP server. See “Managing Network Time Protocol
(Tasks)” in System Administration Guide: Network Services to find the NTP client task.

Swapping a Master KDC and a Slave
KDC
You should use the procedures in this section to make the swap of a master KDC with
a slave KDC easier. You should swap the master KDC with a slave KDC only if the
master KDC server fails for some reason, or if the master KDC needs to be re-installed
(for example, because new hardware is installed).

Chapter 22 • Configuring the Kerberos Service (Tasks) 419

� How to Configure a Swappable Slave KDC
Perform this procedure on the slave KDC server that you want to have available to
become the master KDC. This procedure assumes that you are using incremental
propagation.

1. Use alias names for the master KDC and the swappable slave KDC during the
KDC installation.

When you define the host names for the KDCs, make sure that each system has an
alias included in DNS. Also, use the alias names when you define the hosts in the
/etc/krb5/krb5.conf file.

2. Follow the steps to install a slave KDC.

Prior to any swap, this server should function as any other slave KDC in the realm.
See “How to Configure a Slave KDC” on page 392 for instructions.

3. Move the master KDC commands.

To prevent the master KDC commands from being run from this slave KDC, move
the kprop, kadmind, and kadmin.local commands to a reserved place.

kdc4 # mv /usr/lib/krb5/kprop /usr/lib/krb5/kprop.save
kdc4 # mv /usr/lib/krb5/kadmind /usr/lib/krb5/kadmind.save

kdc4 # mv /usr/sbin/kadmin.local /usr/sbin/kadmin.local.save

� How to Swap a Master KDC and a Slave KDC
In this procedure, the master KDC server that is being swapped out is named kdc1.
The slave KDC that will become the new master KDC is named kdc4. This procedure
assumes that you are using incremental propagation.

This procedure requires that the slave KDC server has been set up as a swappable
slave. For more information, see “How to Configure a Swappable Slave KDC”
on page 420).

1. On the new master KDC, start kadmin.

kdc4 # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin:

a. Create new principals for the kadmind service.

The following example shows the first addprinc command on two lines, but it
should be typed on one line.

kadmin: addprinc -randkey -allow_tgs_req +password_changing_service -clearpolicy \
changepw/kdc4.example.com

Principal "changepw/kdc4.example.com@ENG.SUN.COM" created.

Steps

Before You
Begin

Steps

420 System Administration Guide: Security Services • January 2005

kadmin: addprinc -randkey -allow_tgs_req -clearpolicy kadmin/kdc4.example.com
Principal "kadmin/kdc4.example.com@EXAMPLE.COM" created.

kadmin:

b. Create a keytab file.

kadmin: ktadd -k /etc/krb5/kadm5.keytab kadmin/kdc4.example.com
Entry for principal kadmin/kdc4.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal kadmin/kdc4.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal kadmin/kdc4.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal kadmin/kdc4.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
kadmin: ktadd -k /etc/krb5/kadm5.keytab changepw/kdc4.example.com
Entry for principal changepw/kdc4.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal changepw/kdc4.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal changepw/kdc4.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal changepw/kdc4.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin:

c. Quit kadmin.

kadmin: quit

2. On the new master KDC, force synchronization.

The following steps force a full KDC update on the slave server.

kdc4 # svcadm disable network/security/krb5kdc
kdc4 # rm /var/krb5/principal.ulog

kdc4 # svcadm enable network/security/krb5kdc

3. On the new master KDC, clear the update log.

These steps reinitialize the update log for the new master KDC server.

kdc4 # svcadm disable network/security/krb5kdc

kdc4 # rm /var/krb5/principal.ulog

4. On the old master KDC, kill the kadmind and krb5kdc processes.

When you kill the kadmind process, you prevent any changes from being made to
the KDC database.

kdc1 # svcadm disable network/security/kadmin

kdc1 # svcadm disable network/security/krb5kdc

5. On the old master KDC, specify the poll time for requesting propagations.

Chapter 22 • Configuring the Kerberos Service (Tasks) 421

Replace the sunw_dbprop_master_ulogsize entry in /etc/krb5/kdc.conf
with an entry defining sunw_dbprop_slave_poll. The entry sets the poll time
to 2 minutes.

kdc1 # cat /etc/krb5/kdc.conf
[kdcdefaults]

kdc_ports = 88,750

[realms]
EXAMPLE.COM= {

profile = /etc/krb5/krb5.conf
database_name = /var/krb5/principal
admin_keytab = /etc/krb5/kadm5.keytab
acl_file = /etc/krb5/kadm5.acl
kadmind_port = 749
max_life = 8h 0m 0s
max_renewable_life = 7d 0h 0m 0s
sunw_dbprop_enable = true
sunw_dbprop_slave_poll = 2m

}

6. On the old master KDC, move the master KDC commands and the kadm5.acl
file.

To prevent the master KDC commands from being run, move the kprop,
kadmind, and kadmin.local commands to a reserved place.

kdc1 # mv /usr/lib/krb5/kprop /usr/lib/krb5/kprop.save
kdc1 # mv /usr/lib/krb5/kadmind /usr/lib/krb5/kadmind.save
kdc1 # mv /usr/sbin/kadmin.local /usr/sbin/kadmin.local.save

kdc1 # mv /etc/krb5/kadm5.acl /etc/krb5/kadm5.acl.save

7. On the DNS server, change the alias names for the master KDC.

To change the servers, edit the example.com zone file and change the entry for
masterkdc.

masterkdc IN CNAME kdc4

8. On the DNS server, restart the Internet domain name server.

Run the following command to reload the new alias information:

svcadm refresh network/dns/server

9. On the new master KDC, move the master KDC commands and the slave
kpropd.acl file.

kdc4 # mv /usr/lib/krb5/kprop.save /usr/lib/krb5/kprop
kdc4 # mv /usr/lib/krb5/kadmind.save /usr/lib/krb5/kadmind
kdc4 # mv /usr/sbin/kadmin.local.save /usr/sbin/kadmin.local

kdc4 # mv /etc/krb5/kpropd.acl /etc/krb5/kpropd.acl.save

10. On the new master KDC, create the Kerberos access control list file
(kadm5.acl).

Once populated, the /etc/krb5/kadm5.acl file should contain all principal
names that are allowed to administer the KDC. The file should also list all of the

422 System Administration Guide: Security Services • January 2005

slaves that make requests for incremental propagation. See the kadm5.acl(4) man
page for more information.

kdc4 # cat /etc/krb5/krb5.acl
kws/admin@EXAMPLE.COM *

kiprop/kdc1.example.com@EXAMPLE.COM p

11. On the new master KDC, specify the update log size in the kdc.conf file.

Replace the sunw_dbprop_slave_poll entry with an entry defining
sunw_dbprop_master_ulogsize. The entry sets the log size to 1000 entries.

kdc1 # cat /etc/krb5/kdc.conf
[kdcdefaults]

kdc_ports = 88,750

[realms]
EXAMPLE.COM= {

profile = /etc/krb5/krb5.conf
database_name = /var/krb5/principal
admin_keytab = /etc/krb5/kadm5.keytab
acl_file = /etc/krb5/kadm5.acl
kadmind_port = 749
max_life = 8h 0m 0s
max_renewable_life = 7d 0h 0m 0s
sunw_dbprop_enable = true
sunw_dbprop_master_ulogsize = 1000

}

12. On the new master KDC, add the kiprop principal to the kadmind keytab file.

kdc4 # kadmin.local
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab kiprop/kdc4.example.com
Entry for principal kiprop/kdc4.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kiprop/kdc4.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kiprop/kdc4.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kiprop/kdc4.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.

kadmin.local: quit

13. On the new master KDC, start kadmind and krb5kdc.

kdc4 # svcadm enable network/security/krb5kdc

kdc4 # svcadm enable network/security/kadmin

14. On the old master KDC, add the kiprop service principal.

Adding the kiprop principal to the krb5.keytab file allows the kpropd daemon
to authenticate itself for the incremental propagation service.

kdc1 # /usr/sbin/kadmin -p kws/admin
Authenticating as pricipal kws/admin@EXAMPLE.COM with password.
Enter password: <Type kws/admin password>
kadmin: ktadd kiprop/kdc1.example.com

Chapter 22 • Configuring the Kerberos Service (Tasks) 423

Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type AES-128 CTS mode
with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.

Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type Triple DES cbc
mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.

Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type ARCFOUR
with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type DES cbc mode
with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin: quit

15. On the old master KDC, add an entry for each KDC listed in krb5.conf to the
propagation configuration file, kpropd.acl.

kdc1 # cat /etc/krb5/kpropd.acl
host/kdc1.example.com@EXAMPLE.COM
host/kdc2.example.com@EXAMPLE.COM
host/kdc3.example.com@EXAMPLE.COM

host/kdc4.example.com@EXAMPLE.COM

16. On the old master KDC, start kpropd and krb5kdc.

When the krb5kdc daemon is started, kpropd also starts if the system is
configured as a slave.

kdc1 # svcadm enable network/security/krb5kdc

Administering the Kerberos Database
The Kerberos database is the backbone of Kerberos and must be maintained properly.
This section provides some procedures on how to administer the Kerberos database,
such as backing up and restoring the database, setting up incremental or parallel
propagation, and administering the stash file. The steps to initially set up the database
are in “How to Configure a Master KDC” on page 387.

Backing Up and Propagating the Kerberos
Database
Propagating the Kerberos database from the master KDC to the slave KDCs is one of
the most important configuration tasks. If propagation doesn’t happen often enough,
the master KDC and the slave KDCs will lose synchronization. So, if the master KDC
goes down, the slave KDCs will not have the most recent database information. Also,
if a slave KDC has been configured as a master KDC for purposes of load balancing,
the clients that use that slave KDC as a master KDC will not have the latest
information. Therefore, you must make sure that propagation occurs often enough or
else configure the servers for incremental propagation, based on how often you

424 System Administration Guide: Security Services • January 2005

change the Kerberos database. Incremental propagation is preferred over manual
propagation because there is more administrative overhead when you manually
propagate the database. Also, there are inefficiencies when you do full propagation of
the database.

When you configure the master KDC, you set up the kprop_script command in a
cron job to automatically back up the Kerberos database to the
/var/krb5/slave_datatrans dump file and propagate it to the slave KDCs. But,
as with any file, the Kerberos database can become corrupted. If data corruption
occurs on a slave KDC, you might never notice, because the next automatic
propagation of the database installs a fresh copy. However, if corruption occurs on the
master KDC, the corrupted database is propagated to all of the slave KDCs during the
next propagation. And, the corrupted backup overwrites the previous uncorrupted
backup file on the master KDC.

Because there is no “safe” backup copy in this scenario, you should also set up a cron
job to periodically copy the slave_datatrans dump file to another location or to
create another separate backup copy by using the dump command of kdb5_util.
Then, if your database becomes corrupted, you can restore the most recent backup on
the master KDC by using the load command of kdb5_util.

Another important note: Because the database dump file contains principal keys, you
need to protect the file from being accessed by unauthorized users. By default, the
database dump file has read and write permissions only as root. To protect against
unauthorized access, use only the kprop command to propagate the database dump
file, which encrypts the data that is being transferred. Also, kprop propagates the data
only to the slave KDCs, which minimizes the chance of accidentally sending the
database dump file to unauthorized hosts.

Caution – If the Kerberos database is updated after it has been propagated and if the
database subsequently is corrupted before the next propagation, the KDC slaves will
not contain the updates. The updates will be lost. For this reason, if you add
significant updates to the Kerberos database before a regularly scheduled propagation,
you should manually propagate the database to avoid data loss.

The kpropd.acl File
The kpropd.acl file on a KDC provides a list of host principal names, one name per
line, that specifies the systems from which the KDC can receive an updated database
through propagation. If the master KDC is used to propagate all the slave KDCs, the
kpropd.acl file on each slave needs to contain only the host principal name of the
master KDC.

Chapter 22 • Configuring the Kerberos Service (Tasks) 425

However, the Kerberos installation and subsequent configuration steps in this book
instruct you to add the same kpropd.acl file to the master KDC and the slave KDCs.
This file contains all the KDC host principal names. This configuration enables you to
propagate from any KDC, in case the propagating KDCs become temporarily
unavailable. And, by keeping an identical copy on all KDCs, you make the
configuration easy to maintain.

The kprop_script Command
The kprop_script command uses the kprop command to propagate the Kerberos
database to other KDCs. If the kprop_script command is run on a slave KDC, it
propagates the slave KDC’s copy of the Kerberos database to other KDCs. The
kprop_script accepts a list of host names for arguments, separated by spaces,
which denote the KDCs to propagate.

When kprop_script is run, it creates a backup of the Kerberos database to the
/var/krb5/slave_datatrans file and copies the file to the specified KDCs. The
Kerberos database is locked until the propagation is finished.

� How to Back Up the Kerberos Database

1. Become superuser on the master KDC.

2. Back up the Kerberos database by using the dump command of the kdb5_util
command.

/usr/sbin/kdb5_util dump [-verbose] [-d dbname] [filename [principals...]]

-verbose Prints the name of each principal and policy that is being backed up.

dbname Defines the name of the database to back up. Note that you can
specify an absolute path for the file. If the -d option is not specified,
the default database name is /var/krb5/principal.

filename Defines the file that is used to back up the database. You can specify
an absolute path for the file. If you don’t specify a file, the database is
dumped to standard output.

principals Defines a list of one or more principals (separated by a space) to back
up. You must use fully qualified principal names. If you don’t specify
any principals, the entire database is backed up.

Backing Up the Kerberos Database

In the following example, the Kerberos database is backed up to a file called
dumpfile. Because the -verbose option is specified, each principal is printed as it is
backed up.

Steps

Example
22–10

426 System Administration Guide: Security Services • January 2005

kdb5_util dump -verbose dumpfile
kadmin/kdc1.eng.example.com@ENG.EXAMPLE.COM
krbtgt/eng.example.com@ENG.EXAMPLE.COM
kadmin/history@ENG.EXAMPLE.COM
pak/admin@ENG.EXAMPLE.COM
pak@ENG.EXAMPLE.COM

changepw/kdc1.eng.example.com@ENG.EXAMPLE.COM

In the following example, the pak and pak/admin principals from the Kerberos
database are backed up.

kdb5_util dump -verbose dumpfile pak/admin@ENG.EXAMPLE.COM pak@ENG.EXAMPLE.COM
pak/admin@ENG.EXAMPLE.COM

pak@ENG.EXAMPLE.COM

� How to Restore the Kerberos Database

1. Become superuser on the master KDC.

2. Restore the Kerberos database by using the load command of the kdb_util
command.

/usr/sbin/kdb5_util load [-verbose] [-d dbname] [-update] [filename]

-verbose Prints the name of each principal and policy that is being restored.

dbname Defines the name of the database to restore. Note you can specify an
absolute path for the file. If the -d option is not specified, the
default database name is /var/krb5/principal.

-update Updates the existing database. Otherwise, a new database is created
or the existing database is overwritten.

filename Defines the file from which to restore the database. You can specify
an absolute path for the file.

Restoring the Kerberos Database

In the following example, the database called database1 is restored into the current
directory from the dumpfile file. Because the -update option isn’t specified, a new
database is created by the restore.

kdb5_util load -d database1 dumpfile

Steps

Example
22–11

Chapter 22 • Configuring the Kerberos Service (Tasks) 427

� How to Reload a Kerberos Database
If your KDC database was not created on a server running the Solaris 10 release,
reloading the database allows you to take advantage of the improved database format.

Make sure that the database is using an older format. See for specific instructions.

1. On the master, stop the KDC daemons.

kdc1 # svcadm disable network/security/krb5kdc

kdc1 # svcadm disable network/security/kadmin

2. Dump the KDC database.

kdc1 # kdb5_util dump /tmp/prdb.txt

3. Save copies of the current database files.

kdc1 # cd /var/krb5
kdc1 # mkdir old

kdc1 # mv princ* old/

4. Load the database.

kdc1 # kdb5_util load /tmp/prdb.txt

5. Start the KDC daemons.

kdc1 # svcadm enable network/security/krb5kdc

kdc1 # svcadm enable network/security/kadmin

� How to Reconfigure a Master KDC to Use
Incremental Propagation
The steps in this procedure can be used to reconfigure an existing master KDC to use
incremental propagation. In this procedure, the following configuration parameters
are used:

� Realm name = EXAMPLE.COM
� DNS domain name = example.com
� Master KDC = kdc1.example.com
� Slave KDC = kdc2.example.com
� admin principal = kws/admin

1. Add entries to kdc.conf.

Before You
Begin

Steps

Steps

428 System Administration Guide: Security Services • January 2005

You need to enable incremental propagation and select the number of updates the
KDC master keeps in the log. See the kdc.conf(4) man page for more
information.

kdc1 # cat /etc/krb5/kdc.conf
[kdcdefaults]

kdc_ports = 88,750

[realms]
EXAMPLE.COM= {

profile = /etc/krb5/krb5.conf
database_name = /var/krb5/principal
admin_keytab = /etc/krb5/kadm5.keytab
acl_file = /etc/krb5/kadm5.acl
kadmind_port = 749
max_life = 8h 0m 0s
max_renewable_life = 7d 0h 0m 0s
sunw_dbprop_enable = true
sunw_dbprop_master_ulogsize = 1000

}

2. Create the kiprop principal.

The kiprop principal is used to authenticate the master KDC server and to
authorize updates from the master KDC.

kdc1 # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin: addprinc -randkey kiprop/kdc1.example.com
Principal "kiprop/kdc1.example.com@EXAMPLE.COM" created.
kadmin: addprinc -randkey kiprop/kdc2.example.com
Principal "kiprop/kdc2.example.com@EXAMPLE.COM" created.

kadmin:

3. Add the kiprop principal to the kadmind keytab file

Adding the kiprop principal to the kadm5.keytab file allows the kadmind
command to authenticate itself when it is started.

kadmin: ktadd -k /etc/krb5/kadm5.keytab kiprop/kdc1.example.com
Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kiprop/kdc1.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.

kadmin: quit

4. (Optional) On the master KDC, add a kiprop entry to kpropd.acl

Chapter 22 • Configuring the Kerberos Service (Tasks) 429

This entry allows the master KDC to receive requests for incremental propagation
for the kdc2 server.

kdc1 # cat /etc/krb5/kpropd.acl
host/kdc1.example.com@EXAMPLE.COM
host/kdc2.example.com@EXAMPLE.COM
*/admin@EXAMPLE.COM *

kiprop/kdc2.example.com@EXAMPLE.COM p

5. Comment out the kprop line in the root crontab file.

This step prevents the slave KDC from propagating its copy of the KDC database.

kdc1 # crontab -e
#ident "@(#)root 1.20 01/11/06 SMI"
#
The root crontab should be used to perform accounting data collection.
#
The rtc command is run to adjust the real time clock if and when
daylight savings time changes.
#
10 3 * * * /usr/sbin/logadm
15 3 * * 0 /usr/lib/fs/nfs/nfsfind
1 2 * * * [-x /usr/sbin/rtc] && /usr/sbin/rtc -c > /dev/null 2>&1
30 3 * * * [-x /usr/lib/gss/gsscred_clean] && /usr/lib/gss/gsscred_clean

#10 3 * * * /usr/lib/krb5kprop_script kdc2.example.sun.com #SUNWkr5ma

6. Restart kadmind.

kdc1 # svcadm restart network/security/kadmin

7. Reconfigure all slave KDC servers that use incremental propagation.

� How to Reconfigure a Slave KDC to Use
Incremental Propagation

1. Add entries to krb5.conf.

The new entries enable incremental propagation and set the poll time to 2 minutes.

kdc2 # cat /etc/krb5/kdc.conf
[kdcdefaults]

kdc_ports = 88,750

[realms]
EXAMPLE.COM= {

profile = /etc/krb5/krb5.conf
database_name = /var/krb5/principal
admin_keytab = /etc/krb5/kadm5.keytab
acl_file = /etc/krb5/kadm5.acl
kadmind_port = 749

Steps

430 System Administration Guide: Security Services • January 2005

max_life = 8h 0m 0s
max_renewable_life = 7d 0h 0m 0s
sunw_dbprop_enable = true
sunw_dbprop_slave_poll = 2m

}

2. Add the kiprop principal to the krb5.keytab file.

kdc2 # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin: ktadd kiprop/kdc2.example.com
Entry for principal kiprop/kdc2.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal kiprop/kdc2.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal kiprop/kdc2.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal kiprop/kdc2.example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin: quit

3. Disable kpropd.

kdc2 # svcadm disable network/security/krb5_prop

4. Restart the KDC server.

kdc2 # svcadm restart network/security/krb5kdc

� How to Configure a Slave KDC to Use Full
Propagation
This procedure shows how to reconfigure a slave KDC server running the Solaris 10
release to use full propagation. Normally, the procedure would only need to be used if
the master KDC server is running either the Solaris 9 release or an earlier release. In
this case, the master KDC server can not support incremental propagation, so the slave
needs to be configured to allow propagation to work.

In this procedure, a slave KDC named kdc3 is configured. This procedure uses the
following configuration parameters:

� Realm name = EXAMPLE.COM

� DNS domain name = example.com

� Master KDC = kdc1.example.com

� Slave KDC = kdc2.example.com and kdc3.example.com

� admin principal = kws/admin

Chapter 22 • Configuring the Kerberos Service (Tasks) 431

� Online help URL =
http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

Note – Adjust the URL to point to the “SEAM Administration Tool” section, as
described in the “Online Help URL in the SEAM Administration Tool” on page
384.

The master KDC must be configured. For specific instructions if this slave is to be
swappable, see “Swapping a Master KDC and a Slave KDC” on page 419.

1. On the master KDC, become superuser.

2. On the master KDC, start kadmin.

You must log in with one of the admin principal names that you created when you
configured the master KDC.

kdc1 # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin:

a. On the master KDC, add slave host principals to the database, if not already
done.

For the slave to function, it must have a host principal. Note that when the
principal instance is a host name, the FQDN must be specified in lowercase
letters, regardless of the case of the domain name in the /etc/resolv.conf
file.

kadmin: addprinc -randkey host/kdc3.example.com
Principal "host/kdc3@EXAMPLE.COM" created.

kadmin:

b. Quit kadmin.

kadmin: quit

3. On the master KDC, edit the Kerberos configuration file (krb5.conf).

You need to add an entry for each slave. See the krb5.conf(4) man page for a full
description of this file.

kdc1 # cat /etc/krb5/krb5.conf
.
.
[realms]

EXAMPLE.COM = {
kdc = kdc1.example.com
kdc = kdc2.example.com
kdc = kdc3.example.com
admin_server = kdc1.example.com

Before You
Begin

Steps

432 System Administration Guide: Security Services • January 2005

}

4. On the master KDC, add an entry for the master KDC and each slave KDC into
the kpropd.acl file.

See the kprop(1M) man page for a full description of this file.

kdc1 # cat /etc/krb5/kpropd.acl
host/kdc1.example.com@EXAMPLE.COM
host/kdc2.example.com@EXAMPLE.COM

host/kdc3.example.com@EXAMPLE.COM

5. On all slave KDCs, copy the KDC administration files from the master KDC
server.

This step needs to be followed on all slave KDCs, because the master KDC server
has updated information that each KDC server needs. You can use ftp or a similar
transfer mechanism to grab copies of the following files from the master KDC:

� /etc/krb5/krb5.conf
� /etc/krb5/kdc.conf
� /etc/krb5/kpropd.acl

6. On all slave KDCs, make sure that the Kerberos access control list file,
kadm5.acl, is not populated.

An unmodified kadm5.acl file would look like:

kdc2 # cat /etc/krb5/kadm5.acl

*/admin@___default_realm___ *

If the file has kiprop entries, remove them.

7. On the new slave, start the kadmin command.

You must log in with one of the admin principal names that you created when you
configured the master KDC.

kdc2 # /usr/sbin/kadmin -p kws/admin
Enter password: <Type kws/admin password>
kadmin:

a. Add the slave’s host principal to the slave’s keytab file by using kadmin.

This entry allows kprop and other Kerberized applications to function. Note
that when the principal instance is a host name, the FQDN must be specified in
lowercase letters, regardless of the case of the domain name in the
/etc/resolv.conf file.

kadmin: ktadd host/kdc3.example.com
Entry for principal host/kdc3.example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/kdc3.example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/kdc3.example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/kdc3.example.com with kvno 3, encryption type DES cbc mode

Chapter 22 • Configuring the Kerberos Service (Tasks) 433

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin:

b. Quit kadmin.

kadmin: quit

8. On the master KDC, add the slave KDC name to the cron job, which
automatically runs the backups, by running crontab -e.

Add the name of each slave KDC server at the end of the kprop_script line.

10 3 * * * /usr/lib/krb5/kprop_script kdc2.example.com kdc3.example.com

You might also want to change the time of the backups. This entry starts the
backup process every day at 3:10 AM.

9. On the new slave, start the Kerberos propagation daemon.

kdc3 # svcadm enable network/security/krb5_prop

10. On the master KDC, back up and propagate the database by using
kprop_script.

If a backup copy of the database is already available, it is not necessary to complete
another backup. See “How to Manually Propagate the Kerberos Database to the
Slave KDCs” on page 436 for further instructions.

kdc1 # /usr/lib/krb5/kprop_script kdc3.example.com

Database propagation to kdc3.example.com: SUCCEEDED

11. On the new slave, create a stash file by using kdb5_util.

kdc3 # /usr/sbin/kdb5_util stash
kdb5_util: Cannot find/read stored master key while reading master key
kdb5_util: Warning: proceeding without master key

Enter KDC database master key: <Type the key>

12. (Optional) On the new slave KDC, synchronize the master KDCs clock by using
NTP or another clock synchronization mechanism.

Installing and using the Network Time Protocol (NTP) is not required. However,
every clock must be within the default time that is defined in the libdefaults
section of the krb5.conf file for authentication to succeed. See “Synchronizing
Clocks Between KDCs and Kerberos Clients” on page 418 for information about
NTP.

13. On the new slave, start the KDC daemon (krb5kdc).

kdc3 # svcadm enable network/security/krb5kdc

434 System Administration Guide: Security Services • January 2005

� How to Verify That the KDC Servers Are
Synchronized
If incremental propagation has been configured, this procedure ensures that the
information on the slave KDC has been updated.

1. On the KDC master server, run the kproplog command.

kdc1 # /usr/sbin/kproplog -h

2. On a KDC slave server, run the kproplog command.

kdc2 # /usr/sbin/kproplog -h

3. Check that the last serial # and the last timestamp values match.

Verifying That the KDC Servers Are Synchronized

The following is a sample of results from running the kproplog command on the
master KDC server.

kdc1 # /usr/sbin/kproplog -h

Kerberos update log (/var/krb5/principal.ulog)
Update log dump:

Log version #: 1
Log state: Stable
Entry block size: 2048
Number of entries: 2500
First serial #: 137966
Last serial #: 140465
First time stamp: Fri Nov 28 00:59:27 2004

Last time stamp: Fri Nov 28 01:06:13 2004

The following is a sample of results from running the kproplog command on a slave
KDC server.

kdc2 # /usr/sbin/kproplog -h

Kerberos update log (/var/krb5/principal.ulog)
Update log dump:

Log version #: 1
Log state: Stable
Entry block size: 2048
Number of entries: 0
First serial #: None
Last serial #: 140465
First time stamp: None

Last time stamp: Fri Nov 28 01:06:13 2004

Steps

Example
22–12

Chapter 22 • Configuring the Kerberos Service (Tasks) 435

Notice that the values for the last serial number and the last timestamp are identical,
which indicates that the slave is synchronized with the master KDC server.

In the slave KDC server output, notice that no update entries exist in the slave KDC
server’s update log. No entries exist because the slave KDC server does not keep a set
of updates, unlike the master KDC server. Also, the KDC slave server does not include
information on the first serial number or the first timestamp because this is not
relevant information.

� How to Manually Propagate the Kerberos Database
to the Slave KDCs
This procedure shows you how to propagate the Kerberos database by using the
kprop command. Use this procedure if you need to synchronize a slave KDC with the
master KDC outside the periodic cron job. Unlike the kprop_script, you can use
kprop to propagate just the current database backup without first making a new
backup of the Kerberos database.

Note – Do not use this procedure if you are using incremental propagation.

1. Become superuser on the master KDC.

2. (Optional) Back up the database by using the kdb5_util command.

/usr/sbin/kdb5_util dump /var/krb5/slave_datatrans

3. Propagate the database to a slave KDC by using the kprop command.

/usr/lib/krb5/kprop -f /var/krb5/slave_datatrans slave-KDC

Manually Propagating the Kerberos Database to the Slave KDCs
Using kprop_script

If you want to back up the database and propagate it to a slave KDC outside the
periodic cron job, you can also use the kprop_script command as follows:

/usr/lib/krb5/kprop_script slave-KDC

Steps

Example
22–13

436 System Administration Guide: Security Services • January 2005

Setting Up Parallel Propagation
In most cases, the master KDC is used exclusively to propagate its Kerberos database
to the slave KDCs. However, if your site has many slave KDCs, you might consider
load-sharing the propagation process, known as parallel propagation.

Note – Do not use this procedure if you are using incremental propagation.

Parallel propagation allows specific slave KDCs to share the propagation duties with
the master KDC. This sharing of duties enables the propagation to be done faster and
to lighten the work for the master KDC.

For example, say your site has one master KDC and six slave KDCs (shown in Figure
22–2), where slave-1 through slave-3 consist of one logical grouping and
slave-4 through slave-6 consist of another logical grouping. To set up parallel
propagation, you could have the master KDC propagate the database to slave-1 and
slave-4. In turn, those KDC slaves could propagate the database to the KDC slaves
in their group.

master

slave-1

slave-3slave-2

Propagation
Slaves slave-4

slave-6slave-5

FIGURE 22–2 Example of Parallel Propagation Configuration

Configuration Steps for Setting Up Parallel
Propagation
The following is not a detailed step-by-step procedure, but a high-level list of
configuration steps to enable parallel propagation. These steps involve the following:

1. On the master KDC, changing the kprop_script entry in its cron job to include
arguments for only the KDC slaves that will perform the succeeding propagation
(the propagation slaves).

Chapter 22 • Configuring the Kerberos Service (Tasks) 437

2. On each propagation slave, adding a kprop_script entry to its cron job, which
must include arguments for the slaves to propagate. To successfully propagate in
parallel, the cron job should be set up to run after the propagation slave is itself
propagated with the new Kerberos database.

Note – How long it will take for a propagation slave to be propagated depends on
factors such as network bandwidth and the size of the Kerberos database.

3. On each slave KDC, setting up the appropriate permissions to be propagated. This
step is done by adding the host principal name of its propagating KDC to its
kpropd.acl file.

EXAMPLE 22–14 Setting Up Parallel Propagation

Using the example in Figure 22–2, the master KDC’s kprop_script entry would
look similar to the following:

0 3 * * * /usr/lib/krb5/kprop_script slave-1.example.com slave-4.example.com

The slave-1’s kprop_script entry would look similar to the following:

0 4 * * * /usr/lib/krb5/kprop_script slave-2.example.com slave-3.example.com

Note that the propagation on the slave starts an hour after it is propagated by the
master.

The kpropd.acl file on the propagation slaves would contain the following entry:

host/master.example.com@EXAMPLE.COM

The kpropd.acl file on the KDC slaves being propagated by slave-1 would
contain the following entry:

host/slave-1.example.com@EXAMPLE.COM

Administering the Stash File
The stash file contains the master key for the Kerberos database, which is automatically
created when you create a Kerberos database. If the stash file gets corrupted, you can
use the stash command of the kdb5_util utility to replace the corrupted file. The
only time you should need to remove a stash file is after removing the Kerberos
database with the destroy command of kdb5_util. Because the stash file is not
automatically removed with the database, you have to remove the stash file to finish
the cleanup.

438 System Administration Guide: Security Services • January 2005

� How to Remove a Stash File

1. Become superuser on the KDC that contains the stash file.

2. Remove the stash file.

rm stash-file

Where stash-file is the path to the stash file. By default, the stash file is located at
/var/krb5/.k5.realm.

Note – If you need to re-create the stash file, you can use the -f option of the
kdb5_util command.

Increasing Security on Kerberos Servers
Follow these steps to increase security on Kerberos application servers and on KDC
servers.

� How to Enable Only Kerberized Applications
This procedure restricts network access to the server that is running telnet, ftp,
rcp, rsh, and rlogin to use Kerberos authenticated transactions only.

1. Change the exec property for the telnet service.

Add the -a user option to the exec property for telnet to restrict access to
those users who can provide valid authentication information.

inetadm -m svc:/network/telnet:default exec="/usr/sbin/in.telnetd -a user"

2. (Optional) If not already configured, change the exec property for the telnet
service.

Add the -a option to the exec property for ftp to permit only Kerberos
authenticated connections.

inetadm -m svc:/network/ftp:default exec="/usr/sbin/in.ftpd -a"

3. Disable other services.

Steps

Steps

Chapter 22 • Configuring the Kerberos Service (Tasks) 439

The in.rshd and in.rlogind daemons should be disabled.

svcadm disable network/shell

svcadm disable network/login:rlogin

� How to Restrict Access to KDC Servers
Both master KDC servers and slave KDC servers have copies of the KDC database
stored locally. Restricting access to these servers so that the databases are secure is
important to the overall security of the Kerberos installation.

1. Disable remote services, as needed.

To provide a secure KDC server, all nonessential network services should be
disabled . Depending on your configuration, some of these services may already be
disabled. Check the service status with the svcs command. In most circumstances,
the only services that would need to run would be time and krdb5_kprop. In
addition, any services that use loopback tli (ticlts, ticotsord, and ticots)
can be left enabled.

svcadm disable network/comsat
svcadm disable network/dtspc/tcp
svcadm disable network/finger
svcadm disable network/login:rlogin
svcadm disable network/rexec
svcadm disable network/shell
svcadm disable network/talk
svcadm disable network/tname
svcadm disable network/uucp

svcadm disable network/rpc_100068_2-5/rpc_udp

2. Restrict access to the hardware that supports the KDC.

To restrict physical access, make sure that the KDC server and its monitor are
located in a secure facility. Users should not be able to access this server in any
way.

3. Store KDC database backups on local disks or on the KDC slaves.

Make tape backups of your KDC only if the tapes are stored securely. Follow the
same practice for copies of keytab files. It would be best to store these files on a
local file system that is not shared with other systems. The storage file system can
be on either the master KDC server or any of the slave KDCs.

Steps

440 System Administration Guide: Security Services • January 2005

CHAPTER 23

Kerberos Error Messages and
Troubleshooting

This chapter provides resolutions for error messages that you might receive when you
use the Kerberos service. This chapter also provides some troubleshooting tips for
various problems. This is a list of the error message and troubleshooting information
in this chapter.

� “SEAM Administration Tool Error Messages” on page 441
� “Common Kerberos Error Messages (A-M)” on page 442
� “Common Kerberos Error Messages (N-Z)” on page 449
� “Problems With the Format of the krb5.conf File” on page 453
� “Problems Propagating the Kerberos Database” on page 453
� “Problems Mounting a Kerberized NFS File System” on page 454
� “Problems Authenticating as root” on page 454
� “Observing Mapping from GSS Credentials to UNIX Credentials” on page 455

Kerberos Error Messages
This section provides information about Kerberos error messages, including why each
error occurs and a way to fix it.

SEAM Administration Tool Error Messages

Unable to view the list of principals or policies; use the Name
field.

Cause: The admin principal that you logged in with does not have the list privilege
(l) in the Kerberos ACL file (kadm5.acl). So, you cannot view the principal list or
policy list.

Solution: You must type the principal and policy names in the Name field to work
on them, or you need to log in with a principal that has the appropriate privileges.

441

JNI: Java array creation failed

JNI: Java class lookup failed

JNI: Java field lookup failed

JNI: Java method lookup failed

JNI: Java object lookup failed

JNI: Java object field lookup failed

JNI: Java string access failed

JNI: Java string creation failed
Cause: A serious problem exists with the Java Native Interface that is used by the
SEAM Administration Tool (gkadmin).

Solution: Exit gkadmin and restart it. If the problem persists, please report a bug.

Common Kerberos Error Messages (A-M)
This section provides an alphabetical list (A-M) of common error messages for the
Kerberos commands, Kerberos daemons, PAM framework, GSS interface, the NFS
service, and the Kerberos library.

All authentication systems disabled; connection refused
Cause: This version of rlogind does not support any authentication mechanism.

Solution: Make sure that rlogind is invoked with the -k option.

Another authentication mechanism must be used to access this host
Cause: Authentication could not be done.

Solution: Make sure that the client is using Kerberos V5 mechanism for
authentication.

Authentication negotiation has failed, which is required for
encryption. Good bye.

Cause: Authentication could not be negotiated with the server.

Solution: Start authentication debugging by invoking the telnet command with
the toggle authdebug command and look at the debug messages for further
clues. Also, make sure that you have valid credentials.

Bad krb5 admin server hostname while initializing kadmin
interface

Cause: An invalid host name is configured for admin_server in the krb5.conf
file.

Solution: Make sure that the correct host name for the master KDC is specified on
the admin_server line in the krb5.conf file.

442 System Administration Guide: Security Services • January 2005

Bad lifetime value
Cause: The lifetime value provided is not valid or incorrectly formatted.

Solution: Make sure that the value provided is consistent with the Time Formats
section in the kinit(1) man page.

Bad start time value
Cause: The start time value provided is not valid or incorrectly formatted.

Solution: Make sure that the value provided is consistent with the Time Formats
section in the kinit(1) man page.

Cannot contact any KDC for requested realm
Cause: No KDC responded in the requested realm.

Solution: Make sure that at least one KDC (either the master or a slave) is reachable
or that the krb5kdc daemon is running on the KDCs. Check the
/etc/krb5/krb5.conf file for the list of configured KDCs (kdc = kdc-name).

Cannot determine realm for host
Cause: Kerberos cannot determine the realm name for the host.

Solution: Make sure that there is a default realm name, or that the domain name
mappings are set up in the Kerberos configuration file (krb5.conf).

Cannot find KDC for requested realm
Cause: No KDC was found in the requested realm.

Solution: Make sure that the Kerberos configuration file (krb5.conf) specifies a
KDC in the realm section.

cannot initialize realm realm_name
Cause: The KDC might not have a stash file.

Solution: Make sure that the KDC has a stash file. If not, create a stash file by using
the kdb5_util command, and try restarting the krb5kdc command.

Cannot resolve KDC for requested realm
Cause: Kerberos cannot determine any KDC for the realm.

Solution: Make sure that the Kerberos configuration file (krb5.conf) specifies a
KDC in the realm section.

Cannot reuse password
Cause: The password that you specified has been used before by this principal.

Solution: Choose a password that has not been chosen before, at least not within
the number of passwords that are kept in the KDC database for each principal.
This policy is enforced by the principal’s policy.

Chapter 23 • Kerberos Error Messages and Troubleshooting 443

Can’t get forwarded credentials
Cause: Credential forwarding could not be established.

Solution: Make sure that the principal has forwardable credentials.

Can’t open/find Kerberos configuration file
Cause: The Kerberos configuration file (krb5.conf) was unavailable.

Solution: Make sure that the krb5.conf file is available in the correct location and
has the correct permissions. This file should be writable by root and readable by
everyone else.

Client did not supply required checksum--connection rejected
Cause: Authentication with checksum was not negotiated with the client. The
client might be using an old Kerberos V5 protocol that does not support initial
connection support.

Solution: Make sure that the client is using a Kerberos V5 protocol that supports
initial connection support.

Client/server realm mismatch in initial ticket request
Cause: A realm mismatch between the client and server occurred in the initial
ticket request.

Solution: Make sure that the server you are communicating with is in the same
realm as the client, or that the realm configurations are correct.

Client or server has a null key
Cause: The principal has a null key.

Solution: Modify the principal to have a non-null key by using the cpw command
of kadmin.

Communication failure with server while initializing kadmin
interface

Cause: The host that was specified for the admin server, also called the master
KDC, did not have the kadmind daemon running.

Solution: Make sure that you specified the correct host name for the master KDC. If
you specified the correct host name, make sure that kadmind is running on the
master KDC that you specified.

Credentials cache file permissions incorrect
Cause: You do not have the appropriate read or write permissions on the
credentials cache (/tmp/krb5cc_uid).

Solution: Make sure that you have read and write permissions on the credentials
cache.

444 System Administration Guide: Security Services • January 2005

Credentials cache I/O operation failed XXX
Cause: Kerberos had a problem writing to the system’s credentials cache
(/tmp/krb5cc_uid).

Solution: Make sure that the credentials cache has not been removed, and that there
is space left on the device by using the df command.

Decrypt integrity check failed
Cause: You might have an invalid ticket.

Solution: Verify both of these conditions:

� Make sure that your credentials are valid. Destroy your tickets with kdestroy,
and create new tickets with kinit.

� Make sure that the target host has a keytab file with the correct version of the
service key. Use kadmin to view the key version number of the service
principal (for example, host/FQDN-hostname) in the Kerberos database. Also,
use klist -k on the target host to make sure that it has the same key version
number.

Encryption could not be enabled. Goodbye.
Cause: Encryption could not be negotiated with the server.

Solution: Start authentication debugging by invoking the telnet command with
the toggle encdebug command and look at the debug messages for further
clues.

failed to obtain credentials cache
Cause: During kadmin initialization, a failure occurred when kadmin tried to
obtain credentials for the admin principal.

Solution: Make sure that you used the correct principal and password when you
executed kadmin.

Field is too long for this implementation
Cause: The message size that was being sent by a Kerberized application was too
long. This error could be generated if the transport protocol is UDP. which has a
default maximum message size 65535 bytes. In addition, there are limits on
individual fields within a protocol message that is sent by the Kerberos service.

Solution: Verify that you have not restricted the transport to UDP in the KDC
server’s /etc/krb5/kdc.conf file.

GSS-API (or Kerberos) error
Cause: This message is a generic GSS-API or Kerberos error message and can be
caused by several different problems.

Solution: Check the /var/krb5/kdc.log file to find the more specific error
message that was logged when this error occurred.

Chapter 23 • Kerberos Error Messages and Troubleshooting 445

Hostname cannot be canonicalized
Cause: Kerberos cannot make the host name fully qualified.

Solution: Make sure that the host name is defined in DNS and that the
host-name-to-address and address-to-host-name mappings are consistent.

Illegal cross-realm ticket
Cause: The ticket sent did not have the correct cross-realms. The realms might not
have the correct trust relationships set up.

Solution: Make sure that the realms you are using have the correct trust
relationships.

Improper format of Kerberos configuration file
Cause: The Kerberos configuration file has invalid entries.

Solution: Make sure that all the relations in the krb5.conf file are followed by the
“=” sign and a value. Also, verify that the brackets are present in pairs for each
subsection.

Inappropriate type of checksum in message
Cause: The message contained an invalid checksum type.

Solution: Check which valid checksum types are specified in the krb5.conf and
kdc.conf files.

Incorrect net address
Cause: There was a mismatch in the network address. The network address in the
ticket that was being forwarded was different from the network address where the
ticket was processed. This message might occur when tickets are being forwarded.

Solution: Make sure that the network addresses are correct. Destroy your tickets
with kdestroy, and create new tickets with kinit.

Invalid credential was supplied

Service key not available
Cause: The service ticket in the credentials cache may be incorrect.

Solution: Destroy current credential cache and rerun kinit before trying to use
this service.

Invalid flag for file lock mode
Cause: An internal Kerberos error occurred.

Solution: Please report a bug.

Invalid message type specified for encoding
Cause: Kerberos could not recognize the message type that was sent by the
Kerberized application.

446 System Administration Guide: Security Services • January 2005

Solution: If you are using a Kerberized application that was developed by your site
or a vendor, make sure that it is using Kerberos correctly.

Invalid number of character classes
Cause: The password that you specified for the principal does not contain enough
password classes, as enforced by the principal’s policy.

Solution: Make sure that you specify a password with the minimum number of
password classes that the policy requires.

KADM err: Memory allocation failure
Cause: There is insufficient memory to run kadmin.

Solution: Free up memory and try running kadmin again.

KDC can’t fulfill requested option
Cause: The KDC did not allow the requested option. A possible problem might be
that postdating or forwardable options were being requested, and the KDC did not
allow them. Another problem might be that you requested the renewal of a TGT,
but you didn’t have a renewable TGT.

Solution: Determine if you are either requesting an option that the KDC does not
allow or a type of ticket that is not available.

KDC policy rejects request
Cause: The KDC policy did not allow the request. For example, the request to the
KDC did not have an IP address in its request. Or forwarding was requested, but
the KDC did not allow it.

Solution: Make sure that you are using kinit with the correct options. If necessary,
modify the policy that is associated with the principal or change the principal’s
attributes to allow the request. You can modify the policy or principal by using
kadmin.

KDC reply did not match expectations
Cause: The KDC reply did not contain the expected principal name, or other values
in the response were incorrect.

Solution: Make sure that the KDC you are communicating with complies with
RFC1510, that the request you are sending is a Kerberos V5 request, or that the
KDC is available.

kdestroy: Could not obtain principal name from cache
Cause: The credentials cache is missing or corrupted.

Solution: Check that the cache location provided is correct. Remove and obtain a
new TGT using kinit, if necessary.

kdestroy: No credentials cache file found while destroying cache
Cause: The credentials cache (/tmp/krb5c_uid) is missing or corrupted.

Chapter 23 • Kerberos Error Messages and Troubleshooting 447

Solution: Check that the cache location provided is correct. Remove and obtain a
new TGT using kinit, if necessary.

kdestroy: TGT expire warning NOT deleted
Cause: The credentials cache is missing or corrupted.

Solution: Check that the cache location provided is correct. Remove and obtain a
new TGT using kinit, if necessary.

Kerberos authentication failed
Cause: The Kerberos password is either incorrect or the password might not be
synchronized with the UNIX password.

Solution: If the password are not synchronized, then you must specify a different
password to complete Kerberos authentication. It is possible that the user has
forgotten their original password.

Kerberos V5 refuses authentication
Cause: Authentication could not be negotiated with the server.

Solution: Start authentication debugging by invoking the telnet command with
the toggle authdebug command and look at the debug messages for further
clues. Also, make sure that you have valid credentials.

Key table entry not found
Cause: No entry exists for the service principal in the network application server’s
keytab file.

Solution: Add the appropriate service principal to the server’s keytab file so that it
can provide the Kerberized service.

Key version number for principal in key table is incorrect
Cause: A principal’s key version in the keytab file is different from the version in
the Kerberos database. Either a service’s key has been changed, or you might be
using an old service ticket.

Solution: If a service’s key has been changed (for example, by using kadmin), you
need to extract the new key and store it in the host’s keytab file where the service is
running.

Alternately, you might be using an old service ticket that has an older key. You
might want to run the kdestroy command and then the kinit command again.

kinit: gethostname failed
Cause: An error in the local network configuration is causing kinit to fail.

Solution: Make sure that the host is configured correctly.

448 System Administration Guide: Security Services • January 2005

login: load_modules: can not open module
/usr/lib/security/pam_krb5.so.1

Cause: Either the Kerberos PAM module is missing or it is not a valid executable
binary.

Solution: Make sure that the Kerberos PAM module is in the
/usr/lib/security directory and that it is a valid executable binary. Also, make
sure that the /etc/pam.conf file contains the correct path to pam_krb5.so.1.

Looping detected inside krb5_get_in_tkt
Cause: Kerberos made several attempts to get the initial tickets but failed.

Solution: Make sure that at least one KDC is responding to authentication requests.

Master key does not match database
Cause: The loaded database dump was not created from a database that contains
the master key. The master key is located in /var/krb5/.k5.REALM.

Solution: Make sure that the master key in the loaded database dump matches the
master key that is located in /var/krb5/.k5.REALM.

Matching credential not found
Cause: The matching credential for your request was not found. Your request
requires credentials that are unavailable in the credentials cache.

Solution: Destroy your tickets with kdestroy, and create new tickets with kinit.

Message out of order
Cause: Messages that were sent using sequential-order privacy arrived out of
order. Some messages might have been lost in transit.

Solution: You should reinitialize the Kerberos session.

Message stream modified
Cause: There was a mismatch between the computed checksum and the message
checksum. The message might have been modified while in transit, which can
indicate a security leak.

Solution: Make sure that the messages are being sent across the network correctly.
Because this message can also indicate the possible tampering of messages while
they are being sent, destroy your tickets using kdestroy and reinitialize the
Kerberos services that you are using.

Common Kerberos Error Messages (N-Z)
This section provides an alphabetical list (N-Z) of common error messages for the
Kerberos commands, Kerberos daemons, PAM framework, GSS interface, the NFS
service, and the Kerberos library.

Chapter 23 • Kerberos Error Messages and Troubleshooting 449

No credentials cache file found
Cause: Kerberos could not find the credentials cache (/tmp/krb5cc_uid).

Solution: Make sure that the credential file exists and is readable. If it isn’t, try
performing kinit again.

No credentials were supplied, or the credentials were unavailable
or inaccessible

No credential cache found
Cause: The user’s credential cache is incorrect or does not exist.

Solution: The user should run kinit before trying to start the service.

No credentials were supplied, or the credentials were unavailable
or inaccessible

No principal in keytab matches desired name
Cause: An error occurred while trying to authenticate the server.

Solution: Make sure that the host or service principal is in the server’s keytab file.

Operation requires “privilege” privilege
Cause: The admin principal that was being used does not have the appropriate
privilege configured in the kadm5.acl file.

Solution: Use a principal that has the appropriate privileges. Or, configure the
principal that was being used to have the appropriate privileges by modifying the
kadm5.acl file. Usually, a principal with /admin as part of its name has the
appropriate privileges.

PAM-KRB5 (auth): krb5_verify_init_creds failed: Key table entry
not found

Cause: The remote application tried to read the host’s service principal in the local
/etc/krb5/krb5.keytab file, but one does not exist.

Solution: Add the host’s service principal to the host’s keytab file.

Password is in the password dictionary
Cause: The password that you specified is in a password dictionary that is being
used. Your password is not a good choice for a password.

Solution: Choose a password that has a mix of password classes.

Permission denied in replay cache code
Cause: The system’s replay cache could not be opened. Your server might have
been first run under a user ID different than your current user ID.

450 System Administration Guide: Security Services • January 2005

Solution: Make sure that the replay cache has the appropriate permissions. The
replay cache is stored on the host where the Kerberized server application is
running. The replay cache file is called /var/krb5/rcache/rc_service_name_uid
for non-root users. For root users the replay cache file is called
/var/krb5/rcache/root/rc_service_name.

Protocol version mismatch
Cause: Most likely, a Kerberos V4 request was sent to the KDC. The Kerberos
service supports only the Kerberos V5 protocol.

Solution: Make sure that your applications are using the Kerberos V5 protocol.

Request is a replay
Cause: The request has already been sent to this server and processed. The tickets
might have been stolen, and someone else is trying to reuse the tickets.

Solution: Wait for a few minutes, and reissue the request.

Requested principal and ticket don’t match
Cause: The service principal that you are connecting to and the service ticket that
you have do not match.

Solution: Make sure that DNS is functioning properly. If you are using another
vendor’s software, make sure that the software is using principal names correctly.

Requested protocol version not supported
Cause: Most likely, a Kerberos V4 request was sent to the KDC. The Kerberos
service supports only the Kerberos V5 protocol.

Solution: Make sure that your applications are using the Kerberos V5 protocol.

Server refused to negotiate authentication, which is required for
encryption. Good bye.

Cause: The remote application is not capable or has been configured not to accept
Kerberos authentication from the client.

Solution: Provide a remote application that can negotiate authentication or
configure the application to use the appropriate flags to turn on authentication.

Server refused to negotiate encryption. Good bye.
Cause: Encryption could not be negotiated with the server.

Solution: Start authentication debugging by invoking the telnet command with
the toggle encdebugcommand and look at the debug messages for further
clues.

Chapter 23 • Kerberos Error Messages and Troubleshooting 451

Server rejected authentication (during sendauth exchange)
Cause: The server that you are trying to communicate with rejected the
authentication. Most often, this error occurs during Kerberos database propagation.
Some common causes might be problems with the kpropd.acl file, DNS, or the
keytab file.

Solution: If you get this error when you are running applications other than kprop,
investigate whether the server’s keytab file is correct.

The ticket isn’t for us

Ticket/authenticator don’t match
Cause: There was a mismatch between the ticket and the authenticator. The
principal name in the request might not have matched the service principal’s name,
because the ticket was being sent with an FQDN name of the principal while the
service expected a non-FQDN name, or vice versa.

Solution: If you get this error when you are running applications other than kprop,
investigate whether the server’s keytab file is correct.

Ticket expired
Cause: Your ticket times have expired.

Solution: Destroy your tickets with kdestroy, and create new tickets with kinit.

Ticket is ineligible for postdating
Cause: The principal does not allow its tickets to be postdated.

Solution: Modify the principal with kadmin to allow postdating.

Ticket not yet valid
Cause: The postdated ticket is not valid yet.

Solution: Create a new ticket with the correct date, or wait until the current ticket is
valid.

Truncated input file detected
Cause: The database dump file that was being used in the operation is not a
complete dump file.

Solution: Create the dump file again, or use a different database dump file.

Unable to securely authenticate user ... exit
Cause: Authentication could not be negotiated with the server.

Solution: Start authentication debugging by invoking the telnet command with
the toggle authdebug command and look at the debug messages for further
clues. Also, make sure that you have valid credentials.

452 System Administration Guide: Security Services • January 2005

Wrong principal in request
Cause: There was an invalid principal name in the ticket. This error might indicate
a DNS or FQDN problem.

Solution: Make sure that the principal of the service matches the principal in the
ticket.

Kerberos Troubleshooting
This section provides troubleshooting information for the Kerberos software.

Problems With the Format of the krb5.conf File
If the krb5.conf file is not formatted properly, the telnet command will fail.
However, the dtlogin and login commands will still succeed, even if the
krb5.conf file is specified as required for the commands. If this problem occurs, the
following error message is displayed:

Error initializing krb5: Improper format of Kerberos configuration

In addition, an incorrectly formatted krb5.conf file, prevents the applications that
use the GSSAPI from using the krb5 mechanisms.

If there is a problem with the format of the krb5.conf file, you are vulnerable to
security breaches. You should fix the problem before you allow Kerberos features to be
used.

Problems Propagating the Kerberos Database
If propagating the Kerberos database fails, try /usr/bin/rlogin -x between the
slave KDC and master KDC, and vice versa.

If the KDCs have been set up to restrict access, rlogin is disabled and cannot be used
to troubleshoot this problem. To enable rlogin on a KDC, you must enable the
eklogin service.

svcadm enable svc:/network/login:eklogin

After you finish troubleshooting the problem, you need to disable the eklogin
service..

If rlogin does not work, problems are likely because of the keytab files on the KDCs.
If rlogin does work, the problem is not in the keytab file or the name service,
because rlogin and the propagation software use the same host/host-name
principal. In this case, make sure that the kpropd.acl file is correct.

Chapter 23 • Kerberos Error Messages and Troubleshooting 453

Problems Mounting a Kerberized NFS File System
� If mounting a Kerberized NFS file system fails, make sure that the

/var/rcache/root file exists on the NFS server. If the file system is not owned
by root, remove it and try the mount again.

� If you have a problem accessing a Kerberized NFS file system, make sure that the
gssd service is enabled on your system and the NFS server.

� If you see either the invalid argument or bad directory error message when
you are trying to access a Kerberized NFS file system, the problem might be that
you are not using a fully qualified DNS name when you are trying to mount the
NFS file system. The host that is being mounted is not the same as the host name
part of the service principal in the server’s keytab file.

This problem might also occur if your server has multiple Ethernet interfaces, and
you have set up DNS to use a “name per interface” scheme instead of a “multiple
address records per host” scheme. For the Kerberos service, you should set up
multiple address records per host as follows1 :

my.host.name. A 1.2.3.4
A 1.2.4.4
A 1.2.5.4

my-en0.host.name. A 1.2.3.4
my-en1.host.name. A 1.2.4.4
my-en2.host.name. A 1.2.5.4

4.3.2.1 PTR my.host.name.
4.4.2.1 PTR my.host.name.

4.5.2.1 PTR my.host.name.

In this example, the setup allows one reference to the different interfaces and a single
service principal instead of three service principals in the server’s keytab file.

Problems Authenticating as root
If authentication fails when you try to become superuser on your system and you
have already added the root principal to your host’s keytab file, there are two
potential problems to check. First, make sure that the root principal in the keytab file
has a fully qualified host name as its instance. If it does, check the
/etc/resolv.conf file to make sure that the system is correctly set up as a DNS
client.

1 Ken Hornstein, “Kerberos FAQ,” [http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html], accessed 11
December 1998.

454 System Administration Guide: Security Services • January 2005

http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html

Observing Mapping from GSS Credentials to UNIX
Credentials
To be able to monitor the credential mappings, first uncomment this line from the
/etc/gss/gsscred.conf file.

SYSLOG_UID_MAPPING=yes

Next instruct the gssd service to get information from the
/etc/gss/gsscred.conf file.

pkill -HUP gssd

Now you should be able to monitor the credential mappings as gssd requests them.
The mappings are recorded by syslogd, if the syslog.conf file is configured for
the auth system facility with the debug severity level.

Chapter 23 • Kerberos Error Messages and Troubleshooting 455

456 System Administration Guide: Security Services • January 2005

CHAPTER 24

Administering Kerberos Principals and
Policies (Tasks)

This chapter provides procedures for administering principals and the policies that are
associated with them. This chapter also shows how to administer a host’s keytab file.

This chapter should be used by anyone who needs to administer principals and
policies. Before you use this chapter, you should be familiar with principals and
policies, including any planning considerations. Refer to Chapter 20 and Chapter 21,
respectively.

This is a list of the information in this chapter.

� “Ways to Administer Kerberos Principals and Policies” on page 457
� “SEAM Administration Tool” on page 458
� “Administering Kerberos Principals” on page 462
� “Administering Kerberos Policies” on page 475
� “SEAM Tool Reference” on page 483
� “Administering Keytab Files” on page 487

Ways to Administer Kerberos Principals
and Policies
The Kerberos database on the master KDC contains all of your realm’s Kerberos
principals, their passwords, policies, and other administrative information. To create
and delete principals, and to modify their attributes, you can use either the kadmin or
gkadmin command.

The kadmin command provides an interactive command-line interface that enables
you to maintain Kerberos principals, policies, and keytab files. There are two versions
of the kadmin command:

� kadmin – Uses Kerberos authentication to operate securely from anywhere on the
network

457

� kadmin.local – Must be run directly on the master KDC

Other than kadmin using Kerberos to authenticate the user, the capabilities of the two
versions are identical. The local version is necessary to enable you to set up enough of
the database so that you can use the remote version.

Also, the Solaris release provides the SEAM Administration Tool, gkadmin, which is
an interactive graphical user interface (GUI) that provides essentially the same
capabilities as the kadmin command. See “SEAM Administration Tool” on page 458
for more information.

SEAM Administration Tool
The SEAM Administration Tool (SEAM Tool) is an interactive graphical user interface
(GUI) that enables you to maintain Kerberos principals and policies. This tool provides
much the same capabilities as the kadmin command. However, this tool does not
support the management of keytab files. You must use the kadmin command to
administer keytab files, which is described in “Administering Keytab Files” on page
487.

Similar to the kadmin command, the SEAM Tool uses Kerberos authentication and
encrypted RPC to operate securely from anywhere on the network. The SEAM Tool
enables you to do the following:

� Create new principals that are based on default values or existing principals.
� Create new policies that are based on existing policies.
� Add comments for principals.
� Set up default values for creating new principals.
� Log in as another principal without exiting the tool.
� Print or save principal lists and policy lists.
� View and search principal lists and policy lists.

The SEAM Tool also provides context-sensitive help and general online help.

The following task maps provide pointers to the various tasks that you can do with
the SEAM Tool:

� “Administering Kerberos Principals (Task Map)” on page 463
� “Administering Kerberos Policies (Task Map)” on page 475

Also, go to “SEAM Tool Panel Descriptions” on page 483 for descriptions of all the
principal attributes and policy attributes that you can either specify or view in the
SEAM Tool.

458 System Administration Guide: Security Services • January 2005

Command-Line Equivalents of the SEAM Tool
This section lists the kadmin commands that provide the same capabilities as the
SEAM Tool. These commands can be used without running an X Window system.
Even though most procedures in this chapter use the SEAM Tool, many procedures
also provide corresponding examples that use the command-line equivalents.

TABLE 24–1 Command-Line Equivalents of the SEAM Tool

SEAM Tool Procedure Equivalent kadmin Command

View the list of principals. list_principals or get_principals

View a principal’s attributes. get_principal

Create a new principal. add_principal

Duplicate a principal. No command-line equivalent

Modify a principal. modify_principal or change_password

Delete a principal. delete_principal

Set up defaults for creating new principals. No command-line equivalent

View the list of policies. list_policies or get_policies

View a policy’s attributes. get_policy

Create a new policy. add_policy

Duplicate a policy. No command-line equivalent

Modify a policy. modify_policy

Delete a policy. delete_policy

The Only File Modified by the SEAM Tool
The only file that the SEAM Tool modifies is the $HOME/.gkadmin file. This file
contains the default values for creating new principals. You can update this file by
choosing Properties from the Edit menu.

Print and Online Help Features of the SEAM Tool
The SEAM Tool provides both print features and online help features. From the Print
menu, you can send the following to a printer or a file:

� List of available principals on the specified master KDC
� List of available policies on the specified master KDC
� The currently selected principal or the loaded principal

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 459

� The currently selected policy or the loaded policy

From the Help menu, you can access context-sensitive help and general help. When
you choose Context-Sensitive Help from the Help menu, the Context-Sensitive Help
window is displayed and the tool is switched to help mode. In help mode, when you
click on any fields, labels, or buttons on the window, help on that item is displayed in
the Help window. To switch back to the tool’s normal mode, click Dismiss in the Help
window.

You can also choose Help Contents, which opens an HTML browser that provides
pointers to the general overview and task information that is provided in this chapter.

Working With Large Lists in the SEAM Tool
As your site starts to accumulate a large number of principals and policies, the time it
takes the SEAM Tool to load and display the principal and policy lists will become
increasingly longer. Thus, your productivity with the tool will decrease. There are
several ways to work around this problem.

First, you can completely eliminate the time to load the lists by not having the SEAM
Tool load the lists. You can set this option by choosing Properties from the Edit menu,
and unchecking the Show Lists field. Of course, when the tool doesn’t load the lists, it
can’t display the lists, and you can no longer use the list panels to select principals or
policies. Instead, you must type a principal or policy name in the new Name field that
is provided, then select the operation that you want to perform on it. In effect, typing a
name is equivalent to selecting an item from the list.

Another way to work with large lists is to cache them. In fact, caching the lists for a
limited time is set as the default behavior for the SEAM Tool. The SEAM Tool must
still initially load the lists into the cache. But after that, the tool can use the cache
rather than retrieve the lists again. This option eliminates the need to keep loading the
lists from the server, which is what takes so long.

You can set list caching by choosing Properties from the Edit menu. There are two
cache settings. You can choose to cache the list forever, or you can specify a time limit
when the tool must reload the lists from the server into the cache.

Caching the lists still enables you to use the list panels to select principals and policies,
so it doesn’t affect how you use the SEAM Tool as the first option does. Also, even
though caching doesn’t enable you to see the changes of other users, you can still see
the latest list information based on your changes, because your changes update the
lists both on the server and in the cache. And, if you want to update the cache to see
other changes and get the lastest copy of the lists, you can use the Refresh menu
whenever you want to refresh the cache from the server.

460 System Administration Guide: Security Services • January 2005

� How to Start the SEAM Tool

1. Start the SEAM Tool by using the gkadmin command.

$ /usr/sbin/gkadmin

The SEAM Administration Login window is displayed.

2. If you don’t want to use the default values, specify new default values.

The window automatically fills in with default values. The default principal name
is determined by taking your current identity from the USER environment variable
and appending /admin to it (username/admin). The default Realm and Master
KDC fields are selected from the /etc/krb5/krb5.conf file. If you ever want to
retrieve the default values, click Start Over.

Note – The administration operations that each Principal Name can perform are
dictated by the Kerberos ACL file, /etc/krb5/kadm5.acl. For information about
limited privileges, see “Using the SEAM Tool With Limited Kerberos
Administration Privileges” on page 486.

3. Type a password for the specified principal name.

4. Click OK.

The following window is displayed.

Steps

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 461

Administering Kerberos Principals
This section provides the step-by-step instructions used to administer principals with
the SEAM Tool. This section also provides examples of command-line equivalents,
when available.

462 System Administration Guide: Security Services • January 2005

Administering Kerberos Principals (Task Map)

Task Description For Instructions

View the list of principals. View the list of principals by clicking the
Principals tab.

“How to View the List of
Kerberos Principals” on page 464

View a principal’s attributes. View a principal’s attributes by selecting the
Principal in the Principal List, then clicking the
Modify button.

“How to View a Kerberos
Principal’s Attributes” on page
466

Create a new principal. Create a new principal by clicking the Create
New button in the Principal List panel.

“How to Create a New Kerberos
Principal” on page 468

Duplicate a principal. Duplicate a principal by selecting the principal
to duplicate in the Principal List, then clicking
the Duplicate button.

“How to Duplicate a Kerberos
Principal” on page 470

Modify a principal. Modify a principal by selecting the principal to
modify in the Principal List, then clicking the
Modify button.

Note that you cannot modify a principal’s
name. To rename a principal, you must
duplicate the principal, specify a new name for
it, save it, and then delete the old principal.

“How to Modify a Kerberos
Principal” on page 470

Delete a principal. Delete a principal by selecting the principal to
delete in the Principal List, then clicking the
Delete button.

“How to Delete a Kerberos
Principal” on page 472

Set up defaults for creating
new principals.

Set up defaults for creating new principals by
choosing Properties from the Edit menu.

“How to Set Up Defaults for
Creating New Kerberos
Principals” on page 472

Modify the Kerberos
administration privileges
(kadm5.acl file).

Command-line only. The Kerberos
administration privileges determine what
operations a principal can perform on the
Kerberos database, such as add and modify.

You need to edit the /etc/krb5/kadm5.acl
file to modify the Kerberos administration
privileges for each principal.

“How to Modify the Kerberos
Administration Privileges”
on page 473

Automating the Creation of New Kerberos
Principals
Even though the SEAM Tool provides ease-of-use, it doesn’t provide a way to
automate the creation of new principals. Automation is especially useful if you need to
add 10 or even 100 new principals in a short time. However, by using the
kadmin.local command in a Bourne shell script, you can do just that.

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 463

The following shell script line is an example of how to automate the creation of new
principals:

awk ’{ print "ank +needchange -pw", $2, $1 }’ < /tmp/princnames |

time /usr/sbin/kadmin.local> /dev/null

This example is split over two lines for readability. The script reads in a file called
princnames that contains principal names and their passwords, and adds them to
the Kerberos database. You would have to create the princnames file, which contains
a principal name and its password on each line, separated by one or more spaces. The
+needchange option configures the principal so that the user is prompted for a new
password during login with the principal for the first time. This practice helps to
ensure that the passwords in the princnames file are not a security risk.

You can build more elaborate scripts. For example, your script could use the
information in the name service to obtain the list of user names for the principal
names. What you do and how you do it is determined by your site’s needs and your
scripting expertise.

� How to View the List of Kerberos Principals
An example of the command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Click the Principals tab.

The list of principals is displayed.

Steps

464 System Administration Guide: Security Services • January 2005

3. Display a specific principal or a sublist of principals.

Type a filter string in the Filter field, and press Return. If the filter succeeds, the list
of principals that match the filter is displayed.

The filter string must consist of one or more characters. Because the filter
mechanism is case sensitive, you need to use the appropriate uppercase and
lowercase letters for the filter. For example, if you type the filter string ge, the filter
mechanism displays only the principals with the ge string in them (for example,
george or edge).

If you want to display the entire list of principals, click Clear Filter.

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 465

Viewing the List of Kerberos Principals (Command Line)

In the following example, the list_principals command of kadmin is used to list
all the principals that match test*. Wildcards can be used with the
list_principals command.

kadmin: list_principals test*
test1@EXAMPLE.COM
test2@EXAMPLE.COM

kadmin: quit

� How to View a Kerberos Principal’s Attributes
An example of the command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Click the Principals tab.

3. Select the principal in the list that you want to view, then click Modify.

The Principal Basics panel that contains some of the principal’s attributes is
displayed.

4. Continue to click Next to view all the principal’s attributes.

Three windows contain attribute information. Choose Context-Sensitive Help from
the Help menu to get information about the various attributes in each window. Or,
for all the principal attribute descriptions, go to “SEAM Tool Panel Descriptions”
on page 483.

5. When you are finished viewing, click Cancel.

Viewing a Kerberos Principal’s Attributes

The following example shows the first window when you are viewing the jdb/admin
principal.

Example 24–1

Steps

Example 24–2

466 System Administration Guide: Security Services • January 2005

Viewing a Kerberos Principal’s Attributes (Command Line)

In the following example, the get_principal command of kadmin is used to view
the attributes of the jdb/admin principal.

kadmin: getprinc jdb/admin
Principal: jdb/admin@EXAMPLE.COM
Expiration date: Fri Aug 25 17:19:05 PDT 2004
Last password change: [never]
Password expiration date: Wed Apr 14 11:53:10 PDT 2003
Maximum ticket life: 1 day 16:00:00
Maximum renewable life: 1 day 16:00:00
Last modified: Thu Jan 14 11:54:09 PST 2003 (admin/admin@EXAMPLE.COM)

Example 24–3

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 467

Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 1
Key: vno 1, DES cbc mode with CRC-32, no salt
Attributes: REQUIRES_HW_AUTH
Policy: [none]

kadmin: quit

� How to Create a New Kerberos Principal
An example of the command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for more information.

Note – If you are creating a new principal that might need a new policy, you should
create the new policy before you create the new principal. Go to “How to Create a
New Kerberos Policy” on page 479.

$ /usr/sbin/gkadmin

2. Click the Principals tab.

3. Click New.

The Principal Basics panel that contains some attributes for a principal is
displayed.

4. Specify a principal name and a password.

Both the principal name and the password are mandatory.

5. Specify values for the principal’s attributes, and continue to click Next to specify
more attributes.

Three windows contain attribute information. Choose Context-Sensitive Help from
the Help menu to get information about the various attributes in each window. Or,
for all the principal attribute descriptions, go to “SEAM Tool Panel Descriptions”
on page 483.

6. Click Save to save the principal, or click Done on the last panel.

7. If needed, set up Kerberos administration privileges for the new principal in the
/etc/krb5/kadm5.acl file.

See “How to Modify the Kerberos Administration Privileges” on page 473 for more
details.

Steps

468 System Administration Guide: Security Services • January 2005

Creating a New Kerberos Principal
The following example shows the Principal Basics panel when a new principal called
pak is created. The policy is set to testuser.

Creating a New Kerberos Principal (Command Line)
In the following example, the add_principal command of kadmin is used to create
a new principal called pak. The principal’s policy is set to testuser.

kadmin: add_principal -policy testuser pak
Enter password for principal "pak@EXAMPLE.COM": <Type the password>
Re-enter password for principal "pak@EXAMPLE.COM": <Type the password again>

Example 24–4

Example 24–5

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 469

Principal "pak@EXAMPLE.COM" created.

kadmin: quit

� How to Duplicate a Kerberos Principal
This procedure explains how to use all or some of the attributes of an existing
principal to create a new principal. No command-line equivalent exists for this
procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Click the Principals tab.

3. Select the principal in the list that you want to duplicate, then click Duplicate.

The Principal Basics panel is displayed. All the attributes of the selected principal
are duplicated, except for the Principal Name and Password fields, which are
empty.

4. Specify a principal name and a password.

Both the principal name and the password are mandatory. To make an exact
duplicate of the principal you selected, click Save and skip to Step 7.

5. Specify different values for the principal’s attributes, and continue to click Next
to specify more attributes.

Three windows contain attribute information. Choose Context-Sensitive Help from
the Help menu to get information about the various attributes in each window. Or,
for all the principal attribute descriptions, go to “SEAM Tool Panel Descriptions”
on page 483.

6. Click Save to save the principal, or click Done on the last panel.

7. If needed, set up Kerberos administration privileges for the principal in
/etc/krb5/kadm5.acl file.

See “How to Modify the Kerberos Administration Privileges” on page 473 for more
details.

� How to Modify a Kerberos Principal
An example of the command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

Steps

Steps

470 System Administration Guide: Security Services • January 2005

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Click the Principals tab.

3. Select the principal in the list that you want to modify, then click Modify.

The Principal Basics panel that contains some of the attributes for the principal is
displayed.

4. Modify the principal’s attributes, and continue to click Next to modify more
attributes.

Three windows contain attribute information. Choose Context-Sensitive Help from
the Help menu to get information about the various attributes in each window. Or,
for all the principal attribute descriptions, go to “SEAM Tool Panel Descriptions”
on page 483.

Note – You cannot modify a principal’s name. To rename a principal, you must
duplicate the principal, specify a new name for it, save it, and then delete the old
principal.

5. Click Save to save the principal, or click Done on the last panel.

6. Modify the Kerberos administration privileges for the principal in the
/etc/krb5/kadm5.acl file.

See “How to Modify the Kerberos Administration Privileges” on page 473 for more
details.

Modifying a Kerberos Principal’s Password (Command Line)

In the following example, the change_password command of kadmin is used to
modify the password for the jdb principal. The change_password command does
not let you change the password to a password that is in the principal’s password
history.

kadmin: change_password jdb
Enter password for principal "jdb": <Type the new password>
Re-enter password for principal "jdb": <Type the password again>
Password for "jdb@EXAMPLE.COM" changed.

kadmin: quit

To modify other attributes for a principal, you must use the modify_principal
command of kadmin.

Example 24–6

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 471

� How to Delete a Kerberos Principal
An example of the command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Click the Principals tab.

3. Select the principal in the list that you want to delete, then click Delete.

After you confirm the deletion, the principal is deleted.

4. Remove the principal from the Kerberos access control list (ACL) file,
/etc/krb5/kadm5.acl.

See “How to Modify the Kerberos Administration Privileges” on page 473 for more
details.

Deleting a Kerberos Principal (Command Line)

In the following example, the delete_principal command of kadmin is used to
delete the jdb principal.

kadmin: delete_principal pak
Are you sure you want to delete the principal "pak@EXAMPLE.COM"? (yes/no): yes
Principal "pak@EXAMPLE.COM" deleted.
Make sure that you have removed this principal from all ACLs before reusing.

kadmin: quit

� How to Set Up Defaults for Creating New Kerberos
Principals
No command-line equivalent exists for this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Choose Properties from the Edit Menu.

The Properties window is displayed.

Steps

Example 24–7

Steps

472 System Administration Guide: Security Services • January 2005

3. Select the defaults that you want to use when you create new principals.

Choose Context-Sensitive Help from the Help menu for information about the
various attributes in each window.

4. Click Save.

� How to Modify the Kerberos Administration
Privileges
Even though your site probably has many user principals, you usually want only a
few users to be able to administer the Kerberos database. Privileges to administer the
Kerberos database are determined by the Kerberos access control list (ACL) file,
kadm5.acl. The kadm5.acl file enables you to allow or disallow privileges for
individual principals. Or, you can use the ’*’ wildcard in the principal name to specify
privileges for groups of principals.

1. Become superuser on the master KDC.Steps

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 473

2. Edit the /etc/krb5/kadm5.acl file.

An entry in the kadm5.acl file must have the following format:

principal privileges [principal-target]

principal Specifies the principal to which the privileges are granted. Any part of
the principal name can include the ’*’ wildcard, which is useful for
providing the same privileges for a group of principals. For example, if
you want to specify all principals with the admin instance, you would
use */admin@realm.

Note that a common use of an admin instance is to grant separate
privileges (such as administration access to the Kerberos database) to a
separate Kerberos principal. For example, the user jdb might have a
principal for his administrative use, called jdb/admin. This way, the
user jdb obtains jdb/admin tickets only when he or she actually needs
to use those privileges.

privileges Specifies which operations can or cannot be performed by the principal.
This field consists of a string of one or more of the following list of
characters or their uppercase counterparts. If the character is uppercase
(or not specified), then the operation is disallowed. If the character is
lowercase, then the operation is permitted.

a [Dis]allows the addition of principals or policies.

d [Dis]allows the deletion of principals or policies.

m [Dis]allows the modification of principals or polices.

c [Dis]allows the changing of passwords for principals.

i [Dis]allows inquiries to the Kerberos database.

l [Dis]allows the listing of principals or policies in the
Kerberos database.

x or * Allows all privileges (admcil).

principal-target When a principal is specified in this field, the privileges apply to the
principal only when the principal operates on the principal-target. Any
part of the principal name can include the ’*’ wildcard, which is useful
to group principals.

Modifying the Kerberos Administration Privileges

The following entry in the kadm5.acl file gives any principal in the EXAMPLE.COM
realm with the admin instance all the privileges on the Kerberos database:

*/admin@EXAMPLE.COM *

The following entry in the kadm5.acl file gives the jdb@EXAMPLE.COM principal the
privileges to add, list, and inquire about any principal that has the root instance.

Example 24–8

474 System Administration Guide: Security Services • January 2005

jdb@EXAMPLE.COM ali */root@EXAMPLE.COM

Administering Kerberos Policies
This section provides step-by-step instructions used to administer policies with the
SEAM Tool. This section also provides examples of command-line equivalents, when
available.

Administering Kerberos Policies (Task Map)

Task Description For Instructions

View the list of policies. View the list of policies by clicking the Policies
tab.

“How to View the List of
Kerberos Policies” on page 475

View a policy’s attributes. View a policy’s attributes by selecting the
policy in the Policy List, then clicking the
Modify button.

“How to View a Kerberos
Policy’s Attributes” on page 477

Create a new policy. Create a new policy by clicking the Create
New button in the Policy List panel.

“How to Create a New Kerberos
Policy” on page 479

Duplicate a policy. Duplicate a policy by selecting the policy to
duplicate in the Policy List, then clicking the
Duplicate button.

“How to Duplicate a Kerberos
Policy” on page 481

Modify a policy. Modify a policy by selecting the policy to
modify in the Policy List, then clicking the
Modify button.

Note that you cannot modify a policy’s name.
To rename a policy, you must duplicate the
policy, specify a new name for it, save it, and
then delete the old policy.

“How to Modify a Kerberos
Policy” on page 481

Delete a policy. Delete a policy by selecting the policy to delete
in the Policy List, then clicking the Delete
button.

“How to Delete a Kerberos
Policy” on page 482

� How to View the List of Kerberos Policies
An example of the command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.Steps

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 475

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Click the Policies tab.

The list of policies is displayed.

3. Display a specific policy or a sublist of policies.

Type a filter string in the Filter field, and press Return. If the filter succeeds, the list
of policies that match the filter is displayed.

The filter string must consist of one or more characters. Because the filter
mechanism is case sensitive, you need to use the appropriate uppercase and

476 System Administration Guide: Security Services • January 2005

lowercase letters for the filter. For example, if you type the filter string ge, the filter
mechanism displays only the policies with the ge string in them (for example,
george or edge).

If you want to display the entire list of policies, click Clear Filter.

Viewing the List of Kerberos Policies (Command Line)

In the following example, the list_policies command of kadmin is used to list all
the policies that match *user*. Wildcards can be used with the list_policies
command.

kadmin: list_policies *user*
testuser
enguser

kadmin: quit

� How to View a Kerberos Policy’s Attributes
An example of the command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Click the Policies tab.

3. Select the policy in the list that you want to view, then click Modify.

The Policy Details panel is displayed.

4. When you are finished viewing, click Cancel.

Viewing a Kerberos Policy’s Attributes

The following example shows the Policy Details panel when you are viewing the
test policy.

Example 24–9

Steps

Example
24–10

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 477

Viewing a Kerberos Policy’s Attributes (Command Line)

In the following example, the get_policy command of kadmin is used to view the
attributes of the enguser policy.

kadmin: get_policy enguser
Policy: enguser
Maximum password life: 2592000
Minimum password life: 0
Minimum password length: 8
Minimum number of password character classes: 2
Number of old keys kept: 3
Reference count: 0

Example
24–11

478 System Administration Guide: Security Services • January 2005

kadmin: quit

The Reference count is the number of principals that use this policy.

� How to Create a New Kerberos Policy
An example of the command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Click the Policies tab.

3. Click New.

The Policy Details panel is displayed.

4. Specify a name for the policy in the Policy Name field.

The policy name is mandatory.

5. Specify values for the policy’s attributes.

Choose Context-Sensitive Help from the Help menu for information about the
various attributes in this window. Or, go to Table 24–5 for all the policy attribute
descriptions.

6. Click Save to save the policy, or click Done.

Creating a New Kerberos Policy

In the following example, a new policy called build11 is created. The Minimum
Password Classes is set to 3.

Steps

Example
24–12

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 479

Creating a New Kerberos Policy (Command Line)

In the following example, the add_policy command of kadmin is used to create the
build11 policy. This policy requires at least 3 character classes in a password.

$ kadmin
kadmin: add_policy -minclasses 3 build11

kadmin: quit

Example
24–13

480 System Administration Guide: Security Services • January 2005

� How to Duplicate a Kerberos Policy
This procedure explains how to use all or some of the attributes of an existing policy
to create a new policy. No command-line equivalent exists for this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Click the Policies tab.

3. Select the policy in the list that you want to duplicate, then click Duplicate.

The Policy Details panel is displayed. All the attributes of the selected policy are
duplicated, except for the Policy Name field, which is empty.

4. Specify a name for the duplicated policy in the Policy Name field.

The policy name is mandatory. To make an exact duplicate of the policy you
selected, skip to Step 6.

5. Specify different values for the policy’s attributes.

Choose Context-Sensitive Help from the Help menu for information about the
various attributes in this window. Or, go to Table 24–5 for all the policy attribute
descriptions.

6. Click Save to save the policy, or click Done.

� How to Modify a Kerberos Policy
An example of the command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for details.

$ /usr/sbin/gkadmin

2. Click the Policies tab.

3. Select the policy in the list that you want to modify, then click Modify.

The Policy Details panel is displayed.

4. Modify the policy’s attributes.

Choose Context-Sensitive Help from the Help menu for information about the
various attributes in this window. Or, go to Table 24–5 for all the policy attribute
descriptions.

Steps

Steps

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 481

Note – You cannot modify a policy’s name. To rename a policy, you must duplicate
the policy, specify a new name for it, save it, and then delete the old policy.

5. Click Save to save the policy, or click Done.

Modifying a Kerberos Policy (Command Line)
In the following example, the modify_policy command of kadmin is used to
modify the minimum length of a password to five characters for the build11 policy.

$ kadmin
kadmin: modify_policy -minlength 5 build11

kadmin: quit

� How to Delete a Kerberos Policy
An example of the command-line equivalent follows this procedure.

Note – Before you delete a policy, you must cancel the policy from all principals that
are currently using it. To do so, you need to modify the principals’ Policy attribute.
The policy cannot be deleted if any principal is using it.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 461 for more information.

$ /usr/sbin/gkadmin

2. Click the Policies tab.

3. Select the policy in the list that you want to delete, then click Delete.

After you confirm the deletion, the policy is deleted.

Deleting a Kerberos Policy (Command Line)
In the following example, the delete_policy command of the kadmin command is
used to delete the build11 policy.

kadmin: delete_policy build11
Are you sure you want to delete the policy "build11"? (yes/no): yes

kadmin: quit

Before you delete a policy, you must cancel the policy from all principals that are
currently using it. To do so, you need to use the modify_principal -policy
command of kadmin on the affected principals. The delete_policy command fails
if the policy is in use by a principal.

Example
24–14

Steps

Example
24–15

482 System Administration Guide: Security Services • January 2005

SEAM Tool Reference
This section provides descriptions of each panel in the SEAM Tool. Also, information
about using limited privileges with SEAM Tool are provided.

SEAM Tool Panel Descriptions
This section provides descriptions for each principal and policy attribute that you can
either specify or view in the SEAM Tool. The attributes are organized by the panel in
which they are displayed.

TABLE 24–2 Attributes for the Principal Basics Panel of the SEAM Tool

Attribute Description

Principal Name The name of the principal (which is the primary/instance part of a fully qualified
principal name). A principal is a unique identity to which the KDC can assign
tickets.

If you are modifying a principal, you cannot edit its name.

Password The password for the principal. You can use the Generate Random Password
button to create a random password for the principal.

Policy A menu of available policies for the principal.

Account Expires The date and time on which the principal’s account expires. When the account
expires, the principal can no longer get a ticket-granting ticket (TGT) and might be
unable to log in.

Last Principal Change The date on which information for the principal was last modified. (Read only)

Last Changed By The name of the principal that last modified the account for this principal. (Read
only)

Comments Comments that are related to the principal (for example, “Temporary Account”).

TABLE 24–3 Attributes for the Principal Details Panel of the SEAM Tool

Attribute Description

Last Success The date and time when the principal last logged in successfully. (Read only)

Last Failure The date and time when the last login failure for the principal occurred. (Read
only)

Failure Count The number of times a login failure has occurred for the principal. (Read only)

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 483

TABLE 24–3 Attributes for the Principal Details Panel of the SEAM Tool (Continued)
Attribute Description

Last Password Change The date and time when the principal’s password was last changed. (Read only)

Password Expires The date and time when the principal’s current password expires.

Key Version The key version number for the principal. This attribute is normally changed only
when a password has been compromised.

Maximum Lifetime (seconds) The maximum length of time for which a ticket can be granted for the principal
(without renewal).

Maximum Renewal
(seconds)

The maximum length of time for which an existing ticket can be renewed for the
principal.

TABLE 24–4 Attributes of the Principal Flags Panel of the SEAM Tool

Attribute (Radio Buttons) Description

Disable Account When checked, prevents the principal from logging in. This attribute provides an
easy way to temporarily freeze a principal account.

Require Password Change When checked, expires the principal’s current password, which forces the user to
use the kpasswd command to create a new password. This attribute is useful if a
security breach occurs, and you need to make sure that old passwords are
replaced.

Allow Postdated Tickets When checked, allows the principal to obtain postdated tickets.

For example, you might need to use postdated tickets for cron jobs that must run
after hours, but you cannot obtain tickets in advance because of short ticket
lifetimes.

Allow Forwardable Tickets When checked, allows the principal to obtain forwardable tickets.

Forwardable tickets are tickets that are forwarded to the remote host to provide a
single-sign-on session. For example, if you are using forwardable tickets and you
authenticate yourself through ftp or rsh, then other services, such as NFS
services, are available without your being prompted for another password.

Allow Renewable Tickets When checked, allows the principal to obtain renewable tickets.

A principal can automatically extend the expiration date or time of a ticket that is
renewable (rather than having to get a new ticket after the first ticket expires).
Currently, the NFS service is the ticket service that can renew tickets.

Allow Proxiable Tickets When checked, allows the principal to obtain proxiable tickets.

A proxiable ticket is a ticket that can be used by a service on behalf of a client to
perform an operation for the client. With a proxiable ticket, a service can take on
the identity of a client and obtain a ticket for another service. However, the service
cannot obtain a ticket-granting ticket (TGT).

484 System Administration Guide: Security Services • January 2005

TABLE 24–4 Attributes of the Principal Flags Panel of the SEAM Tool (Continued)
Attribute (Radio Buttons) Description

Allow Service Tickets When checked, allows service tickets to be issued for the principal.

You should not allow service tickets to be issued for the kadmin/hostname and
changepw/hostname principals. This practice ensures that only these principals
can update the KDC database.

Allow TGT-Based
Authentication

When checked, allows the service principal to provide services to another
principal. More specifically, this attribute allows the KDC to issue a service ticket
for the service principal.

This attribute is valid only for service principals. When unchecked, service tickets
cannot be issued for the service principal.

Allow Duplicate
Authentication

When checked, allows the user principal to obtain service tickets for other user
principals.

This attribute is valid only for user principals. When unchecked, the user principal
can still obtain service tickets for service principals, but not for other user
principals.

Required Preauthentication When checked, the KDC will not send a requested ticket-granting ticket (TGT) to
the principal until the KDC can authenticate (through software) that the principal
is really the principal that is requesting the TGT. This preauthentication is usually
done through an extra password, for example, from a DES card.

When unchecked, the KDC does not need to preauthenticate the principal before
the KDC sends a requested TGT to the principal.

Required Hardware
Authentication

When checked, the KDC will not send a requested ticket-granting ticket (TGT) to
the principal until the KDC can authenticate (through hardware) that the principal
is really the principal that is requesting the TGT. Hardware preauthentication can
occur, for example, on a Java ring reader.

When unchecked, the KDC does not need to preauthenticate the principal before
the KDC sends a requested TGT to the principal.

TABLE 24–5 Attributes for the Policy Basics Pane of the SEAM Tool

Attribute Description

Policy Name The name of the policy. A policy is a set of rules that govern a principal’s password
and tickets.

If you are modifying a policy, you cannot edit its name.

Minimum Password Length The minimum length for the principal’s password.

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 485

TABLE 24–5 Attributes for the Policy Basics Pane of the SEAM Tool (Continued)
Attribute Description

Minimum Password Classes The minimum number of different character types that are required in the
principal’s password.

For example, a minimum classes value of 2 means that the password must have at
least two different character types, such as letters and numbers (hi2mom). A value
of 3 means that the password must have at least three different character types,
such as letters, numbers, and punctuation (hi2mom!). And so on.

A value of 1 sets no restriction on the number of password character types.

Saved Password History The number of previous passwords that have been used by the principal, and a list
of the previous passwords that cannot be reused.

Minimum Password Lifetime
(seconds)

The minimum length of time that the password must be used before it can be
changed.

Maximum Password
Lifetime (seconds)

The maximum length of time that the password can be used before it must be
changed.

Principals Using This Policy The number of principals to which this policy currently applies. (Read only)

Using the SEAM Tool With Limited Kerberos
Administration Privileges
All features of the SEAM Administration Tool are available if your admin principal
has all the privileges to administer the Kerberos database. However, you might have
limited privileges, such as only being allowed to view the list of principals or to
change a principal’s password. With limited Kerberos administration privileges, you
can still use the SEAM Tool. However, various parts of the SEAM Tool change based
on the Kerberos administration privileges that you do not have. Table 24–6 shows how
the SEAM Tool changes based on your Kerberos administration privileges.

The most visual change to the SEAM Tool occurs when you don’t have the list
privilege. Without the list privilege, the List panels do not display the list of principals
and polices for you to manipulate. Instead, you must use the Name field in the List
panels to specify a principal or a policy that you want to manipulate.

If you log in to the SEAM Tool, and you do not have sufficient privileges to perform
tasks with it, the following message displays and you are sent back to the SEAM
Administration Login window:

Insufficient privileges to use gkadmin: ADMCIL. Please try using another principal.

To change the privileges for a principal so that it can administer the Kerberos
database, go to “How to Modify the Kerberos Administration Privileges” on page 473.

486 System Administration Guide: Security Services • January 2005

TABLE 24–6 Using the SEAM Tool With Limited Kerberos Administration Privileges

Disallowed Privilege How the SEAM Tool Changes

a (add) The Create New and Duplicate buttons are unavailable in
the Principal List and Policy List panels. Without the add
privilege, you cannot create new principals or policies, or
duplicate them.

d (delete) The Delete button is unavailable in the Principal List and
Policy List panels. Without the delete privilege, you cannot
delete principals or policies.

m (modify) The Modify button is unavailable in the Principal List and
Policy List panels. Without the modify privilege, you cannot
modify principals or policies.

Also, with the Modify button unavailable, you cannot
modify a principal’s password, even if you have the change
password privilege.

c (change password) The Password field in the Principal Basics panel is read only
and cannot be changed. Without the change password
privilege, you cannot modify a principal’s password.

Note that even if you have the change password privilege,
you must also have the modify privilege to change a
principal’s password.

i (inquiry to database) The Modify and Duplicate buttons are unavailable in the
Principal List and Policy List panels. Without the inquiry
privilege, you cannot modify or duplicate a principal or a
policy.

Also, with the Modify button unavailable, you cannot
modify a principal’s password, even if you have the change
password privilege.

l (list) The list of principals and policies in the List panels are
unavailable. Without the list privilege, you must use the
Name field in the List panels to specify the principal or the
policy that you want to manipulate.

Administering Keytab Files
Every host that provides a service must have a local file, called a keytab (short for “key
table”). The keytab contains the principal for the appropriate service, called a service
key. A service key is used by a service to authenticate itself to the KDC and is known
only by Kerberos and the service itself. For example, if you have a Kerberized NFS
server, that server must have a keytab file that contains its nfs service principal.

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 487

To add a service key to a keytab file, you add the appropriate service principal to a
host’s keytab file by using the ktadd command of kadmin. Because you are adding a
service principal to a keytab file, the principal must already exist in the Kerberos
database so that kadmin can verify its existence. On the master KDC, the keytab file is
located at /etc/krb5/kadm5.keytab, by default. On application servers that
provide Kerberized services, the keytab file is located at /etc/krb5/krb5.keytab,
by default.

A keytab is analogous to a user’s password. Just as it is important for users to protect
their passwords, it is equally important for application servers to protect their keytab
files. You should always store keytab files on a local disk, and make them readable
only by the root user. Also, you should never send a keytab file over an unsecured
network.

There is also a special instance in which to add a root principal to a host’s keytab file.
If you want a user on the Kerberos client to mount Kerberized NFS file systems that
require root-equivalent access, you must add the client’s root principal to the client’s
keytab file. Otherwise, users must use the kinit command as root to obtain
credentials for the client’s root principal whenever they want to mount a Kerberized
NFS file system with root access, even when they are using the automounter.

Note – When you set up a master KDC, you need to add the kadmind and changepw
principals to the kadm5.keytab file.

Another command that you can use to administer keytab files is the ktutil
command. This interactive command enables you to manage a local host’s keytab file
without having Kerberos administration privileges, because ktutil doesn’t interact
with the Kerberos database as kadmin does. So, after a principal is added to a keytab
file, you can use ktutil to view the keylist in a keytab file or to temporarily disable
authentication for a service.

Note – When you change a principal in a keytab file using the ktadd command in
kadmin, a new key is generated and added to the keytab file.

Administering Keytab Files (Task Map)

Task Description For Instructions

Add a service principal to a
keytab file.

Use the ktadd command of kadmin to add a
service principal to a keytab file.

“How to Add a Kerberos Service
Principal to a Keytab File”
on page 489

488 System Administration Guide: Security Services • January 2005

Task Description For Instructions

Remove a service principal
from a keytab file.

Use the ktremove command of kadmin to
remove a service from a keytab file.

“How to Remove a Service
Principal From a Keytab File”
on page 491

Display the keylist (list of
principals) in a keytab file.

Use the ktutil command to display the
keylist in a keytab file.

“How to Display the Keylist
(Principals) in a Keytab File”
on page 492

Temporarily disable
authentication for a service on
a host.

This procedure is a quick way to temporarily
disable authentication for a service on a host
without requiring kadmin privileges.

Before you use ktutil to delete the service
principal from the server’s keytab file, copy
the original keytab file to a temporary location.
When you want to enable the service again,
copy the original keytab file back to its proper
location.

“How to Temporarily Disable
Authentication for a Service on a
Host” on page 493

� How to Add a Kerberos Service Principal to a
Keytab File

1. Make sure that the principal already exists in the Kerberos database.

See “How to View the List of Kerberos Principals” on page 464 for more
information.

2. Become superuser on the host that needs a principal added to its keytab file.

3. Start the kadmin command.

/usr/sbin/kadmin

4. Add a principal to a keytab file by using the ktadd command.

kadmin: ktadd [-e enctype] [-k keytab] [-q] [principal | -glob principal-exp]

-e enctype Overrides the list of encryption types defined in the
krb5.conf file.

-k keytab Specifies the keytab file. By default,
/etc/krb5/krb5.keytab is used.

-q Displays less verbose information.

principal Specifies the principal to be added to the keytab file. You
can add the following service principals: host, root, nfs,
and ftp.

Steps

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 489

-glob principal-exp Specifies the principal expressions. All principals that
match the principal-exp are added to the keytab file. The
rules for principal expression are the same as for the
list_principals command of kadmin.

5. Quit the kadmin command.

kadmin: quit

Adding a Service Principal to a Keytab File

In the following example, the kadmin/admin and kadmin/changepw principals are
added to a master KDC’s keytab file. For this example, the keytab file must be the file
that is specified in the kdc.conf file.

kdc1 # /usr/sbin/kadmin.local
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab kadmin/admin kadmin/changepw
EnEntry for principal kadmin/admin@example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/admin@example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/admin@example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/admin@example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/changepw@example.com with kvno 3, encryption type AES-128 CTS

mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/changepw@example.com with kvno 3, encryption type Triple DES cbc

mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/changepw@example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.
Entry for principal kadmin/changepw@example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/kadm5.keytab.

kadmin.local: quit

In the following example, denver’s host principal is added to denver’s keytab file,
so that the KDC can authenticate denver’s network services.

denver # /usr/sbin/kadmin
kadmin: ktadd host/denver@example.com@EXAMPLE.COM
Entry for principal host/denver@example.com with kvno 3, encryption type AES-128 CTS mode

with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/denver@example.com with kvno 3, encryption type Triple DES cbc mode

with HMAC/sha1 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/denver@example.com with kvno 3, encryption type ARCFOUR

with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal host/denver@example.com with kvno 3, encryption type DES cbc mode

with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin: quit

Example
24–16

490 System Administration Guide: Security Services • January 2005

� How to Remove a Service Principal From a Keytab
File

1. Become superuser on the host with a service principal that must be removed
from its keytab file.

2. Start the kadmin command.

/usr/sbin/kadmin

3. (Optional) To display the current list of principals (keys) in the keytab file, use
the ktutil command.

See “How to Display the Keylist (Principals) in a Keytab File” on page 492 for
detailed instructions.

4. Remove a principal from the keytab file by using the ktremove command.

kadmin: ktremove [-k keytab] [-q] principal [kvno | all | old]

-k keytab Specifies the keytab file. By default, /etc/krb5/krb5.keytab is
used.

-q Displays less verbose information.

principal Specifies the principal to be removed from the keytab file.

kvno Removes all entries for the specified principal whose key version
number matches kvno.

all Removes all entries for the specified principal.

old Removes all entries for the specified principal, except those principals
with the highest key version number.

5. Quit the kadmin command.

kadmin: quit

Removing a Service Principal From a Keytab File

In the following example, denver’s host principal is removed from denver’s keytab
file.

denver # /usr/sbin/kadmin
kadmin: ktremove host/denver.example.com@EXAMPLE.COM
kadmin: Entry for principal host/denver.example.com@EXAMPLE.COM with kvno 3
removed from keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin: quit

Steps

Example
24–17

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 491

� How to Display the Keylist (Principals) in a Keytab
File

1. Become superuser on the host with the keytab file.

Note – Although you can create keytab files that are owned by other users, using
the default location for the keytab file requires root ownership.

2. Start the ktutil command.

/usr/bin/ktutil

3. Read the keytab file into the keylist buffer by using the read_kt command.

ktutil: read_kt keytab

4. Display the keylist buffer by using the list command.

ktutil: list

The current keylist buffer is displayed.

5. Quit the ktutil command.

ktutil: quit

Displaying the Keylist (Principals) in a Keytab File

The following example displays the keylist in the /etc/krb5/krb5.keytab file on
the denver host.

denver # /usr/bin/ktutil
ktutil: read_kt /etc/krb5/krb5.keytab
ktutil: list

slot KVNO Principal
---- ---- ---------------------------------------

1 5 host/denver@EXAMPLE.COM

ktutil: quit

Steps

Example
24–18

492 System Administration Guide: Security Services • January 2005

� How to Temporarily Disable Authentication for a
Service on a Host
At times, you might need to temporarily disable the authentication mechanism for a
service, such as rlogin or ftp, on a network application server. For example, you
might want to stop users from logging in to a system while you are performing
maintenance procedures. The ktutil command enables you to accomplish this task
by removing the service principal from the server’s keytab file, without requiring
kadmin privileges. To enable authentication again, you just need to copy the original
keytab file that you saved back to its original location.

Note – By default, most services are set up to require authentication. If a service is not
set up to require authentication, then the service still works, even if you disable
authentication for the service.

1. Become superuser on the host with the keytab file.

Note – Although you can create keytab files that are owned by other users, using
the default location for the keytab file requires root ownership.

2. Save the current keytab file to a temporary file.

3. Start the ktutil command.

/usr/bin/ktutil

4. Read the keytab file into the keylist buffer by using the read_kt command.

ktutil: read_kt keytab

5. Display the keylist buffer by using the list command.

ktutil: list

The current keylist buffer is displayed. Note the slot number for the service that
you want to disable.

6. To temporarily disable a host’s service, remove the specific service principal
from the keylist buffer by using the delete_entry command.

ktutil: delete_entry slot-number

Where slot-number specifies the slot number of the service principal to be deleted,
which is displayed by the list command.

Steps

Chapter 24 • Administering Kerberos Principals and Policies (Tasks) 493

7. Write the keylist buffer to a new keytab file by using the write_kt command.

ktutil: write_kt new-keytab

8. Quit the ktutil command.

ktutil: quit

9. Move the new keytab file.

mv new-keytab keytab

10. When you want to re-enable the service, copy the temporary (original) keytab
file back to its original location.

Temporarily Disabling a Service on a Host

In the following example, the host service on the denver host is temporarily
disabled. To re-enable the host service on denver, you would copy the
krb5.keytab.temp file to the /etc/krb5/krb5.keytab file.

denver # cp /etc/krb5/krb5.keytab /etc/krb5/krb5.keytab.temp
denver # /usr/bin/ktutil

ktutil:read_kt /etc/krb5/krb5.keytab
ktutil:list

slot KVNO Principal
---- ---- ---------------------------------------

1 8 root/denver@EXAMPLE.COM
2 5 host/denver@EXAMPLE.COM
ktutil:delete_entry 2
ktutil:list

slot KVNO Principal
---- ---- --------------------------------------

1 8 root/denver@EXAMPLE.COM
ktutil:write_kt /etc/krb5/new.krb5.keytab
ktutil: quit

denver # cp /etc/krb5/new.krb5.keytab /etc/krb5/krb5.keytab

Example
24–19

494 System Administration Guide: Security Services • January 2005

CHAPTER 25

Using Kerberos Applications (Tasks)

This chapter is intended for anyone on a system with the Kerberos service configured
on it. This chapter explains how to use the “Kerberized” commands and services that
are provided. You should already be familiar with these commands (in their
non-Kerberized versions) before you read about them here.

Because this chapter is intended for the general reader, it includes information on
tickets: obtaining, viewing, and destroying them. This chapter also includes
information on choosing or changing a Kerberos password.

This is a list of the information in this chapter:

� “Kerberos Ticket Management” on page 495
� “Kerberos Password Management” on page 499
� “Kerberos User Commands” on page 503

For an overview of the Solaris Kerberos product, see Chapter 20.

Kerberos Ticket Management
This section explains how to obtain, view, and destroy tickets. For an introduction to
tickets, see “How the Kerberos Service Works” on page 362.

Do You Need to Worry About Tickets?
With any of the SEAM releases or the Solaris 10 release installed, Kerberos is built into
the login command, and you will obtain tickets automatically when you log in. The
Kerberized commands rsh, rcp, rdist, telnet, and rlogin are usually set up to
forward copies of your tickets to the other machines, so you don’t have to explicitly

495

ask for tickets to get access to those machines. Your configuration might not include
this automatic forwarding, but it is the default behavior. See “Overview of Kerberized
Commands” on page 504 and “Forwarding Kerberos Tickets” on page 506 for more
information on forwarding tickets.

For information on ticket lifetimes, see “Ticket Lifetimes” on page 517.

Creating a Kerberos Ticket
Normally, if PAM is configured properly, a ticket is created automatically when you
log in, and you need not do anything special to obtain a ticket. However, you might
need to create a ticket if your ticket expires. Also, you might need to use a different
principal besides your default principal, for example, if you use rlogin -l to log in
to a machine as someone else.

To create a ticket, use the kinit command.

% /usr/bin/kinit

The kinit command prompts you for your password. For the full syntax of the
kinit command, see the kinit(1) man page.

Examples—Creating a Kerberos Ticket
This example shows a user, jennifer, creating a ticket on her own system.

% kinit
Password for jennifer@ENG.EXAMPLE.COM: <Type password>

Here, the user david creates a ticket that is valid for three hours with the -l option.

% kinit -l 3h david@EXAMPLE.ORG
Password for david@EXAMPLE.ORG: <Type password>

This example shows the user david creating a forwardable ticket (with the -f option)
for himself. With this forwardable ticket, he can, for example, log in to a second
system, and then telnet to a third system.

% kinit -f david@EXAMPLE.ORG
Password for david@EXAMPLE.ORG: <Type password>

For more information on how forwarding tickets works, see “Forwarding Kerberos
Tickets” on page 506 and “Types of Tickets” on page 516.

496 System Administration Guide: Security Services • January 2005

Viewing Kerberos Tickets
Not all tickets are alike. One ticket might, for example, be forwardable. Another ticket
might be postdated. While a third ticket might be both forwardable and postdated. You
can see which tickets you have, and what their attributes are, by using the klist
command with the -f option:

% /usr/bin/klist -f

The following symbols indicate the attributes that are associated with each ticket, as
displayed by klist:

A
Preauthenticated

D
Postdatable

d
Postdated

F
Forwardable

f
Forwarded

I
Initial

i
Invalid

P
Proxiable

p
Proxy

R
Renewable

“Types of Tickets” on page 516 describes the various attributes that a ticket can have.

Example—Viewing Kerberos Tickets
This example shows that the user jennifer has an initial ticket, which is forwardable
(F) and postdated (d), but not yet validated (i).

% /usr/bin/klist -f
Ticket cache: /tmp/krb5cc_74287
Default principal: jennifer@ENG.EXAMPLE.COM

Chapter 25 • Using Kerberos Applications (Tasks) 497

Valid starting Expires Service principal
09 Mar 04 15:09:51 09 Mar 04 21:09:51 nfs/EXAMPLE.SUN.COM@EXAMPLE.SUN.COM

renew until 10 Mar 04 15:12:51, Flags: Fdi

The following example shows that the user david has two tickets that were forwarded
(f) to his host from another host. The tickets are also forwardable (F).

% klist -f
Ticket cache: /tmp/krb5cc_74287
Default principal: david@EXAMPLE.SUN.COM

Valid starting Expires Service principal
07 Mar 04 06:09:51 09 Mar 04 23:33:51 host/EXAMPLE.COM@EXAMPLE.COM

renew until 10 Mar 04 17:09:51, Flags: fF

Valid starting Expires Service principal
08 Mar 04 08:09:51 09 Mar 04 12:54:51 nfs/EXAMPLE.COM@EXAMPLE.COM

renew until 10 Mar 04 15:22:51, Flags: fF

The following example shows how to display the encryption types of the session key
and the ticket by using the -e option. The -a option is used to map the host address
to a host name if the name service can do the conversion.

% klist -fea
Ticket cache: /tmp/krb5cc_74287
Default principal: david@EXAMPLE.SUN.COM

Valid starting Expires Service principal
07 Mar 04 06:09:51 09 Mar 04 23:33:51 krbtgt/EXAMPLE.COM@EXAMPLE.COM

renew until 10 Mar 04 17:09:51, Flags: FRIA
Etype(skey, tkt): DES cbc mode with RSA-MD5, DES cbc mode with CRC-32

Addresses: client.example.com

Destroying Kerberos Tickets
If you want to destroy all Kerberos tickets acquired during your current session, use
the kdestroy command. The command destroys you credential cache, which
destroys all your credentials and tickets. While this is not usually necessary, running
kdestroy reduces the chance of the credential cache being compromised during
times that you are not logged in.

To destroy your tickets, use the kdestroy command.

% /usr/bin/kdestroy

The kdestroy command destroys all your tickets. You cannot use this command to
selectively destroy a particular ticket.

If you are going to be away from your system and are concerned about an intruder
using your permissions, you should use either kdestroy or a screen saver that locks
the screen.

498 System Administration Guide: Security Services • January 2005

Kerberos Password Management
With the Kerberos service configured, you now have two passwords: your regular
Solaris password and a Kerberos password. You can make both passwords the same,
or they can be different.

Advice on Choosing a Password
Your password can include almost any character that you can type. The main
exceptions are the Control keys and the Return key. A good password is a password
that you can remember readily, but no one else can easily guess. Examples of bad
passwords include the following:

� Words that can be found in a dictionary
� Any common or popular name
� The name of a famous person or character
� Your name or user name in any form (for example: your name spelled backward,

repeated twice, and so forth)
� A spouse’s name, child’s name, or pet’s name
� Your birth date or a relative’s birth date
� Your social security number, driver’s license number, passport number, or other

similar identifying number
� Any sample password that appears in this manual or any other manual

A good password is at least eight characters long. Moreover, a password should
include a mix of characters, such as uppercase and lowercase letters, numbers, and
punctuation marks. Examples of passwords that would be good if they didn’t appear
in this manual include the following:

� Acronyms, such as “I2LMHinSF” (which is recalled as “I too left my heart in San
Francisco”)

� Easy-to-pronounce nonsense words, such as “WumpaBun” or “WangDangdoodle!”
� Deliberately misspelled phrases, such as “6o’cluck” or “RrriotGrrrlsRrrule!”

Caution – Don’t use these examples. Passwords that appear in manuals are the first
passwords that an intruder will try.

Changing Your Password
If PAM is properly configured, you can change your Kerberos password in two ways:

Chapter 25 • Using Kerberos Applications (Tasks) 499

� With the usual UNIX passwd command. With the Kerberos service configured, the
Solaris passwd command also automatically prompts for a new Kerberos
password.

The advantage of using passwd instead of kpasswd is that you can set both UNIX
and Kerberos passwords at the same time. However, you generally do not have to
change both passwords with passwd. Often, you can change only your UNIX
password and leave the Kerberos password untouched, or vice-versa.

Note – The behavior of passwd depends on how the PAM module is configured.
You might be required to change both passwords in some configurations. For some
sites, the UNIX password must be changed, while other sites require the Kerberos
password to change.

� With the kpasswd command. kpasswd is very similar to passwd. One difference
is that kpasswd changes only Kerberos passwords. You must use passwd if you
want to change your UNIX password.

Another difference is that kpasswd can change a password for a Kerberos
principal that is not a valid UNIX user. For example, david/admin is a Kerberos
principal, but not an actual UNIX user, so you must use kpasswd instead of
passwd.

After you change your password, it takes some time for the change to propagate
through a system (especially over a large network). Depending on how your system is
set up, this delay might take anywhere from a few minutes to an hour or more. If you
need to get new Kerberos tickets shortly after you change your password, try the new
password first. If the new password doesn’t work, try again using the old password.

Kerberos V5 protocol enables system administrators to set criteria about allowable
passwords for each user. Such criteria is defined by the policy set for each user (or by a
default policy). See “Administering Kerberos Policies” on page 475 for more on
policies.

For example, suppose that user jennifer’s policy (call it jenpol) mandates that
passwords be at least eight letters long and include a mix of at least two types of
characters. kpasswd will therefore reject an attempt to use “sloth” as a password.

% kpasswd
kpasswd: Changing password for jennifer@ENG.EXAMPLE.COM.
Old password: <Jennifer types her existing password>
kpasswd: jennifer@ENG.EXAMPLE.COM’s password is controlled by
the policy jenpol
which requires a minimum of 8 characters from at least 2 classes
(the five classes are lowercase, uppercase, numbers, punctuation,
and all other characters).
New password: <Jennifer types ’sloth’>
New password (again): <Jennifer re-types ’sloth’>
kpasswd: New password is too short.

Please choose a password which is at least 4 characters long.

500 System Administration Guide: Security Services • January 2005

Here, jennifer uses “slothrop49” as a password. “slothrop49” meets the criteria,
because it is over eight letters long and contains two different types of characters
(numbers and lowercase letters).

% kpasswd
kpasswd: Changing password for jennifer@ENG.EXAMPLE.COM.
Old password: <Jennifer types her existing password>
kpasswd: jennifer@ENG.EXAMPLE.COM’s password is controlled by
the policy jenpol
which requires a minimum of 8 characters from at least 2 classes
(the five classes are lowercase, uppercase, numbers, punctuation,
and all other characters).
New password: <Jennifer types ’slothrop49’>
New password (again): <Jennifer re-types ’slothrop49’>
Kerberos password changed.

Examples—Changing Your Password
In the following example, user david changes both his UNIX password and Kerberos
password with passwd.

% passwd
passwd: Changing password for david
Enter login (NIS+) password: <Type the current UNIX password>
New password: <Type the new UNIX password>
Re-enter password: <Confirm the new UNIX password>
Old KRB5 password: <Type the current Kerberos password>
New KRB5 password: <Type the new Kerberos password>
Re-enter new KRB5 password: <Confirm the new Kerberos password>

Note that passwd asks for both the UNIX password and the Kerberos password. This
behavior is established by the default configuration. In that case, user david must use
kpasswd to set his Kerberos password to something else, as shown next.

This example shows user david changing only his Kerberos password with kpasswd.

% kpasswd
kpasswd: Changing password for david@ENG.EXAMPLE.COM.
Old password: <Type the current Kerberos password>
New password: <Type the new Kerberos password>
New password (again): <Confirm the new Kerberos password>
Kerberos password changed.

In this example, user david changes the password for the Kerberos principal
david/admin (which is not a valid UNIX user). He must use kpasswd.

% kpasswd david/admin
kpasswd: Changing password for david/admin.
Old password: <Type the current Kerberos password>
New password: <Type the new Kerberos password>
New password (again): <Type the new Kerberos password>
Kerberos password changed.

Chapter 25 • Using Kerberos Applications (Tasks) 501

Granting Access to Your Account
If you need to give someone access to log in to your account (as you), you can do so
through Kerberos, without revealing your password, by putting a .k5login file in
your home directory. A .k5login file is a list of one or more Kerberos principals
corresponding to each person for whom you want to grant access. Each principal must
be on a separate line.

Suppose that the user david keeps a .k5login file in his home directory that looks
like the following:

jennifer@ENG.EXAMPLE.COM

joe@EXAMPLE.ORG

This file allows the users jennifer and joe to assume david’s identity, provided
that they already have Kerberos tickets in their respective realms. For example,
jennifer can remotely log in to david’s machine (boston), as him, without having to
give his password.

jennifer's machine
(denver)

jennifer can log in to
david's account on his
machine without giving
his password.

rlogin boston -l david

david's machine
(boston)

david has a
.k5login file containing
jennifer@ENG.ACME.COM

FIGURE 25–1 Using the .k5login File to Grant Access to Your Account

In the case where david’s home directory is NFS-mounted, using Kerberos V5
protocols, from another (third) machine, jennifer must have a forwardable ticket in
order to access his home directory. See “Creating a Kerberos Ticket” on page 496 for an
example of using a forwardable ticket.

If you will be logging in to other machines across a network, you’ll want to include
your own Kerberos principal in .k5login files on those machines.

Using a .k5login file is much safer than giving out your password for these reasons:

� You can take access away any time by removing the principal from your
.k5login file.

502 System Administration Guide: Security Services • January 2005

� Although users principals named in the .k5login file in your home directory
have full access to your account on that machine (or sets of machines, if the
.k5login file is shared, for example, over NFS). However, any Kerberized
services will authorize access based on that user’s identity, not yours. So
jennifer can log in to joe’s machine and perform tasks there. However, if she
uses a Kerberized program such as ftp or rlogin, she does so as herself.

� Kerberos keeps a log of who obtains tickets, so a system administrator can find out,
if necessary, who is capable of using your user identity at a particular time.

One common way to use the .k5login file is to put it in root’s home directory,
giving root access for that machine to the Kerberos principals listed. This
configuration allows system administrators to become root locally, or to log in
remotely as root, without having to give out the root password, and without
requiring anyone to type the root password over the network.

Example — Using the .k5login File to Grant Access to
Your Account
Suppose jennifer decides to log in to the machine boston.example.com as root.
Because she has an entry for her principal name in the .k5login file in root’s home
directory on boston.example.com, she again does not have to type in her
password.

% rlogin boston.example.com -l root -x
This rlogin session is using DES encryption for all data transmissions.
Last login: Thu Jun 20 16:20:50 from daffodil
SunOS Release 5.7 (GENERIC) #2: Tue Nov 14 18:09:31 EST 1998

boston[root]%

Kerberos User Commands
Kerberos V5 product is a single-sign-on system, which means that you only have to
type your password once. The Kerberos V5 programs do the authenticating (and
optional encrypting) for you, because Kerberos has been built into each of a suite of
existing, familiar network programs. The Kerberos V5 applications are versions of
existing UNIX network programs with Kerberos features added.

For example, when you use a Kerberized program to connect to a remote host, the
program, the KDC, and the remote host perform a set of rapid negotiations. When
these negotiations are completed, your program has proven your identity on your
behalf to the remote host, and the remote host has granted you access.

Chapter 25 • Using Kerberos Applications (Tasks) 503

Note that Kerberized commands try to authenticate with Kerberos first. If Kerberos
authentication fails, an error occurs or UNIX authentication is attempted, depending
on what options were used with the command. Refer to the Kerberos Security
section in each Kerberos command man page for more detailed information.

Overview of Kerberized Commands
The Kerberized network services are programs that connect to another machine
somewhere on the Internet. These programs are the following:

� ftp
� rcp
� rdist
� rlogin
� rsh
� ssh
� telnet

These programs have features that transparently use your Kerberos tickets for
negotiating authentication and optional encryption with the remote host. In most
cases, you’ll notice only that you no longer have to type your password to use them,
because Kerberos will provide proof of your identity for you.

The Kerberos V5 network programs include options that enable you to do the
following:

� Forward your tickets to the another host (if you initially obtained forwardable
tickets).

� Encrypt data transmitted between you and the remote host.

Note – This section assumes you are already familiar with the non-Kerberos versions of
these programs, and highlights the Kerberos functionality added by the Kerberos V5
package. For detailed descriptions of the commands described here, see their
respective man pages.

The following Kerberos options have been added to ftp, rcp, rlogin, rsh, and
telnet:

-a Attempts automatic login using your existing tickets. Uses the
username as returned by getlogin(), unless the name is different
from the current user ID. See the telnet(1) man page for details.

-f Forwards a non-reforwardable ticket to a remote host. This option is
mutually exclusive with the -F option. They cannot be used together
in the same command.

504 System Administration Guide: Security Services • January 2005

You’ll want to forward a ticket if you have reason to believe you’ll
need to authenticate yourself to other Kerberos-based services on a
third host. For example, you might want to remotely log in to
another machine and then remotely log in from it to a third machine.

You should definitely use a forwardable ticket if your home
directory on the remote host is NFS-mounted using the Kerberos V5
mechanism. Otherwise, you won’t be able to access your home
directory. That is, suppose you initially log in to System 1. From
System 1, you remotely log in to your home machine, System 2,
which mounts your home directory from System 3. Unless you’ve
used the -f or -F option with rlogin, you won’t be able to get to
your home directory because your ticket can’t be forwarded to
System 3.

By default, kinit obtains forwardable ticket-granting tickets
(TGTs). However, your configuration might differ in this respect.

For more information on forwarding tickets, see “Forwarding
Kerberos Tickets” on page 506.

-F Forwards a reforwardable copy of your TGT to a remote system. It is
similar to -f, but it allows for access to a further (say, fourth or fifth)
machine. The -F option can therefore be regarded as being a
superset of the -f option. The -F option is mutually exclusive with
the -f option. They cannot be used together in the same command.

For more information on forwarding tickets, see “Forwarding
Kerberos Tickets” on page 506.

-k realm Requests tickets for the remote host in the specified realm, instead of
determining the realm itself using the krb5.conf file.

-K Uses your tickets to authenticate to the remote host, but does not
automatically log in.

-m mechanism Specifies the GSS-API security mechanism to use, as listed in the
/etc/gss/mech file. Defaults to kerberos_v5.

-x Encrypts this session.

-X auth_type Disables the auth-type type of authentication.

The following table shows which commands have specific options. An “X” indicates
that the command has that option.

TABLE 25–1 Kerberos Options for Network Commands

ftp rcp rlogin rsh telnet

-a X

Chapter 25 • Using Kerberos Applications (Tasks) 505

TABLE 25–1 Kerberos Options for Network Commands (Continued)
ftp rcp rlogin rsh telnet

-f X X X X

-F X X X

-k X X X X

-K X

-m X

-x X X X X X

-X X

Additionally, ftp allows the protection level for a session to be set at its prompt:

clear Sets the protection level to “clear” (no protection). This protection level is
the default.

private Sets the protection level to “private.” Data transmissions are
confidentiality-protected and integrity-protected by encryption. The
privacy service might not be available to all Kerberos users, however.

safe Sets the protection level to “safe.” Data transmissions are
integrity-protected by cryptographic checksum.

You can also set the protection level at the ftp prompt by typing protect followed
by any of the protection levels shown above (clear, private, or safe).

Forwarding Kerberos Tickets
As described in “Overview of Kerberized Commands” on page 504, some commands
allow you to forward tickets with either the -f or -F option. Forwarding tickets
allows you to “chain” your network transactions. You can, for example, remotely log
in to one machine and then remotely log in from it to another machine. The -f option
allows you to forward a ticket, while the -F option allows you to reforward a
forwarded ticket.

In Figure 25–2, the user david obtains a non-forwardable ticket-granting ticket (TGT)
with kinit. The ticket is non-forwardable because he did not specify the -f option.
In scenario 1, he is able to remotely log in to machine B, but he can go no further. In
scenario 2, the rlogin -f command fails because he is attempting to forward a ticket
that is non-forwardable.

506 System Administration Guide: Security Services • January 2005

1. (On A): kinit david@ACME.ORG

rlogin B

A C DB

2. (On A): kinit david@ACME.ORG

rlogin -f B

A C DB

FIGURE 25–2 Using Non-Forwardable Tickets

In actuality, Kerberos configuration files are set up so that kinit obtains forwardable
tickets by default. However, your configuration might differ. For the sake of
explanation, we have assumed that kinit does not obtain forwardable TGTs unless it
is invoked with kinit -f. Notice, by the way, that kinit does not have a -F option.
TGTs are either forwardable or not.

In Figure 25–3, the user david obtains forwardable TGTs with kinit -f. In scenario
3, he is able to reach machine C because he uses a forwardable ticket with rlogin. In
scenario 4, the second rlogin fails because the ticket is not reforwardable. By using
the -F option instead, as in scenario 5, the second rlogin succeeds and the ticket can
be reforwarded on to machine D.

Chapter 25 • Using Kerberos Applications (Tasks) 507

3. (On A): kinit -f david@ACME.ORG

rlogin -f B rlogin C

A C DB

4. (On A): kinit -f david@ACME.ORG

rlogin -f B rlogin -f C

A C DB

5. (On A): kinit -f david@ACME.ORG

rlogin -F B rlogin -f C

A C DB

rlogin D

FIGURE 25–3 Using Forwardable Tickets

Examples — Using Kerberized Commands
The following examples show how the options to the Kerberized commands work.

Example — Using the -a, -f, and -x Options With
telnet

In this example, the user david has already logged in, and wants to telnet to the
machine denver.example.com. He uses the -f option to forward his existing
tickets, the -x option to encrypt the session, and the -a option to perform the login
automatically. Because he does not plan to use the services of a third host, he can use
-f instead of -F.

% telnet -a -f -x denver.example.com
Trying 128.0.0.5...
Connected to denver.example.com. Escape character is ’^]’.
[Kerberos V5 accepts you as "david@eng.example.com"]
[Kerberos V5 accepted forwarded credentials]
SunOS 5.9: Tue May 21 00:31:42 EDT 2004 Welcome to SunOS

%

508 System Administration Guide: Security Services • January 2005

Notice that david’s machine used Kerberos to authenticate him to
denver.example.com, and logged him in automatically as himself. He had an
encrypted session, a copy of his tickets already waiting for him, and he never had to
type his password. If he had used a non-Kerberos version of telnet, he would have
been prompted for his password, and it would have been sent over the network
unencrypted. If an intruder had been watching network traffic at the time, the intruder
would have known david’s password.

If you forward your Kerberos tickets, telnet (as well as the other commands
discussed here) destroys them when it exits.

Example — Using rlogin With the -F Option
Here, the user jennifer wants to log in to her own machine,
boston.example.com. She forwards her existing tickets with the -F option, and
encrypts the session with the -x option. She chooses -F rather than -f because after
she is logged in to boston, she might want to perform other network transactions
requiring tickets to be reforwarded. Also, because she is forwarding her existing
tickets, she does not have to type her password.

% rlogin boston.example.com -F -x
This rlogin session is using encryption for all transmissions.
Last login Mon May 19 15:19:49 from daffodil
SunOS Release 5.9 (GENERIC) #2 Tue Nov 14 18:09:3 EST 2003

%

Example — Setting the Protection Level in ftp

Suppose that joe wants to use ftp to get his mail from the directory ~joe/MAIL
from the machine denver.example.com, encrypting the session. The exchange
would look like the following:

% ftp -f denver.example.com
Connected to denver.example.com
220 denver.example.org FTP server (Version 6.0) ready.
334 Using authentication type GSSAPI; ADAT must follow
GSSAPI accepted as authentication type
GSSAPI authentication succeeded Name (daffodil.example.org:joe)
232 GSSAPI user joe@MELPOMENE.EXAMPLE.COM is authorized as joe
230 User joe logged in.
Remote system type is UNIX.
Using BINARY mode to transfer files.
ftp> protect private
200 Protection level set to Private
ftp> cd ~joe/MAIL
250 CWD command successful.
ftp> get RMAIL
227 Entering Passive Mode (128,0,0,5,16,49)

Chapter 25 • Using Kerberos Applications (Tasks) 509

150 Opening BINARY mode data connection for RMAIL (158336 bytes).
226 Transfer complete. 158336 bytes received in 1.9 seconds (1.4e+02 Kbytes/s)
ftp> quit

%

To encrypt the session, joe sets the protection level to private.

510 System Administration Guide: Security Services • January 2005

CHAPTER 26

The Kerberos Service (Reference)

This chapter lists many of the files, commands, and daemons that are part of the
Kerberos product. In addition, this chapter provides detailed information about how
Kerberos authentication works.

This is a list of the reference information in this chapter.

� “Kerberos Files” on page 511
� “Kerberos Commands” on page 513
� “Kerberos Daemons” on page 513
� “Kerberos Terminology” on page 514
� “How the Kerberos Authentication System Works” on page 520
� “Gaining Access to a Service Using Kerberos” on page 520
� “Using Kerberos Encryption Types” on page 523
� “Using the gsscred Table” on page 525
� “Notable Differences Between Solaris Kerberos and MIT Kerberos” on page 526

Kerberos Files
TABLE 26–1 Kerberos Files

File Name Description

~/.gkadmin Default values for creating new principals in
the SEAM Administration Tool

~/.k5login List of principals that grant access to a
Kerberos account

511

TABLE 26–1 Kerberos Files (Continued)
File Name Description

/etc/krb5/kadm5.acl Kerberos access control list file, which includes
principal names of KDC administrators and
their Kerberos administration privileges

/etc/krb5/kadm5.keytab Keytab file for the kadmin service on the
master KDC

/etc/krb5/kdc.conf KDC configuration file

/etc/krb5/kpropd.acl Kerberos database propagation configuration
file

/etc/krb5/krb5.conf Kerberos realm configuration file

/etc/krb5/krb5.keytab Keytab file for network application servers

/etc/krb5/warn.conf Kerberos warning configuration file

/etc/pam.conf PAM configuration file

/tmp/krb5cc_uid Default credentials cache, where uid is the
decimal UID of the user

/tmp/ovsec_adm.xxxxxx Temporary credentials cache for the lifetime of
the password changing operation, where
xxxxxx is a random string

/var/krb5/.k5.REALM KDC stash file, which contains an encrypted
copy of the KDC master key

/var/krb5/kadmin.log Log file for kadmind

/var/krb5/kdc.log Log file for the KDC

/var/krb5/principal Kerberos principal database

/var/krb5/principal.kadm5 Kerberos administrative database, which
contains policy information

/var/krb5/principal.kadm5.lock Kerberos administrative database lock file

/var/krb5/principal.ok Kerberos principal database initialization file
that is created when the Kerberos database is
initialized successfully

/var/krb5/principal.ulog Kerberos update log, which contains updates
for incremental propagation

/var/krb5/slave_datatrans Backup file of the KDC that the
kprop_script script uses for propagation

/var/krb5/slave_datatrans_slave Temporary dump file that is created when full
updates are made to the specified slave

512 System Administration Guide: Security Services • January 2005

Kerberos Commands
This section lists some commands that are included in the Kerberos product.

TABLE 26–2 Kerberos Commands

Command Description

/usr/bin/ftp File Transfer Protocol program

/usr/bin/rcp Remote file copy program

/usr/bin/rdist Remote file distribution program

/usr/bin/rlogin Remote login program

/usr/bin/rsh Remote shell program

/usr/bin/telnet Kerberized telnet program

/usr/lib/krb5/kprop Kerberos database propagation program

/usr/sbin/gkadmin Kerberos database administration GUI program, which
is used to manage principals and policies

/usr/sbin/kadmin Remote Kerberos database administration program (run
with Kerberos authentication), which is used to manage
principals, policies, and keytab files

/usr/sbin/kadmin.local Local Kerberos database administration program (run
without Kerberos authentication and must be run on
master KDC), which is used to manage principals,
policies, and keytab files

/usr/sbin/kclient Kerberos client installation script which is used with or
without a installation profile

/usr/sbin/kdb5_util Creates Kerberos databases and stash files

/usr/sbin/kproplog Lists a summary of update entries in the update log

Kerberos Daemons
The following table lists the daemons that the Kerberos product uses.

Chapter 26 • The Kerberos Service (Reference) 513

TABLE 26–3 Kerberos Daemons

Daemon Description

/usr/sbin/in.ftpd File Transfer Protocol daemon

/usr/lib/krb5/kadmind Kerberos database administration daemon

/usr/lib/krb5/kpropd Kerberos database propagation daemon

/usr/lib/krb5/krb5kdc Kerberos ticket processing daemon

/usr/lib/krb5/ktkt_warnd Kerberos warning daemon

/usr/sbin/in.rlogind Remote login daemon

/usr/sbin/in.rshd Remote shell daemon

/usr/sbin/in.telnetd telnet daemon

Kerberos Terminology
The following section presents Kerberos terms and their definitions. These terms are
used throughout the Kerberos documentation. To grasp Kerberos concepts, an
understanding of these terms is essential.

Kerberos-Specific Terminology
You need to understand the terms in this section in order to administer KDCs.

The Key Distribution Center or KDC is the component of Kerberos that is responsible for
issuing credentials. These credentials are created by using information that is stored in
the KDC database. Each realm needs at least two KDCs, a master and at least one
slave. All KDCs generate credentials, but only the master KDC handles any changes to
the KDC database.

A stash file contains the master key for the KDC. This key is used when a server is
rebooted to automatically authenticate the KDC before starting the kadmind and
krb5kdc commands. Because this file includes the master key, the file and any
backups of the file should be kept secure. The file is created with read-only
permissions for root. To keep the file secure, do not change the permissions. If the file
is compromised, then the key could be used to access or modify the KDC database.

514 System Administration Guide: Security Services • January 2005

Authentication-Specific Terminology
You need to know the terms in this section to understand the authentication process.
Programmers and system administrators should be familiar with these terms.

A client is the software that runs on a user’s workstation. The Kerberos software that
runs on the client makes many requests during this process. So, differentiating the
actions of this software from the user is important.

The terms server and service are often used interchangeably. To clarify, the term server is
used to define the physical system that Kerberos software is running on. The term
service corresponds to a particular function that is being supported on a server (for
example, ftp or nfs). Documentation often mentions servers as part of a service, but
this definition clouds the meaning of the terms. Therefore, the term server refers to the
physical system. The term service refers to the software.

The Kerberos product uses two types of keys. One type of key is a password derived
key. The password derived key is given to each user principal and is known only to
the user and to the KDC. The other type of key used by the Kerberos product is a
random key that is not associated with a password and so is not suitable for use by
user principals. Random keys are typically used for service principals that have entries
in a keytab and session keys generated by the KDC. Service principals can use random
keys since the service can access the key in the keytab which allows it to run
non-interactively. Session keys are generated by the KDC (and shared between the
client and service) to provide secure transactions between a client and a service.

A ticket is an information packet that is used to securely pass the identity of a user to a
server or service. A ticket is valid for only a single client and a particular service on a
specific server. A ticket contains:

� Principal name of the service
� Principal name of the user
� IP address of the user’s host
� Timestamp
� Value which defines the lifetime of the ticket
� Copy of the session key

All of this data is encrypted in the server’s service key. Note, the KDC issues the ticket
embedded in a credential described below. After a ticket has been issued, it can be
reused until the ticket expires.

A credential is a packet of information that includes a ticket and a matching session
key. The credential is encrypted with the requesting principal’s key. Typically, the KDC
generates a credential in response to a ticket request from a client.

An authenticator is information used by the server to authenticate the client user
principal. An authenticator includes the principal name of the user, a timestamp, and
other data. Unlike a ticket, an authenticator can be used once only, usually when
access to a service is requested. An authenticator is encrypted by using the session key
shared by the client and server. Typically, the client creates the authenticator and sends
it with the server’s or service’s ticket in order to authenticate to the server or service.

Chapter 26 • The Kerberos Service (Reference) 515

Types of Tickets
Tickets have properties that govern how they can be used. These properties are
assigned to the ticket when it is created, although you can modify a ticket’s properties
later. For example, a ticket can change from being forwardable to being
forwarded. You can view ticket properties with the klist command. See “Viewing
Kerberos Tickets” on page 497.

Tickets can be described by one or more of the following terms:

Forwardable/forwarded A forwardable ticket can be sent from one host to another
host, obviating the need for a client to reauthenticate
itself. For example, if the user david obtains a
forwardable ticket while on user jennifer’s machine,
he can log in to his own machine without having to get a
new ticket (and thus authenticate himself again). See
“Examples—Creating a Kerberos Ticket” on page 496 for
an example of a forwardable ticket.

Initial An initial ticket is a ticket that is issued directly, not
based on a ticket-granting ticket. Some services, such as
applications that change passwords, can require tickets to
be marked initial in order to assure themselves that the
client can demonstrate a knowledge of its secret key. An
initial ticket indicates that the client has recently
authenticated itself, instead of relying on a ticket-granting
ticket, which might have been around for a long time.

Invalid An invalid ticket is a postdated ticket that has not yet
become usable. An invalid ticket will be rejected by an
application server until it becomes validated. To be
validated, a ticket must be presented to the KDC by the
client in a ticket–granting service request, with the
VALIDATE flag set, after its start time has passed.

Postdatable/postdated A postdated ticket is a ticket that does not become valid
until some specified time after its creation. Such a ticket is
useful, for example, for batch jobs that are intended to be
run late at night, because the ticket, if stolen, cannot be
used until the batch job is to be run. When a postdated
ticket is issued, it is issued as invalid and remains that
way until its start time has passed, and the client requests
validation by the KDC. A postdated ticket is normally
valid until the expiration time of the ticket-granting
ticket. However, if the ticket is marked renewable, its
lifetime is normally set to be equal to the duration of the
full life of the ticket-granting ticket.

Proxiable/proxy At times, it is necessary for a principal to allow a service
to perform an operation on its behalf. The principal name

516 System Administration Guide: Security Services • January 2005

of the proxy must be specified when the ticket is created.
The Solaris release does not support proxiable or proxy
tickets.

A proxiable ticket is similar to a forwardable ticket,
except that it is valid only for a single service, whereas a
forwardable ticket grants the service the complete use of
the client’s identity. A forwardable ticket can therefore be
thought of as a sort of super-proxy.

Renewable Because it is a security risk to have tickets with very long
lives, tickets can be designated as renewable. A renewable
ticket has two expiration times: the time at which the
current instance of the ticket expires, and the maximum
lifetime for any ticket, which is one week. If a client
wants to continue to use a ticket, the client renews it
before the first expiration occurs. For example, a ticket
can be valid for one hour, with all tickets having a
maximum lifetime of 10 hours. If the client that is holding
the ticket wants to keep it for more than an hour, the
client must renew it within that hour. When a ticket
reaches the maximum ticket lifetime (10 hours), it
automatically expires and cannot be renewed.

For information on how to view the attributes of tickets, see “Viewing Kerberos
Tickets” on page 497.

Ticket Lifetimes
Any time a principal obtains a ticket, including a ticket–granting ticket (TGT), the
ticket’s lifetime is set as the smallest of the following lifetime values:

� The lifetime value that is specified by the -l option of kinit, if kinit is used to
get the ticket. By default, kinit used the maximum lifetime value.

� The maximum lifetime value (max_life) that is specified in the kdc.conf file.

� The maximum lifetime value that is specified in the Kerberos database for the
service principal that provides the ticket. In the case of kinit, the service principal
is krbtgt/realm.

� The maximum lifetime value that is specified in the Kerberos database for the user
principal that requests the ticket.

Chapter 26 • The Kerberos Service (Reference) 517

Figure 26–1 shows how a TGT’s lifetime is determined and where the four lifetime
values come from. Even though this figure shows how a TGT’s lifetime is determined,
basically the same thing happens when any principal obtains a ticket. The only
differences are that kinit doesn’t provide a lifetime value, and the service principal
that provides the ticket provides a maximum lifetime value (instead of the
krbtgt/realm principal).

 Ticket lifetime = Minimum value of L1, L2, L3, and L4

krbgt/realm
Principal

KDC
(Kerberos
database)User

Principal

kdc.confkinit

L1 Maximum lifetime
specified in Kerberos
database for user
principal running kinit.

L3 Maximum lifetime
specified in Kerberos
database for service
principal providing
the TGT.

L4 Max_life specified
in KDC configuration
file (site default).

L2 Lifetime specified
with kinit command
(-l option).

TGT request

FIGURE 26–1 How a TGT’s Lifetime is Determined

The renewable ticket lifetime is also determined from the minimum of four values, but
renewable lifetime values are used instead, as follows:

� The renewable lifetime value that is specified by the -r option of kinit, if kinit
is used to obtain or renew the ticket.

� The maximum renewable lifetime value (max_renewable_life) that is specified
in the kdc.conf file.

� The maximum lifetime renewable value that is specified in the Kerberos database
for the service principal that provides the ticket. In the case of kinit, the service
principal is krbtgt/realm.

� The maximum lifetime renewable value that is specified in the Kerberos database
for the user principal that requests the ticket.

Kerberos Principal Names
Each ticket is identified by a principal name. The principal name can identify a user or
a service. Here are examples of several principal names.

518 System Administration Guide: Security Services • January 2005

TABLE 26–4 Examples of Kerberos Principal Names

Principal Name Description

changepw/kdc1.example.com@EXAMPLE.COM A principal for the master KDC server that allows
access to the KDC when you are changing passwords.

clntconfig/admin@EXAMPLE.COM A principal that is used by the kclient installation
utility.

ftp/boston.example.com@EXAMPLE.COM A principal used by the ftp service. This principal can
be used instead of a host principal.

host/boston.example.com@EXAMPLE.COM A principal that is used by the Kerberized applications
(klist and kprop, for example) and services (such as
ftp and telnet). This principal is called a host or
service principal. The principal is used to authenticate
NFS mounts.

K/M@EXAMPLE.COM The master key name principal. One master key name
principal is associated with each master KDC.

kadmin/history@EXAMPLE.COM A principal that includes a key used to keep password
histories for other principals. Each master KDC has one
of these principals.

kadmin/kdc1.example.com@EXAMPLE.COM A principal for the master KDC server that allows
access to the KDC by using kadmind.

kadmin/changepw.example.com@EXAMPLE.COM A principal that is used to accept password change
requests from clients that are not running a Solaris
release.

krbtgt/EXAMPLE.COM@EXAMPLE.COM This principal is used when you generate a
ticket-granting ticket.

krbtgt/EAST.EXAMPLE.COM@WEST.EXAMPLE.COM This principal is an example of a cross-realm
ticket-granting ticket.

nfs/boston.example.com@EXAMPLE.COM A principal that is used by the NFS service. This
principal can be used instead of a host principal.

root/boston.example.com@EXAMPLE.COM A principal that is associated with the root account on
a client. This principal is called a root principal and
provides root access to NFS mounted file systems..

username@EXAMPLE.COM A principal for a user.

username/admin@EXAMPLE.COM An admin principal that can be used to administer the
KDC database.

Chapter 26 • The Kerberos Service (Reference) 519

How the Kerberos Authentication
System Works
Applications allow you to log in to a remote system if you can provide a ticket that
proves your identity, and a matching session key. The session key contains
information that is specific to the user and the service that is being accessed. A ticket
and session key are created by the KDC for all users when they first log in. The ticket
and the matching session key form a credential. While using multiple networking
services, a user can gather many credentials. The user needs to have a credential for
each service that runs on a particular server. For example, access to the ftp service on
a server named boston requires one credential. Access to the ftp service on another
server requires its own credential.

The process of creating and storing the credentials is transparent. Credentials are
created by the KDC that sends the credential to the requester. When received, the
credential is stored in a credential cache.

Gaining Access to a Service Using
Kerberos
To access a specific service on a specific server, the user must obtain two credentials.
The first credential is for the ticket-granting ticket (known as the TGT). Once the
ticket-granting service has decrypted this credential, the service creates a second
credential for the server that the user is requesting access to. This second credential
can then be used to request access to the service on the server. After the server has
successfully decrypted the second credential, then the user is given access. The
following sections describe this process in more detail.

Obtaining a Credential for the Ticket-Granting
Service
1. To start the authentication process, the client sends a request to the authentication

server for a specific user principal. This request is sent without encryption. No
secure information is included in the request, so it is not necessary to use
encryption.

2. When the request is received by the authentication service, the principal name of
the user is looked up in the KDC database. If a principal matches the entry in the
database, the authentication service obtains the private key for that principal. The

520 System Administration Guide: Security Services • January 2005

authentication service then generates a session key to be used by the client and the
ticket-granting service (call it Session key 1) and a ticket for the ticket-granting
service (Ticket 1). This ticket is also known as the ticket-granting ticket (TGT). Both
the session key and the ticket are encrypted by using the user’s private key, and the
information is sent back to the client.

3. The client uses this information to decrypt Session Key 1 and Ticket 1, by using the
private key for the user principal. Because the private key should only be known
by the user and the KDC database, the information in the packet should be safe.
The client stores the information in the credentials cache.

During this process, a user is normally prompted for a password. If the password the
user specifies is the same as the password that was used to build the private key
stored in the KDC database, then the client can successfully decrypt the information
that is sent by the authentication service. Now the client has a credential to be used
with the ticket-granting service. The client is ready to request a credential for a server.

1. Client requests
credential for server.

2. Authentication service
sends back credential,
which includes Session
Key 1 and TGT.

3. Client decrypts
credential with
entered password.

Client
1

KDC

TGT

Server

TGT = Ticket-granting ticket
KDC = Key Distribution Center

(Credential)

FIGURE 26–2 Obtaining a Credential for the Ticket-Granting Service

Obtaining a Credential for a Server
1. To request access to a specific server, a client must first have obtained a credential

for that server from the authentication service. See “Obtaining a Credential for the
Ticket-Granting Service” on page 520. The client then sends a request to the
ticket-granting service, which includes the service principal name, Ticket 1, and an

Chapter 26 • The Kerberos Service (Reference) 521

authenticator that was encrypted with Session Key 1. Ticket 1 was originally
encrypted by the authentication service by using the service key of the
ticket-granting service.

2. Because the service key of the ticket-granting service is known to the
ticket-granting service, Ticket 1 can be decrypted. The information in Ticket 1
includes Session Key 1, so the ticket-granting service can decrypt the authenticator.
At this point, the user principal is authenticated with the ticket-granting service.

3. Once the authentication is successful, the ticket-granting service generates a session
key for the user principal and the server (Session Key 2), and a ticket for the server
(Ticket 2). Session Key 2 and Ticket 2 are then encrypted by using Session Key 1.
Because Session Key 1 is known only to the client and the ticket-granting service,
this information is secure and can be safely sent over the network.

4. When the client receives this information packet, the client decrypts the
information by using Session Key 1, which it had stored in the credential cache.
The client has obtained a credential to be used with the server. Now the client is
ready to request access to a particular service on that server.

1. Client sends TGT
and authenticator
encrypted with
session key 1
to KDC.

2. Ticket-granting
service decrypts
TGT and
authenticator.

3. Ticket-granting service
sends back a credential
which includes Session
Key 2 and Ticket 2.

4. Client decrypts
credential with
Session Key 1

Client
1 2

KDC

TGT

2

Server

FIGURE 26–3 Obtaining a Credential for a Server

Obtaining Access to a Specific Service
1. To request access to a specific service, the client must first have obtained a

credential for the ticket-granting service from the authentication server, and a
server credential from the ticket-granting service. See “Obtaining a Credential for
the Ticket-Granting Service” on page 520 and “Obtaining a Credential for a Server”
on page 521. The client can then send a request to the server including Ticket 2 and

522 System Administration Guide: Security Services • January 2005

another authenticator. The authenticator is encrypted by using Session Key 2.

2. Ticket 2 was encrypted by the ticket-granting service with the service key for the
service. Because the service key is known by the service principal, the service can
decrypt Ticket 2 and get Session Key 2. Session Key 2 can then be used to decrypt
the authenticator. If the authenticator is successfully decrypted, the client is given
access to the service.

1. Client sends Ticket 2
and another authenticator
encrypted with Session Key 2.

2. Server decrypts Ticket 2
and authenticator; allows
Client access.

Client
2

KDC

2

Server

FIGURE 26–4 Obtaining Access to a Specific Service

Using Kerberos Encryption Types
Encryption types identify which cryptographic algorithms and mode to use when
cryptographic operations are performed. The aes, des3-cbc-sha1 and rc4–hmac
encryption types enable the creation of keys that can be used for higher strength
cryptographic operations. These higher strength operations enhance the overall
security of the Kerberos service.

Note – The aes256-cts-hmac-sha1-96 encryption type can be used with the
Kerberos service if the unbundled Strong Cryptographic packages are installed.

When a client requests a ticket from the KDC, the KDC must use keys whose
encryption type is compatible with both the client and the server. While the Kerberos
protocol allows the client to request that the KDC use particular encryption types for
the client’s part of the ticket reply, the protocol does not allow the server to specify
encryption types to the KDC.

Chapter 26 • The Kerberos Service (Reference) 523

Note – If you have a master KDC installed that is not running the Solaris 10 release, the
slave KDCs must be upgraded to the Solaris 10 release before you upgrade the master
KDC. A Solaris 10 master KDC will use the new encryption types, which an older
slave will not be able to handle.

The following lists some of the issues that must be considered before you change the
encryption types.

� The KDC assumes that the first key/enctype associated with the server principal
entry in the principal database is supported by the server.

� On the KDC, you should make sure that the keys generated for the principal are
compatible with the systems on which the principal will be authenticated. By
default, the kadmin command creates keys for all supported encryption types. If
the systems that the principal is used on do not support this default set of
encryption types, then you should restrict the encryption types when creating a
principal. You can restrict the encryption types through use of the -e flag in
kadmin addprinc or by setting the supported_enctypes parameter in the
kdc.conf file to this subset. The supported_enctypes parameter should be
used when most of the systems in a Kerberos realm support a subset of the default
set of encryption types. Setting supported_enctypes specifies the default set of
encryption types kadmin addprinc uses when it creates a principal for a
particular realm. As a general rule, it is best to control the encryption types used by
Kerberos using one of these two methods.

� When determining the encryption types a system supports, consider both the
version of Kerberos running on the system as well as the cryptographic algorithms
supported by the server application for which a server principal is being created.
For example, when creating an nfs/hostname service principal, you should
restrict the encryption types to the types supported by the NFS server on that host.
Note that in the Solaris 10 release, all supported Kerberos encryption types are also
supported by the NFS server.

� The master_key_enctype parameter in the kdc.conf file can be used to control
the encryption type of the master key that encrypts the entries in the principal
database. Do not use this parameter if the KDC principal database has already
been created. The master_key_enctype parameter can be used at database
creation time to change the default master key encryption type from
des-cbc-crc to a stronger encryption type. Make sure that all slave KDCs
support the chosen encryption type and that they have an identical
master_key_enctype entry in their kdc.conf when configuring the slave
KDCs. Also, make sure that the master_key_enctype is set to one of the
encryption types in supported_enctypes, if supported_enctypes is set in
kdc.conf. If either of these issues are not handled properly, then the master KDC
might not be able to work with the slave KDCs.

� On the client, you can control which encryption types the client requests when
getting tickets from the KDC through a couple of parameters in krb5.conf. The
default_tkt_enctypes parameter specifies the encryption types the client is

524 System Administration Guide: Security Services • January 2005

willing to use when the client requests a ticket-granting ticket (TGT) from the KDC.
The TGT is used by the client to acquire other server tickets in a more efficient
manner. The effect of setting default_tkt_enctypes is to give the client some
control over the encryption types used to protect the communication between the
client and KDC when the client requests a server ticket using the TGT (this is called
a TGS request). Note, that the encryption types specified in
default_tkt_enctypes must match at least one of the principal key encryption
types in the principal database stored on the KDC. Otherwise, the TGT request will
fail. In most situations, it is best not to set default_tkt_enctypes because this
parameter can be a source of interoperability problems. By default, the client code
requests that all supported encryption types and the KDC choose the encryption
types based on the keys the KDC finds in the principal database.

� The default_tgs_enctypes parameter restricts the encryption types the client
requests in its TGS requests, which are used to acquire server tickets. This
parameter also restricts the encryption types the KDC uses when creating the
session key that the client and server share. For example, if a client wants to only
use 3DES encryption when doing secure NFS, you should set
default_tgs_enctypes = des3-cbc-sha1. Make sure that the client and
server principals have a des-3-cbc-sha1 key in the principal database. As with
default_tkt_enctype, it is probably best in most cases not to set this because it
can cause interoperability problems if the credentials are not setup properly both
on the KDC and the server.

� On the server, you can control the encryption types accepted by the server with the
permitted_enctypes in kdc.conf. In addition, you can specify the encryption
types used when creating keytab entries. Again, it is generally best not to use
either of these methods to control encryption types and instead let the KDC
determine the encryption types to use because the KDC does not communicate
with the server application to determine which key or encryption type to use.

Using the gsscred Table
The gsscred table is used by an NFS server when the server is trying to identify a
Kerberos user, if the default mappings are not sufficient. The NFS service uses UNIX
IDs to identify users. These IDs are not part of a user principal or a credential. The
gsscred table provides additional mapping from GSS credentials to UNIX UIDs
(from the password file). The table must be created and administered after the KDC
database is populated. See “Mapping GSS Credentials to UNIX Credentials” on page
381 for more information.

When a client request comes in, the NFS service tries to map the credential name to a
UNIX ID. If the mapping fails, the gsscred table is checked.

Chapter 26 • The Kerberos Service (Reference) 525

Notable Differences Between Solaris
Kerberos and MIT Kerberos
The Solaris 10 version of the Kerberos service is based on MIT Kerberos version 1.2.1.
The following lists the enhancements included in the Solaris 10 release that are not
included in the MIT 1.2.1 version:

� Kerberos support of Solaris remote applications
� Incremental propagation for the KDC database
� Client configuration script
� Localized error messages
� BSM audit record support
� Thread safe use of Kerberos using GSS-API
� Use of the Encryption Framework for cryptography

This version also includes some post MIT 1.2.1 bug fixes. In particular, 1.2.5 btree bug
fixes and 1.3 TCP support have been added.

526 System Administration Guide: Security Services • January 2005

PART VII Solaris Auditing

This section provides information on the configuration, management, and use of the
Solaris auditing subsystem.

527

528 System Administration Guide: Security Services • January 2005

CHAPTER 27

Solaris Auditing (Overview)

Solaris auditing keeps a record of how the system is being used. The auditing service
includes tools to assist with the analysis of the auditing data.

This chapter introduces how auditing works in the Solaris Operating System. The
following is a list of the information in this chapter.

� “What Is Auditing?” on page 529
� “How Does Auditing Work?” on page 530
� “How Is Auditing Related to Security?” on page 531
� “Audit Terminology and Concepts” on page 532
� “Solaris Auditing Enhancements in the Solaris 10 Release” on page 537

For planning suggestions, see Chapter 28. For procedures to configure auditing at
your site, see Chapter 29. For reference information, see Chapter 30.

What Is Auditing?
Auditing is the collecting of data about the use of system resources. The audit data
provides a record of security-related system events. This data can then be used to
assign responsibility for actions that take place on a host. Successful auditing starts
with two security features: identification and authentication. At each login, after a user
supplies a user name and password, a unique audit session ID is generated and
associated with the user’s process. The audit session ID is inherited by every process
that is started during the login session. Even if a user changes identity within a single
session, all user actions are tracked with the same audit session ID. For more details
about changing identity, see the su(1M) man page.

The auditing service makes the following possible:

� Monitoring security-relevant events that take place on the host

529

� Recording the events in a network-wide audit trail

� Detecting misuse or unauthorized activity

� Reviewing patterns of access and the access histories of individuals and objects

� Discovering attempts to bypass the protection mechanisms

� Discovering extended use of privilege that occurs when a user changes identity

During system configuration, you preselect which classes of audit records to monitor.
You can also fine-tune the degree of auditing that is done for individual users.

After audit data is collected, postselection tools enable you to reduce and examine
interesting parts of the audit trail. For example, you can choose to review audit
records for individual users or specific groups. You can examine all records for a
certain type of event on a specific day. Or, you can select records that were generated
at a certain time of day.

Systems that install non-global zones can audit all zones identically from the global
zone. These systems can also be configured to collect different records in the
non-global zones. For more information, see “Auditing and Solaris Zones” on page
592.

How Does Auditing Work?
Auditing generates audit records when specified events occur. Most commonly, events
that generate audit records include the following:

� System startup and system shutdown

� Login and logout

� Process creation or process destruction, or thread creation or thread destruction

� Opening, closing, creating, destroying, or renaming of objects

� Use of privilege capabilities or role-based access control (RBAC)

� Identification actions and authentication actions

� Permission changes by a process or user

� Administrative actions, such as installing a package

� Site-specific applications

Audit records are generated from three sources:

� By an application
� As a result of an asynchronous event
� As a result of a process system call

530 System Administration Guide: Security Services • January 2005

Once the relevant event information has been captured, the information is formatted
into an audit record. The record is then written to audit files. Complete audit records
are stored in binary format. With the Solaris 10 release, audit records can also be
logged by the syslog utility.

Audit files that are stored in binary format can be stored in a local partition. The files
can also be stored on NFS-mounted file servers. The location can include multiple
partitions on the same system, partitions on different systems, or partitions on systems
on different but linked networks. The collection of audit files that are linked together is
considered an audit trail. Audit records accumulate in audit files chronologically.
Contained in each audit record is information that identifies the event, what caused
the event, the time of the event, and other relevant information.

Audit records can also be monitored by using the syslog utility. These audit logs can
be stored locally. Or, the logs can be sent to a remote system over the UDP protocol.
For more information, see “Audit Files” on page 535.

How Is Auditing Related to Security?
Solaris auditing helps to detect potential security breaches by revealing suspicious or
abnormal patterns of system usage. Solaris auditing also provides a means to trace
suspect actions back to a particular user, thus serving as a deterrent. Users who know
that their activities are being audited are less likely to attempt malicious activities.

To protect a computer system, especially a system on a network, requires mechanisms
that control activities before system processes or user processes begin. Security
requires tools that monitor activities as the activities occur. Security also requires
reports of activities after the activities have happened. Initial configuration of Solaris
auditing requires that parameters be set before users log in or system processes begin.
Most auditing activities involve monitoring current events and reporting those events
that meet the specified parameters. How Solaris auditing monitors and reports these
events is discussed in detail in Chapter 28 and Chapter 29.

Auditing cannot prevent hackers from unauthorized entry. However, the auditing
service can report, for example, that a specific user performed specific actions at a
specific time and date. The audit report can identify the user by entry path and user
name. Such information can be reported immediately to your terminal and to a file for
later analysis. Thus, the auditing service provides data that helps you determine the
following:

� How system security was compromised
� What loopholes need to be closed to ensure the desired level of security

Chapter 27 • Solaris Auditing (Overview) 531

Audit Terminology and Concepts
The following terms are used to describe the auditing service. Some definitions
include pointers to more complete descriptions.

TABLE 27–1 Solaris Auditing Terms

Term Definition

Audit class A grouping of audit events. Audit classes provide a way to select a group of
events to be audited. For more information, see “Audit Classes and
Preselection” on page 534.

Audit directory A repository of audit files in binary format. For a description of the types of
audit directories, see “Audit Files” on page 535.

Audit event A security-related system action that is audited. For ease of selection, events
are grouped into audit classes. For a discussion of the system actions that
can be audited, see “Audit Events” on page 533.

Audit policy A set of auditing options that you can enable or disable at your site. These
options include whether to record certain kinds of audit data. The options
also include whether to suspend auditable actions when the audit trail is
full. For more information, see “Determining Audit Policy” on page 543.

Audit record Audit data that is stored in audit files. An audit record describes a single
audit event. Each audit record is composed of audit tokens. For more
information about audit records, see “Audit Records and Audit Tokens”
on page 535.

Audit token A field of an audit record or event. Each audit token describes an attribute of
an audit event, such as a user, a program, or other object. For descriptions of
all the audit tokens, see “Audit Token Formats” on page 600.

Audit trail A collection of one or more audit files that store the audit data from all
systems that run the auditing service. For more information, see “Audit
Trail” on page 597.

Preselection Preselection is the choice of which audit classes to monitor before you
enable the auditing service. The audit events of preselected audit classes
appear in the audit trail. Audit classes that are not preselected are not
audited, so their events do not appear in the audit trail. A postselection tool,
the auditreduce command, selects records from the audit trail. For more
information, see “Audit Classes and Preselection” on page 534.

532 System Administration Guide: Security Services • January 2005

TABLE 27–1 Solaris Auditing Terms (Continued)
Term Definition

Public objects A public object is a file that is owned by the root user and readable by the
world. For example, files in the /etc directory and the /usr/bin directory
are public objects. Public objects are not audited for read-only events. For
example, even if the file_read (fr) audit class is preselected, the reading
of public objects is not audited. You can override the default by changing
the public audit policy option.

Audit Events
Security-relevant system actions can be audited. These auditable actions are defined as
audit events. Audit events are listed in the /etc/security/audit_event file. Each
audit event is defined in the file by an event number, a symbolic name, a short
description, and the set of audit classes to which the event belongs. For more
information on the audit_event file, see the audit_event(4) man page.

For example, the following entry defines the audit event for the exec() system call:

7:AUE_EXEC:exec(2):ps,ex

When you preselect for auditing either the audit class ps or the audit class ex, then
exec() system calls are recorded in the audit trail.

Solaris auditing handles attributable and nonattributable events. The exec() system call
can be attributed to a user, so the call is considered an attributable event. Events are
nonattributable if the events occur at the kernel-interrupt level. Events that occur
before a user is authenticated are also nonattributable. The na audit class handles
audit events that are nonattributable. For example, booting the system is a
nonattributable event.

113:AUE_SYSTEMBOOT:system booted:na

When the class to which an audit event belongs is preselected for auditing, the event is
recorded in the audit trail. For example, when you preselect the ps and na audit
classes for auditing, the exec() system calls and system boot actions, among other
events, are recorded in the audit trail.

In addition to the audit events that are defined by the Solaris auditing service,
third-party applications can generate audit events. Audit event numbers from 32768 to
65535 are available for third-party applications.

Chapter 27 • Solaris Auditing (Overview) 533

Audit Classes and Preselection
Each audit event belongs to an audit class or classes. Audit classes are convenient
containers for large numbers of audit events. When you preselect a class to be audited,
you specify that all the events in that class should be recorded in the audit trail. You
can preselect for events on a system and for events initiated by a particular user. After
the auditing service is running, you can dynamically add or remove audit classes from
the preselected classes.

� System-wide preselection – Specify system-wide defaults for auditing in the
flags, naflags, and plugin lines in the audit_control file. The
audit_control file is described in “audit_control File” on page 587. See also
the audit_control(4) man page.

� User-specific preselection – Specify additions to the system-wide auditing defaults
for individual users in the audit_user database.

The audit preselection mask determines which classes of events are audited for a
user. The user’s audit preselection mask is a combination of the system-wide
defaults and the audit classes that are specified for the user. For a more detailed
discussion, see “Process Audit Characteristics” on page 596.

The audit_user database can be administered locally or by a name service. The
Solaris Management Console provides the graphical user interface (GUI) to
administer the database. For details, see the audit_user(4) man page.

� Dynamic preselection – Specify audit classes as arguments to the auditconfig
command to add or remove those audit classes from a process or session. For more
information, see the auditconfig(1M) man page.

A postselection command, auditreduce, enables you to select records from the
preselected audit records. For more information, see “Examining the Audit Trail”
on page 537 and the auditreduce(1M) man page.

Audit classes are defined in the /etc/security/audit_class file. Each entry
contains the audit mask for the class, the name for the class, and a descriptive name
for the class. For example, the ps and na class definitions appear in the audit_class
file as follows:

0x00100000:ps:process start/stop

0x00000400:na:non-attribute

There are 32 possible audit classes. The classes include the two global classes: all and
no. The audit classes are described in the audit_class(4) man page.

The mapping of audit events to classes is configurable. You can remove events from a
class, add events to a class, and create a new class to contain selected events. For the
procedure, see “How to Change an Audit Event’s Class Membership” on page 557.

534 System Administration Guide: Security Services • January 2005

Audit Records and Audit Tokens
Each audit record records the occurrence of a single audited event. The record includes
information such as who did the action, which files were affected, what action was
attempted, and where and when the action occurred. The following example shows a
login audit record:

header,81,2,login - local,,2003-10-13 11:23:31.050 -07:00
subject,root,root,other,root,other,378,378,0 0 example_system
text,successful login

return,success,0

The type of information that is saved for each audit event is defined by a set of audit
tokens. Each time an audit record is created for an event, the record contains some or
all of the tokens that are defined for the event. The nature of the event determines
which tokens are recorded. In the preceding example, each line begins with the name
of the audit token. The content of the audit token follows the name. Together, the four
audit tokens comprise the login audit record.

For a detailed description of the structure of each audit token with an example of
praudit output, see “Audit Token Formats” on page 600. For a description of the
binary stream of audit tokens, see the audit.log(4) man page.

Audit Files
Audit records are collected in audit logs. Solaris auditing provides two output modes
for audit logs. Logs that are called audit files store audit records in binary format. The
set of audit files from a system or site provide a complete audit record. The complete
audit record is called the audit trail.

The syslog utility collects and stores text version summaries of the audit record. A
syslog record is not complete. The following example shows a syslog entry for a
login audit record:

Oct 13 11:24:11 example_system auditd: [ID 6472 audit.notice] \

login - login ok session 378 by root as root:other

A site can store audit records in both formats. You can configure the systems at your
site to use binary mode, or to use both modes. The following table compares binary
audit records with syslog audit records.

TABLE 27–2 Comparison of Binary Audit Records With syslog Audit Records

Feature Binary Records syslog Records

Protocol Writes to the file system Uses UDP for remote logging

Data type Binary Text

Chapter 27 • Solaris Auditing (Overview) 535

TABLE 27–2 Comparison of Binary Audit Records With syslog Audit Records
(Continued)
Feature Binary Records syslog Records

Record length No limit Up to 1024 characters per audit
record

Location Stored on local disk, and in
directories that are mounted by
using NFS

Stored in a location that is specified
in the syslog.conf file

How to configure Edit audit_control file, and
protect and NFS-mount audit
directories

Edit audit_control file, and edit
syslog.conf file

How to read Typically, in batch mode

Browser output in XML

In real time, or searched by scripts
that you have created for syslog

Plain text output

Completeness Guaranteed to be complete, and to
appear in the correct order

Are not guaranteed to be complete

Timestamp Greenwich Mean Time (GMT) Time on the system that is being
audited

Binary records provide the greatest security and coverage. Binary output meets the
requirements of security certifications, such as the Common Criteria Controlled Access
Protection Profile (CAPP). The records are written to a file system that is protected
from snooping. On a single system, all binary records are collected and are displayed
in order. The GMT timestamp on binary logs enables accurate comparison when
systems on one audit trail are distributed across time zones. The praudit -x
command enables you to view the records in a browser in XML. You can also use
scripts to parse the XML output.

In contrast, the syslog records provide greater convenience and flexibility. For
example, you can collect the syslog data from a variety of sources. Also, when you
monitor audit.notice events in the syslog.conf file, the syslog utility logs an
audit record summary with the current timestamp. You can use the same management
and analysis tools that you have developed for syslog messages from a variety of
sources, including workstations, servers, firewalls, and routers. The records can be
viewed in real time, and can be stored on a remote system.

By using syslog.conf to store audit records remotely, you protect log data from
alteration or deletion by an attacker. On the other hand, when audit records are stored
remotely, the records are susceptible to network attacks such as denial of service and
spoofed source addresses. Also, UDP can drop packets or can deliver packets out of
order. The limit on syslog entries is 1024 characters, so some audit records could be
truncated in the log. On a single system, not all audit records are collected. The
records might not display in order. Because each audit record is stamped with the
local system’s date and time, you can not rely on the timestamp to construct an audit
trail for several systems.

536 System Administration Guide: Security Services • January 2005

For more information on audit logs, refer to the following:

� audit_syslog(5) man page
� audit.log(4) man page
� “How to Configure syslog Audit Logs” on page 553

Audit Storage
An audit directory holds audit files in binary format. A typical installation uses many
audit directories. The contents of all audit directories comprise the audit trail. Audit
records are stored in audit directories in the following order:

� Primary audit directory – A directory where the audit files for a system are placed
under normal conditions

� Secondary audit directory – A directory where the audit files for a system are
placed if the primary audit directory is full or not available

� Directory of last resort – A local audit directory that is used if the primary audit
directory and all secondary audit directories are not available

The directories are specified in the audit_control file. A directory is not used until
a directory that is earlier in the list is full. For an annotated audit_control file with
a list of directory entries, see Example 29–3.

Examining the Audit Trail
The auditing service provides commands to combine and reduce files from the audit
trail. The auditreduce command can merge audit files from the audit trail. The
command can also filter files to locate particular events. The praudit command reads
the binary files. Options to the praudit command provide output that is suitable for
scripting and for browser display.

Solaris Auditing Enhancements in the
Solaris 10 Release
Since the Solaris 9 release, the following features have been introduced to Solaris
auditing:

� Solaris auditing can use the syslog utility to store audit records in text format. For
discussion, see “Audit Files” on page 535. To set up the audit_control file to
use the syslog utility, see “How to Configure syslog Audit Logs” on page 553.

Chapter 27 • Solaris Auditing (Overview) 537

� The praudit command has an additional output format, XML. XML is a standard,
portable, processable format. The XML format enables the output to be read in a
browser, and provides source for XML scripting for reports. The -x option to the
praudit command is described in “praudit Command” on page 585.

� The default set of audit classes has been restructured. Audit metaclasses provide an
umbrella for finer-grained audit classes. For a list of the default set of classes, see
“Definitions of Audit Classes” on page 593.

� The bsmconv command no longer disables the use of the Stop-A key. The Stop-A
event can be audited.

� The timestamp in audit records is reported in ISO 8601 format. For information
about the standard, see http://www.iso.org.

� Three audit policy options have been added:

� public – Public objects are no longer audited for read-only events. By not
auditing public files, the audit log size is greatly reduced. Attempts to read
sensitive files are therefore easier to monitor. For more on public objects, see
“Audit Terminology and Concepts” on page 532.

� perzone – The perzone policy has broad effects. A separate audit daemon runs
in each zone. The daemon uses audit configuration files that are specific to the
zone. Also, the audit queue is specific to the zone. For details, see the
auditd(1M) and auditconfig(1M) man pages. For more on zones, see
“Auditing and Solaris Zones” on page 592. For more on policy, see “How to
Plan Auditing in Zones” on page 540.

� zonename – The name of the Solaris zone in which an audit event occurred can
be included in audit records. For more on zones, see “Auditing and Solaris
Zones” on page 592. For a discussion of when to use the option, see
“Determining Audit Policy” on page 543.

� Five audit tokens have been added:

� The cmd token records the list of arguments and the list of environment
variables that are associated with a command. For more information, see “cmd
Token” on page 603.

� The path_attr token records the sequence of attribute file objects that are
below the path token object. For more information, see “path_attr Token”
on page 609.

� The privilege token records the use of privilege on a process. For more
information, see “privilege Token” on page 610.

� The uauth token records the use of authorization with a command or action.
For more information, see “uauth Token” on page 615.

� The zonename token records the name of the non-global zone in which an
audit event occurred. The zonename audit policy option determines whether
the zonename token is included in the audit record. For more information, see
“zonename Token” on page 616.

For overview information, see “Auditing and Solaris Zones” on page 592. To
learn about zones, see Part II, “Zones,” in System Administration Guide: Solaris
Containers—Resource Management and Solaris Zones.

538 System Administration Guide: Security Services • January 2005

http://www.iso.org

CHAPTER 28

Planning for Solaris Auditing

This chapter describes how to set up the auditing service for your Solaris installation.
In particular, the chapter covers issues that you need to consider before you enable the
auditing service. The following is a list of the planning information in this chapter:

� “Planning Solaris Auditing (Task Map)” on page 539
� “Determining Audit Policy” on page 543
� “Controlling Auditing Costs” on page 546
� “Auditing Efficiently” on page 547

For an overview of auditing, see Chapter 27. For procedures to configure auditing at
your site, see Chapter 29. For reference information, see Chapter 30.

Planning Solaris Auditing (Task Map)
The following task map points to the major tasks that are required for planning disk
space and what events to record.

Task For Instructions

Determine auditing strategy for non-global zones “How to Plan Auditing in Zones” on page 540

Plan storage space for the audit trail “How to Plan Storage for Audit Records” on page 541

Determine who and what to audit “How to Plan Who and What to Audit” on page 542

539

Planning Solaris Auditing (Tasks)
You want to be selective about what kinds of activities are audited. At the same time,
you want to collect useful audit information. Audit files can quickly grow to fill the
available space, so you should allocate enough disk space. You also need to carefully
plan who to audit and what to audit.

� How to Plan Auditing in Zones
If your system has implemented zones, you have two audit configuration possibilities:

� You can configure non-global zones individually.
� You can configure auditing in the global zone for all zones.

1. Determine if you want to customize auditing in non-global zones.

� If you do not want to customize auditing in non-global zones, go to Step 2.

� If you want to customize auditing in non-global zones, consider the
following:

� You must also configure the global zone.

To collect audit records according to the audit configuration files in the
non-global zones, you must set the perzone audit policy in the global zone.

Note – If you implement non-global zones with customized name service
files, you should set the perzone audit policy option. Name service files
include /etc/password, /etc/shadow, and nsswitch.conf. For the
implications of not setting the perzone option, see “Auditing and Solaris
Zones” on page 592.

� The audit configuration files in a zone are read by the zone’s audit daemon.

Each zone runs its own audit daemon, has it own audit queue, and collects
its own audit log. These operations are computer-intensive.

� Each zone can set all policy options except for perzone and ahlt. These
policy options are set in the global zone.

If you customize audit configuration files in every zone, use “How to Plan Who
and What to Audit” on page 542 to plan for every zone. You can skip the first
step. You must also “How to Plan Storage for Audit Records” on page 541 for
every zone.

2. Determine if you want a single-image audit trail.

Steps

540 System Administration Guide: Security Services • January 2005

A single-image audit trail treats the systems that are being audited as one machine.
The global zone runs the only audit daemon on the system, and collects audit logs
for every zone. You customize audit configuration files only in the global zone.
This configuration treats all zones as part of one system. To differentiate zone audit
records, you can set the zonename policy. You can then use the auditreduce
command to select audit events by zone. For an example, see the
auditreduce(1M) man page.
To plan a single-image audit trail, use “How to Plan Who and What to Audit”
on page 542 to plan. Start with the first step. You must also “How to Plan Storage
for Audit Records” on page 541.

� How to Plan Storage for Audit Records
The audit trail requires dedicated file space. The dedicated file space for audit files
must be available and secure. Each system should have several audit directories that
are configured for audit files. You should decide how to configure the audit directories
as one of the first tasks before you enable auditing on any systems. The following
procedure covers the issues to be resolved when you plan for audit trail storage.

If you are implementing non-global zones, complete “How to Plan Auditing in Zones”
on page 540 before using this procedure.

1. Determine how much auditing your site needs.

Balance your site’s security needs against the availability of disk space for the audit
trail.
For guidance on how to reduce space requirements while still maintaining site
security, as well as how to design audit storage, see “Controlling Auditing Costs”
on page 546 and “Auditing Efficiently” on page 547.

2. Determine which systems are to be audited.

On those systems, allocate space for at least one local audit directory. To specify the
audit directories, see Example 29–3.

3. Determine which systems are to store audit files.

Decide which servers are to hold the primary and secondary audit directories. For
examples of configuring disks for audit directories, see “How to Create Partitions
for Audit Files” on page 560.

4. Name the audit directories.

Create a list of all the audit directories that you plan to use. For the naming
conventions, see “Conventions for Binary Audit File Names” on page 597

5. Determine which systems are to use which audit directories.

Create a map that shows which system should use which audit directory. The map
helps you to balance the auditing activity. For an illustration, see Figure 30–1 and

Before You
Begin

Steps

Chapter 28 • Planning for Solaris Auditing 541

Figure 30–2.

� How to Plan Who and What to Audit
If you are implementing non-global zones, complete “How to Plan Auditing in Zones”
on page 540 before using this procedure.

1. Determine if you want a single-image audit trail.

If you plan to audit individual systems differently, start with the next step. You
should complete the rest of the planning steps for every system.
A single-image audit trail treats the systems that are being audited as one machine.
To create a single-image audit trail for a site, every system in the installation
should be configured as follows:

� Use the same audit_warn, audit_event, audit_class, and
audit_startup files as every other system.

� Use the same audit_user database. The database can be in the name service.
� Have identical flags, naflags, and plugin entries in the audit_control

file.

2. Determine the audit policy.

Use the auditconfig -lspolicy command to see a short description of
available policy options. By default, only the cnt policy is turned on. For a fuller
discussion, see Step 8.
For the effects of the policy options, see “Determining Audit Policy” on page 543.
To set audit policy, see “How to Configure Audit Policy” on page 563.

3. Determine if you want to modify event-to-class mappings.

In many situations, the default mapping is sufficient. However, if you add new
classes, change class definitions, or determine that a record of a specific system call
is not useful, you might also need to move an event to a different class.
For an example, see “How to Change an Audit Event’s Class Membership”
on page 557.

4. Determine which audit classes to preselect.

The best time to add audit classes or to change the default classes is before you
start the auditing service.
The audit class values of the flags, naflags, and plugin entries in the
audit_control file apply to all users and processes. The preselected classes
determine whether an audit class is audited for success, for failure, or for both.
To preselect audit classes, see “How to Modify the audit_control File” on page
551.

5. Determine user exceptions to the system-wide preselected audit classes.

Before You
Begin

Steps

542 System Administration Guide: Security Services • January 2005

If you decide that some users should be audited differently from the system-wide
preselected audit classes, modify the individual users’ entries in the audit_user
database.

For an example, see “How to Change a User’s Audit Characteristics” on page 555.

6. Determine the minimum free disk space.

When disk space on an audit file system drops below the minfree percentage, the
auditd daemon switches to the next available audit directory. The daemon then
sends a warning that the soft limit has been exceeded.

To set the minimum free disk space, see Example 29–4.

7. Decide how to manage the audit_warn email alias.

The audit_warn script is run whenever the audit system needs to notify you of a
situation that requires administrative attention. By default, the audit_warn script
sends email to an audit_warn alias and sends a message to the console.

To set up the alias, see “How to Configure the audit_warn Email Alias” on page
562.

8. Decide what action to take when all the audit directories are full.

By default, when the audit trail overflows, the system continues to work. The
system counts the audit records that are dropped, but does not record the events.
For greater security, you can disable the cnt policy, and enable the ahlt policy.
The ahlt policy stops the system when the audit audit trail overflows.

To configure these policy options, see Example 29–14.

9. Decide whether to collect audit records in syslog format as well as in binary
logs.

For overview information, see “Audit Files” on page 535.

For an example, see “How to Configure syslog Audit Logs” on page 553.

Determining Audit Policy
Audit policy determines the characteristics of the audit records for the local system.
The policy options are set by a startup script. The bsmconv script, which enables the
auditing service, creates the /etc/security/audit_startup script. The
audit_startup script executes the auditconfig command to establish audit
policy. For details about the script, see the audit_startup(1M) man page.

Most audit policy options are disabled by default to minimize storage requirements
and system processing demands. You can dynamically enable and disable audit policy
options with the auditconfig command. You can permanently enable and disable
the policy options with the audit_startup script.

Chapter 28 • Planning for Solaris Auditing 543

Use the following table to determine if the needs of your site justify the additional
overhead that results from enabling one or more audit policy options.

TABLE 28–1 Effects of Audit Policy Options

Policy Name Description Why Change the Policy Option?

ahlt This policy applies to asynchronous events only.
When disabled, this policy allows the event to
complete without an audit record being generated.

When enabled, this policy stops the system when
the audit file systems are full. Administrative
intervention is required to clean up the audit
queue, make space available for audit records, and
reboot. This policy can only be enabled in the
global zone. The policy affects all zones.

The disabled option makes sense when system
availability is more important than security.

The enabled option makes sense in an
environment where security is paramount.

arge When disabled, this policy omits environment
variables of an executed program from the exec
audit record.

When enabled, this policy adds the environment
variables of an executed program to the exec
audit record. The resulting audit records contain
much more detail than when this policy is
disabled.

The disabled option collects much less
information than the enabled option.

The enabled option makes sense when you are
auditing a few users. The option is also useful
when you have suspicions about the
environment variables that are being used in
exec programs.

argv When disabled, this policy omits the arguments of
an executed program from the exec audit record.

When enabled, this policy adds the arguments of
an executed program to the exec audit record.
The resulting audit records contain much more
detail than when this policy is disabled.

The disabled option collects much less
information than the enabled option.

The enabled option makes sense when you are
auditing a few users. The option is also useful
when you have reason to believe that unusual
exec programs are being run.

cnt When disabled, this policy blocks a user or
application from running. The blocking happens
when audit records cannot be added to the audit
trail because no disk space is available.

When enabled, this policy allows the event to
complete without an audit record being generated.
The policy maintains a count of audit records that
are dropped.

The disabled option makes sense in an
environment where security is paramount.

The enabled option makes sense when system
availability is more important than security.

group When disabled, this policy does not add a groups
list to audit records.

When enabled, this policy adds a groups list to
every audit record as a special token.

The disabled option usually satisfies
requirements for site security.

The enabled option makes sense when you
need to audit which groups are generating
audit events.

544 System Administration Guide: Security Services • January 2005

TABLE 28–1 Effects of Audit Policy Options (Continued)
Policy Name Description Why Change the Policy Option?

path When disabled, this policy records in an audit
record at most one path that is used during a
system call.

When enabled, this policy records every path that
is used in conjunction with an audit event to every
audit record.

The disabled option places at most one path in
an audit record.

The enabled option enters each file name or
path that is used during a system call in the
audit record as a path token.

perzone When disabled, this policy maintains a single
audit configuration for a system. One audit
daemon runs in the global zone. Audit events in
non-global zones can be located in the audit record
by preselecting the zonename audit token.

When enabled, this policy maintains separate
audit configuration, audit queue, and audit logs
for each zone. A separate version of the audit
daemon runs in each zone.This policy can be
enabled in the global zone only.

The disabled option is useful when you have
no special reason to maintain a separate audit
log, queue, and daemon for each zone.

The enabled option is useful when you cannot
monitor your system effectively by simply
preselecting the zonename audit token.

public When disabled, this policy does not add read-only
events of public objects to the audit trail when the
reading of files is preselected. Audit classes that
contain read-only events include fr, fa, and cl.

When enabled, this policy records every read-only
audit event of public objects if an appropriate
audit class is preselected.

The disabled option usually satisfies
requirements for site security.

The enabled option is rarely useful.

seq When disabled, this policy does not add a
sequence number to every audit record.

When enabled, this policy adds a sequence
number to every audit record. The sequence
token holds the sequence number.

The disabled option is sufficient when auditing
is running smoothly.

The enabled option makes sense when the cnt
policy is enabled. The seq policy enables you
to to determine when data was discarded.

trail When disabled, this policy does not add a
trailer token to audit records.

When enabled, this policy adds a trailer token
to every audit record.

The disabled option creates a smaller audit
record.

The enabled option clearly marks the end of
each audit record with a trailer token. The
trailer token is often used in conjunction
with the sequence token. The trailer token
provides easier and more accurate
resynchronization of audit records.

zonename When disabled, this policy does not include a
zonename token in audit records.

When enabled, this policy includes a zonename
token in every audit record from a non-global
zone.

The disabled option is useful when you do not
need to compare audit behavior across zones.

The enabled option is useful when you want to
isolate and compare audit behavior across
zones.

Chapter 28 • Planning for Solaris Auditing 545

Controlling Auditing Costs
Because auditing consumes system resources, you must control the degree of detail
that is recorded. When you decide what to audit, consider the following costs of
auditing:

� Cost of increased processing time
� Cost of analysis of audit data
� Cost of storage of audit data

Cost of Increased Processing Time of Audit Data
The cost of increased processing time is the least significant of the costs of auditing.
The first reason is that auditing generally does not occur during
computation-intensive tasks, such as image processing, complex calculations, and so
forth. The other reason is that the cost for single-user systems is usually small enough
to ignore.

Cost of Analysis of Audit Data
The cost of analysis is roughly proportional to the amount of audit data that is
collected. The cost of analysis includes the time that is required to merge and review
audit records. Cost also includes the time that is required to archive the records and
keep the records in a safe place.

The fewer records that you generate, the less time that is required to analyze the audit
trail. Upcoming sections, “Cost of Storage of Audit Data” on page 546 and “Auditing
Efficiently” on page 547, describe ways to audit efficiently. Efficient auditing reduces
the amount of audit data, while still providing enough coverage to achieve your site’s
security goals.

Cost of Storage of Audit Data
Storage cost is the most significant cost of auditing. The amount of audit data depends
on the following:

� Number of users
� Number of systems
� Amount of use
� Degree of traceability and accountability that is required

Because these factors vary from site to site, no formula can predetermine the amount
of disk space to set aside for audit data storage. Use the following information as a
guide:

546 System Administration Guide: Security Services • January 2005

� Preselect audit classes judiciously to reduce the volume of records that are
generated.

Full auditing, that is, with the all class, fills disks quickly. Even a simple task such
as compiling a program could generate a large audit file. A program of modest size
could generate thousands of audit records in less than a minute.

For example, by omitting the file_read audit class, fr, you can significantly
reduce audit volume. By choosing to audit for failed operations only, you can at
times reduce audit volume. For example, by auditing for failed file_read
operations, -fr, you can generate far fewer records than by auditing for all
file_read events.

� Efficient audit file management is also important. After the audit records are
created, file management reduces the amount of storage that is required.

� Understand the audit classes

Before you configure auditing, you should understand the types of events that the
classes contain. You can change the audit event-class mappings to optimize audit
record collection.

� Develop a philosophy of auditing for your site.

Base your philosophy on sensible measures. Such measures include the amount of
traceability that your site requires, and the types of users that you administer.

Auditing Efficiently
The following techniques can help you achieve your organization’s security goals
while auditing more efficiently.

� Randomly audit only a certain percentage of users at any one time.
� Reduce the disk-storage requirements for audit files by combining, reducing, and

compressing the files. Develop procedures for archiving the files, for transferring
the files to removable media, and for storing the files offline.

� Monitor the audit data in real time for unusual behaviors. You can extend
management and analysis tools that you have already developed to handle audit
records in syslog files.

You can also set up procedures to monitor the audit trail for certain activities. You
can write a script to trigger an automatic increase in the auditing of certain users or
certain systems in response to detection of unusual events.

For example, you could write a script that does the following:

1. Monitors the creation of audit files on all the audit file servers.

2. Processes the audit files with the tail command.

The piping of the output from the tail -0f command through the praudit
command can yield a stream of audit records as the records are generated. For
more information, see the tail(1) man page.

Chapter 28 • Planning for Solaris Auditing 547

3. Analyzes this stream for unusual message types or other indicators, and
delivers the analysis to the auditor.

Or, the script can be used to trigger automatic responses.

4. Constantly monitors the audit directories for the appearance of new
not_terminated audit files.

5. Terminates outstanding tail processes when their files are no longer being
written to.

548 System Administration Guide: Security Services • January 2005

CHAPTER 29

Managing Solaris Auditing (Tasks)

This chapter presents procedures to help you set up and manage a Solaris system that
is audited. This chapter also includes instructions for administering the audit trail. The
following is a list of the information in this chapter.

� “Solaris Auditing (Task Map)” on page 549
� “Configuring Audit Files (Task Map)” on page 550
� “Configuring and Enabling the Auditing Service (Task Map)” on page 559
� “Managing Audit Records (Task Map)” on page 569

For an overview of the auditing service, see Chapter 27. For planning suggestions, see
Chapter 28. For reference information, see Chapter 30.

Solaris Auditing (Task Map)
The following task map points to the major tasks that are required to manage auditing.
The tasks are ordered.

Task Description For Instructions

1. Plan for auditing Contains configuration issues to decide before
you configure the auditing service.

“Planning Solaris Auditing (Task
Map)” on page 539

2. Configure audit files Defines which events, classes, and users
require auditing.

“Configuring Audit Files (Task
Map)” on page 550

3. Configure and enable
auditing

Configures each host for disk space and other
auditing service requirements. Then, starts the
auditing service.

“Configuring and Enabling the
Auditing Service (Task Map)”
on page 559

549

Task Description For Instructions

4. Manage audit records Collects and analyzes the audit data. “Managing Audit Records (Task
Map)” on page 569

Configuring Audit Files (Task Map)
The following task map points to the procedures for configuring files to customize
auditing at your site. Most of the tasks are optional.

Task Description For Instructions

Select audit classes, and
customize audit_control
settings

Involves:
� Preselecting system-wide audit classes
� Specifying the audit directories for each

system
� Setting disk space limits on audit file

systems

“How to Modify the
audit_control File” on page
551

(Optional) Log audit events in
two modes

Enables you to monitor audit events in real
time, in addition to storing audit records in
binary format.

“How to Configure syslog
Audit Logs” on page 553

(Optional) Change audit
characteristics for users

Sets user-specific exceptions to the
system-wide preselected audit classes.

“How to Change a User’s Audit
Characteristics” on page 555

(Optional) Add audit classes Reduces the number of audit records by
creating a new audit class to hold events.

“How to Add an Audit Class”
on page 557

(Optional) Change
event-to-class mappings

Reduces the number of audit records by
changing the event-class mapping.

“How to Change an Audit
Event’s Class Membership”
on page 557

Configuring Audit Files
Before you enable auditing on your network, you can customize the audit
configuration files for your site auditing requirements. You can also restart the
auditing service or reboot the local system to read changed configuration files after the
auditing service has been enabled. However, the recommended practice is to
customize your audit configuration as much as possible before you start the auditing
service.

550 System Administration Guide: Security Services • January 2005

If you have implemented zones, you can choose to audit all zones from the global
zone. To differentiate between zones in the audit output, you can set the zonename
policy option. Alternatively, to audit non-global zones individually, you can set the
perzone policy in the global zone and customize the audit configuration files in the
non-global zones. For an overview, see “Auditing and Solaris Zones” on page 592. For
planning, see “How to Plan Auditing in Zones” on page 540.

� How to Modify the audit_control File
The /etc/security/audit_control file configures system-wide auditing. The file
determines which events are audited, when audit warnings are issued, and the
location of the audit files.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. (Optional) Save a backup copy of the audit_control file.

cp /etc/security/audit_control /etc/security/audit_control.orig

3. Modify the audit_control file for your site.

Each entry has the following format:

keyword:value

keyword Defines the type of line. The types are dir, flags, minfree,
naflags, and plugin. The dir line can be repeated.

For explanations of the keywords, see the following examples. For an
example of a plugin entry, see “How to Configure syslog Audit
Logs” on page 553

value Specifies data that is associated with the line type.

Preselecting Audit Classes for All Users

The flags line in the audit_control file defines which classes of attributable
events are audited for all users on the system. The classes are separated by commas.
White space is allowed. In this example, the events in the lo class are audited for all
users.

audit_control file
dir:/var/audit
flags:lo
minfree:20

Steps

Example 29–1

Chapter 29 • Managing Solaris Auditing (Tasks) 551

naflags:lo

To see which events are in the lo class, read the audit_event file. You can also use
the bsmrecord command, as shown in Example 29–22.

Preselecting Nonattributable Events

In this example, all events in the na class, and all login events that are not
attributable, are audited.

audit_control file
dir:/var/audit
flags:lo
minfree:20

naflags:lo,na

Specifying the Location of Binary Audit Data

The dir lines in the audit_control file list which audit file systems to use for
binary audit data. In this example, three locations for binary audit data are defined.

audit_control file
#
Primary audit directory - NFS-mounted from audit server
dir:/var/audit/egret.1/files
#
Secondary audit directory - NFS-mounted from audit server
dir:/var/audit/egret.2/files
#
Directory of last resort local directory
dir:/var/audit
flags:lo
minfree:20
naflags:lo,na

plugin:

To set up file systems to hold audit binary audit data, see “How to Create Partitions
for Audit Files” on page 560.

Changing the Soft Limit for Warnings

In this example, the minimum free-space level for all audit file systems is set so that a
warning is issued when only 10 percent of the file system is available.

audit_control file
#
dir:/var/audit/examplehost.1/files
dir:/var/audit/examplehost.2/files
dir:/var/audit/localhost/files
flags:lo
minfree:10

Example 29–2

Example 29–3

Example 29–4

552 System Administration Guide: Security Services • January 2005

naflags:lo,na

The audit_warn alias receives the warning. To set up the alias, see “How to
Configure the audit_warn Email Alias” on page 562.

� How to Configure syslog Audit Logs
You can instruct the auditing service to collect only binary audit data, or you can
instruct the auditing service to collect binary data and text data. In the following
procedure, you collect binary audit data and text audit data. The collected text audit
data is a subset of the binary data.

Preselected audit classes must be specified on the flags line or the naflags line of
the audit_control file. The text data is a subset of the preselected binary data.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. (Optional) Save a backup copy of the audit_control file.

cp /etc/security/audit_control /etc/security/audit_control.save

3. Add a plugin entry.

Plugins in the auditing service implement binary output and syslog output of
audit data. The binary plugin is not specified. The syslog plugin must be
specified. For more information, see “auditd Daemon” on page 582.

A plugin entry has the following format:

plugin:name=value; p_flags=classes

value Lists the name of the plugin to use. Currently, the only valid value is the
audit_syslog.so.1 plugin.

classes Lists a subset of the audit classes that are specified in the flags line and
the naflags line.

For more information about the plugin value, see the audit_syslog(5) man
page.

4. Add an audit.notice entry to the syslog.conf file.

Before You
Begin

Steps

Chapter 29 • Managing Solaris Auditing (Tasks) 553

The entry includes the location of the log file.

cat /etc/syslog.conf
...

audit.notice /var/adm/auditlog

Text logs should not be stored where the binary audit files are stored. The
auditreduce command assumes that all files in an audit partition are binary
audit files.

5. Create the log file.

touch /var/adm/auditlog

6. Refresh the configuration information for the syslog service.

svcadm refresh system/system-log

7. Regularly archive the syslog log files.

The auditing service can generate extensive output. To manage the logs, see the
logadm(1M) man page.

Specifying Audit Classes for syslog Output

In the following example, the syslog utility collects a subset of the preselected audit
classes.

audit_control file
dir:/var/audit/host.1/files
dir:/var/audit/host.2/files
dir:/var/audit/localhost/files
flags:lo,ss
minfree:10
naflags:lo,na

plugin:name=audit_syslog.so.1; p_flags=-lo,-na,-ss

The flags and naflags entries instruct the system to collect all login/logout,
nonattributable, and change of system state audit records in binary format. The
plugin entry instructs the syslog utility to collect only failed logins, failed
nonattributable events, and failed changes of system state.

Putting syslog Audit Records on a Remote System

You can change the audit.notice entry in the syslog.conf file to point to a
remote system. In this example, the name of the local system is example1. The remote
system is remote1.

example1 # cat /etc/syslog.conf
...

audit.notice @remote1

Example 29–5

Example 29–6

554 System Administration Guide: Security Services • January 2005

The audit.notice entry in the syslog.conf file on the remote1 system points to
the log file.

remote1 # cat /etc/syslog.conf
...

audit.notice /var/adm/auditlog

� How to Change a User’s Audit Characteristics
Definitions for each user are stored in the audit_user database. These definitions
modify, for the specified user, the preselected classes in the audit_control file. The
nsswitch.conf file determines if a local file or if a name service database is used. To
calculate the user’s final audit preselection mask, see “Process Audit Characteristics”
on page 596.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. (Optional) Save a backup copy of the audit_user database.

cp /etc/security/audit_user /etc/security/audit_user.orig

3. Add new entries to the audit_user database.

In the local database, each entry has the following format:

username:always-audit:never-audit

username Selects the name of the user to be audited.

always-audit Selects the list of audit classes that should always be audited for
the specified user.

never-audit Selects the list of audit classes that should never be audited for the
specified user.

You can specify multiple classes by separating the audit classes with commas.

The audit_user entries are in effect at the user’s next login.

Changing Which Events Are Audited for One User

In this example, the audit_control file contains the preselected audit classes for the
system:

audit_control file
...
flags:lo,ss

Steps

Example 29–7

Chapter 29 • Managing Solaris Auditing (Tasks) 555

minfree:10

naflags:lo,na

The audit_user file shows an exception. When the user jdoe uses a profile shell,
that use is audited:

audit_user file

jdoe:pf

The audit preselection mask for jdoe is a combination of the audit_user settings
with the audit_control settings. The auditconfig -getaudit command shows
the preselection mask for jdoe:

auditconfig -getaudit
audit id = jdoe(1234567)
process preselection mask = ss,pf,lo(0x13000,0x13000)
terminal id (maj,min,host) = 242,511,example1(192.168.160.171)

audit session id = 454

Auditing Users Only, Not the System

In this example, the login and role activities of four users only are audited on this
system. The audit_control file does not preselect audit classes for the system:

audit_control file
...
flags:
minfree:10

naflags:

The audit_user file preselects two audit classes for four users:

audit_user file
jdoe:lo,pf
kdoe:lo,pf
pdoe:lo,pf

sdoe:lo,pf

The following audit_control file protects the system from unwarranted intrusion.
In combination with the audit_user file, this file protects the system more than the
first audit_control file in this example.

audit_control file
...
flags:
minfree:10

naflags:lo

Example 29–8

556 System Administration Guide: Security Services • January 2005

� How to Add an Audit Class
When you create your own audit class, you can place into it just those audit events
that you want to audit for your site. When you add the class on one system, you
should copy the change to all systems that are being audited.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. (Optional) Save a backup copy of the audit_class file.

cp /etc/security/audit_class /etc/security/audit_class.orig

3. Add new entries to the audit_class file.

Each entry has the following format:

0xnumber:name:description

0x Identifies number as hexadecimal.

number Defines the unique audit class mask.

name Defines the letter name of the audit class.

description Defines the descriptive name of the audit class.

The entry must be unique in the file. Do not use existing audit class masks.

Creating a New Audit Class

This example creates a class to hold a small set of audit events. The added entry to the
audit_class file is as follows:

0x01000000:pf:profile command

The entry creates a new audit class that is called pf. Example 29–10 populates the new
audit class.

� How to Change an Audit Event’s Class
Membership
You might want to change an audit event’s class membership to reduce the size of an
existing audit class, or to place the event in a class of its own. When you reconfigure
audit event-class mappings on one system, you should copy the change to all systems
that are being audited.

Steps

Example 29–9

Chapter 29 • Managing Solaris Auditing (Tasks) 557

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. (Optional) Save a backup copy of the audit_event file.

cp /etc/security/audit_event /etc/security/audit_event.orig

3. Change the class to which particular events belong by changing the class-list of
the events.

Each entry has the following format:

number:name:description:class-list

number Is the audit event ID.

name Is the name of the audit event.

description Typically, the system call or executable that triggers the creation of
an audit record.

class-list Is a comma-separated list of audit classes.

Mapping Existing Audit Events to a New Class

This example maps an existing audit event to the new class that was created in
Example 29–9. In the audit_control file, the binary audit record captures successes
and failures of events in the pf class. The syslog audit log contains only failures of
events in the pf class.

grep pf | /etc/security/audit_class
0x01000000:pf:profile command
vi /etc/security/audit_event
6180:AUE_prof_cmd:profile command:ua,as,pf
vi audit_control
...
flags:lo,pf

plugin:name=audit_syslog.so.1; p_flags=-lo,-pf

Auditing the Use of setuid Programs

This example creates a class to hold events that monitor calls to the setuid and
setgid programs. The audit_control entries audit all successful invocations of the
events in the st class.

vi /etc/security/audit_class
0x00000800:st:setuid class
vi /etc/security/audit_event
26:AUE_SETGROUPS:setgroups(2):st
27:AUE_SETPGRP:setpgrp(2):st

Steps

Example
29–10

Example
29–11

558 System Administration Guide: Security Services • January 2005

40:AUE_SETREUID:setreuid(2):st
41:AUE_SETREGID:setregid(2):st
214:AUE_SETEGID:setegid(2):st
215:AUE_SETEUID:seteuid(2):st
vi audit_control
...
flags:lo,+st

plugin:name=audit_syslog.so.1; p_flags=-lo,+st

Configuring and Enabling the Auditing
Service (Task Map)
The following task map points to procedures for configuring and enabling the
auditing service. The tasks are ordered.

Task Description For Instructions

1. (Optional) Change the
audit configuration files

Selects which events, classes, and users require
auditing.

“Configuring Audit Files (Task
Map)” on page 550

2. Create audit partitions Creates disk space for the audit files, and
protects them with file permissions.

“How to Create Partitions for
Audit Files” on page 560

3. Create the audit_warn
alias

Defines who should get email warnings when
the auditing service needs attention.

“How to Configure the
audit_warn Email Alias”
on page 562

4. (Optional) Change audit
policy

Defines additional audit data that your site
requires.

“How to Configure Audit Policy”
on page 563

5. Enable auditing Turns on the auditing service. “How to Enable Auditing”
on page 566

6. (Optional) Disable auditing Turns off the auditing service. “How to Disable Auditing”
on page 567

7. (Optional) Reread auditing
configuration changes

Reads audit configuration changes into the
kernel while the auditd daemon is running.

“How to Update the Auditing
Service” on page 568

8. (Optional) Configure
auditing in non-global zones

Sets policy to enable non-global zones to run
their own auditing daemon

Example 29–16

Chapter 29 • Managing Solaris Auditing (Tasks) 559

Configuring and Enabling the Auditing
Service
After the configuration files have been set up for your site, you need to set up disk
space for your audit files. You also need to set up other attributes of the auditing
service, and then enable the service. This section also contains procedures to refresh
the auditing service when you change configuration settings.

When a non-global zone is installed, you can choose to audit the zone exactly as the
global zone is being audited. Alternatively, to audit the non-global zone individually,
you can modify the audit configuration files in the non-global zone. To customize
audit configuration files, see “Configuring Audit Files (Task Map)” on page 550.

� How to Create Partitions for Audit Files
The following procedure shows how to create partitions for audit files, as well as the
corresponding file systems and directories. Skip steps as necessary, depending on if
you already have an empty partition, or if you have already mounted an empty file
system.

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Determine the amount of disk space that is required.

Assign at least 200 Mbytes of disk space per host. However, how much auditing
you require dictates the disk space requirements. So, your disk space requirements
might be far greater than this figure. Remember to include a local partition for a
directory of last resort.

3. Create dedicated audit partitions, as needed.

This step is most easily done during server installation. You can also create the
partitions on disks that have not yet been mounted on the server. For complete
instructions on how to create the partitions, see Chapter 12, “Administering Disks
(Tasks),” in System Administration Guide: Devices and File Systems.

newfs /dev/rdsk/cwtxdysz

where /dev/rdsk/cwtxdysz is the raw device name for the partition.

If the local host is to be audited, also create an audit directory of last resort for the
local host.

Steps

560 System Administration Guide: Security Services • January 2005

4. Create mount points for each new partition.

mkdir /var/audit/server-name.n

where server-name.n is the name of the server plus a number that identifies each
partition. The number is optional, but the number is useful when there are many
audit directories.

5. Add entries to automatically mount the new partitions.

Add a line to the /etc/vfstab file that resembles the following:

/dev/dsk/cwtxdysz /dev/rdsk/cwtxdysz /var/audit/server-name.n ufs 2 yes

6. (Optional) Remove the minimum free space threshold on each partition.

If you use the default configuration, a warning is generated when the directory is
80 percent full. The warning removes the reason to reserve free space on the
partition.

tunefs -m 0 /var/audit/server-name.n

7. Mount the new audit partitions.

mount /var/audit/server-name.n

8. Create audit directories on the new partitions.

mkdir /var/audit/server-name.n/files

9. Correct the permissions on the mount points and new directories.

chmod -R 750 /var/audit/server-name.n/files

10. On a file server, define the file systems to be made available to other hosts.

Often, disk farms are installed to store the audit records. If an audit directory is to
be used by several systems, then the directory must be shared through the NFS
service. Add an entry that resembles the following for each directory to the
/etc/dfs/dfstab file:

share -F nfs /var/audit/server-name.n/files

11. On a file server, restart the NFS service.

If this command is the first share command or set of share commands that you
have initiated, the NFS daemons might not be running.

� If the NFS service is offline, enable the service.

% svcs *nfs*
disabled Nov_02 svc:/network/nfs/rquota:default
offline Nov_02 svc:/network/nfs/server:default

svcadm enable network/nfs/server

� If the NFS service is running, restart the service.

% svcs *nfs*
online Nov_02 svc:/network/nfs/client:default

Chapter 29 • Managing Solaris Auditing (Tasks) 561

online Nov_02 svc:/network/nfs/server:default

svcadm restart network/nfs/server

For more information about the NFS service, refer to “Setting Up NFS Services” in
System Administration Guide: Network Services. For information on managing
persistent services, see Chapter 9, “Managing Services (Overview),” in System
Administration Guide: Basic Administration and the smf(5) man page.

Creating an Audit Directory of Last Resort
All systems that run the auditing service should have a local file system that can be
used if no other file system is available. In this example, a file system is being added to
a system that is named egret. Because this file system is only used locally, none of
the steps for a file server are necessary.

newfs /dev/rdsk/c0t2d0
mkdir /var/audit/egret
grep egret /etc/vfstab
/dev/dsk/c0t2d0s1 /dev/rdsk/c0t2d0s1 /var/audit/egret ufs 2 yes -
tunefs -m 0 /var/audit/egret
mount /var/audit/egret
mkdir /var/audit/egret/files

chmod -R 750 /var/audit/egret/files

Creating New Audit Partitions
In this example, a new file system is created on two new disks that are to be used by
other systems in the network.

newfs /dev/rdsk/c0t2d0
newfs /dev/rdsk/c0t2d1
mkdir /var/audit/egret.1
mkdir /var/audit/egret.2
grep egret /etc/vfstab
/dev/dsk/c0t2d0s1 /dev/rdsk/c0t2d0s1 /var/audit/egret.1 ufs 2 yes -
/dev/dsk/c0t2d1s1 /dev/rdsk/c0t2d1s1 /var/audit/egret.2 ufs 2 yes -
tunefs -m 0 /var/audit/egret.1
tunefs -m 0 /var/audit/egret.2
mount /var/audit/egret.1
mount /var/audit/egret.2
mkdir /var/audit/egret.1/files
mkdir /var/audit/egret.2/files
chmod -R 750 /var/audit/egret.1/files /var/audit/egret.2/files
grep egret /etc/dfs/dfstab
share -F nfs /var/audit/egret.1/files
share -F nfs /var/audit/egret.2/files

svcadm enable network/nfs/server

� How to Configure the audit_warn Email Alias
The audit_warn script generates mail to an email alias that is called audit_warn.
To send this mail to a valid email address, you can follow one of the options that are
described in Step 2:

Example
29–12

Example
29–13

562 System Administration Guide: Security Services • January 2005

1. Assume the Primary Administrator role, or become superuser.

The Primary Administrator role includes the Primary Administrator profile. To
create the role and assign the role to a user, see Chapter 2, “Working With the
Solaris Management Console (Tasks),” in System Administration Guide: Basic
Administration.

2. Configure the audit_warn email alias.

Choose one of the following options:

� OPTION 1 – Replace the audit_warn email alias with another email account
in the audit_warn script.

Change the email alias in the following line of the script:

ADDRESS=audit_warn # standard alias for audit alerts

� OPTION 2 – Redirect the audit_warn email to another mail account.

In this case, you would add the audit_warn email alias to the appropriate
mail aliases file. You could add the alias to the local /etc/mail/aliases file
or to the mail_aliases database in the name space. The new entry would
resemble the following if the root mail account was made a member of the
audit_warn email alias:

audit_warn: root

� How to Configure Audit Policy
Audit policy determines the characteristics of the audit records for the local host.
When auditing is enabled, the contents of the /etc/security/audit_startup file
determine the audit policy.

You can inspect, enable, or disable the current audit policy options with the the
auditconfig command. You can also modify the policy options to the
auditconfig command in the audit_startup script to make permanent audit
policy changes.

1. Assume a role that includes the Audit Control profile, or become superuser.

To create a role that includes the Audit Control profile and to assign the role to a
user, see “Configuring RBAC (Task Map)” on page 196.

2. Review the audit policy.

Before auditing is enabled, the contents of the audit_startup file determine the
audit policy:

#!/bin/sh
/usr/bin/echo "Starting BSM services."
/usr/sbin/deallocate -Is
/usr/sbin/auditconfig -conf Configures event-class mappings

Steps

Steps

Chapter 29 • Managing Solaris Auditing (Tasks) 563

/usr/sbin/auditconfig -aconf Configures nonattributable events
/usr/sbin/auditconfig -setpolicy +cnt Counts rather than drops records

3. View the available policy options.

$ auditconfig -lspolicy

Note – The perzone and ahlt policy options can be set only in the global zone.

4. Enable or disable selected audit policy options.

auditconfig -setpolicy prefixpolicy

prefix A prefix value of + enables the policy option. A prefix value of - disables
the policy option.

policy Selects the policy to be enabled or to be disabled.

The policy is in effect until the next boot, or until the policy is modified by the
auditconfig -setpolicy command.

For a description of each policy option, see “Determining Audit Policy” on page
543.

Setting the cnt and ahlt Audit Policy Options

In this example, the cnt policy is disabled and the ahlt policy is enabled. With these
settings, system use is halted when the audit partitions are full. These settings are
appropriate when security is more important than availability. For restrictions on
setting this policy, see Step 3.

The following audit_startup entries disable the cnt policy option and enable the
ahlt policy option across reboots:

cat /etc/security/audit_startup
#!/bin/sh
/usr/bin/echo "Starting BSM services."
/usr/sbin/deallocate -Is
/usr/sbin/auditconfig -conf
/usr/sbin/auditconfig -aconf
/usr/sbin/auditconfig -setpolicy -cnt

/usr/sbin/auditconfig -setpolicy +ahlt

Setting the seq Audit Policy Temporarily

In this example, the auditd daemon is running and the ahlt audit policy has been
set. The seq audit policy is added to the current policy. The seq policy adds a
sequence token to every audit record. This is useful for debugging the auditing
service when audit records are corrupted, or when records are being dropped.

Example
29–14

Example
29–15

564 System Administration Guide: Security Services • January 2005

The + prefix adds the seq option to the audit policy, rather than replaces the current
audit policy with seq. The auditconfig command puts the policy in effect until the
next invocation of the command, or until the next boot.

$ auditconfig -setpolicy +seq
$ auditconfig -getpolicy

audit policies = ahlt,seq

Setting the perzone Audit Policy

In this example, the perzone audit policy is set in the audit_startup script in the
global zone. When a zone boots, the non-global zone collects audit records according
to the audit configuration settings in its zone.

$ cat /etc/security/audit_startup
#!/bin/sh
/usr/bin/echo "Starting BSM services."
/usr/sbin/deallocate -Is
/usr/sbin/auditconfig -conf
/usr/sbin/auditconfig -aconf
/usr/sbin/auditconfig -setpolicy +perzone

/usr/sbin/auditconfig -setpolicy +cnt

Changing an Audit Policy

In this example, the audit daemon is running and audit policy has been set. The
auditconfig command changes the ahlt and cnt policies for the duration of the
session. With these settings, audit records are dropped, but counted, when the audit
file system is full. For restrictions on setting the ahlt policy, see Step 3.

$ auditconfig -setpolicy +cnt
$ auditconfig -setpolicy -ahlt
$ auditconfig -getpolicy

audit policies = cnt,seq

When the changes are put in the audit_startup file, the policies are permanently in
effect:

$ cat /etc/security/audit_startup
#!/bin/sh
/usr/bin/echo "Starting BSM services."
/usr/sbin/deallocate -Is
/usr/sbin/auditconfig -conf
/usr/sbin/auditconfig -aconf

/usr/sbin/auditconfig -setpolicy +cnt

The -ahlt option does not have to be specified in the file, because the ahlt policy
option is disabled by default. This setting is appropriate when availability is more
important than the security that audit records provide.

Example
29–16

Example
29–17

Chapter 29 • Managing Solaris Auditing (Tasks) 565

� How to Enable Auditing
This procedure starts the auditing service in the global zone. To enable the auditing
service in a non-global zone, see Example 29–18.

You should perform this procedure after completing the following tasks:

� Planning – “Planning Solaris Auditing (Task Map)” on page 539
� Customizing audit files – “Configuring Audit Files (Task Map)” on page 550
� Setting up audit partitions – “How to Create Partitions for Audit Files” on page 560
� Setting up audit warning messages – “How to Configure the audit_warn Email

Alias” on page 562
� Setting audit policy – “How to Configure Audit Policy” on page 563

1. Become superuser and bring the system into single-user mode.

% su
Password: <Type root password>
init 1

For more information, see the init(1M) man page.

2. Run the script that enables the auditing service.

Go to the /etc/security directory, and execute the bsmconv script there.

cd /etc/security
./bsmconv
This script is used to enable the Basic Security Module (BSM).
Shall we continue with the conversion now? [y/n] y
bsmconv: INFO: checking startup file.
bsmconv: INFO: move aside /etc/rc3.d/S81volmgt.
bsmconv: INFO: turning on audit module.
bsmconv: INFO: initializing device allocation files.

The Basic Security Module is ready.
If there were any errors, please fix them now.
Configure BSM by editing files located in /etc/security.

Reboot this system now to come up with BSM enabled.

For the effects of the script, see the bsmconv(1M) man page.

3. Bring the system into multiuser mode.

init 6

The startup file /etc/security/audit_startup causes the auditd daemon to
run automatically when the system enters multiuser mode.

Another effect of the script is to turn on device allocation. To configure device
allocation, see “Managing Device Allocation (Task Map)” on page 81.

Before You
Begin

Steps

566 System Administration Guide: Security Services • January 2005

Enabling Auditing in a Non-Global Zone

In the following example, the global zone administrator has turned on perzone
policy after auditing was enabled in the global zone and after the non-global zone had
booted. The zone administrator of the non-global zone has configured the audit files
for the zone, and then starts the audit daemon in the zone.

zone1# /usr/sbin/audit -s

� How to Disable Auditing
If the auditing service is no longer required at some point, this procedure returns the
system to the system state before auditing was enabled. If non-global zones are being
audited, their auditing service is also disabled.

Caution – This command also disables device allocation. Do not run this command if
you want to be able to allocate devices. To disable auditing and retain device
allocation, see Example 29–19.

1. Become superuser and bring the system into single-user mode.

% su
Password: <Type root password>
init 1

For more information, see the init(1M) man page.

2. Run the script to disable auditing.

Change to the /etc/security directory, and execute the bsmunconv script.

cd /etc/security

./bsmunconv

Another effect of the script is to disable device allocation.

For information on the full effect of the bsmunconv script, see the bsmconv(1M)
man page.

3. Bring the system into multiuser mode.

init 6

Disabling Auditing and Keeping Device Allocation

In this example, the auditing service stops collecting records, but device allocation
continues to work. All values from the flags, naflags, and plugin entries in the
audit_control file are removed, as are all user entries in the audit_user file.

Example
29–18

Steps

Example
29–19

Chapter 29 • Managing Solaris Auditing (Tasks) 567

audit_control file
...
flags:
minfree:10
naflags:
plugin:

audit_user file

The auditd daemon runs, but no audit records are kept.

� How to Update the Auditing Service
This procedure restarts the auditd daemon when you have made changes to audit
configuration files after the daemon has been running.

1. Assume a role that includes the Audit Control rights profile, or become
superuser.

To create a role that includes the Audit Control rights profile and assign the role to
a user, see “Configuring RBAC (Task Map)” on page 196.

2. Choose the appropriate command.

� If you modify the naflags line in the audit_control file, change the
kernel mask for nonattributable events.

$ /usr/sbin/auditconfig -aconf

You can also reboot.

� If you modify other lines in the audit_control file, reread the
audit_control file.

The audit daemon stores information from the audit_control file internally.
To use the new information, either reboot the system or instruct the audit
daemon to read the modified file.

$ /usr/sbin/audit -s

Note – Audit records are generated based on the audit preselection mask that is
associated with each process. Executing audit -s does not change the masks
in existing processes. To change the preselection mask for an existing process,
you must restart the process. You can also reboot.

Steps

568 System Administration Guide: Security Services • January 2005

The audit -s command causes the audit daemon to re-read the directory
and minfree values from the audit_control file. The command changes the
generation of the preselection mask for processes spawned by subsequent
logins.

� If you modify the audit_event file or the audit_class file while the audit
daemon is running, refresh the auditing service.

Read the modified event-class mappings into the system, and ensure that each
user who uses the machine is correctly audited.

$ auditconfig -conf

$ auditconfig -setumask auid classes

auid Is the user ID.

classes Are the preselected audit classes.

� To change audit policy on a running system, see Example 29–15.

Restarting the Audit Daemon

In this example, the system is brought down to single-user mode, then back up to
multiuser mode. When the system is brought into multiuser mode, modified audit
configuration files are read into the system.

init 1

init 6

Managing Audit Records (Task Map)
The following task map points to procedures for selecting, analyzing, and managing
audit records.

Task Description For Instructions

Display the formats of audit
records

Shows the kind of information that is collected
for an audit event, and the order in which the
information is presented.

“How to Display Audit Record
Formats” on page 570

Merge audit records Combines audit files from several machines
into one audit trail.

“How to Merge Audit Files From
the Audit Trail” on page 572

Select records to examine Selects particular events for study. “How to Select Audit Events
From the Audit Trail” on page
574

Example
29–20

Chapter 29 • Managing Solaris Auditing (Tasks) 569

Task Description For Instructions

Display audit records Enables you to view binary audit records. “How to View the Contents of
Binary Audit Files” on page 576

Clean up incorrectly named
audit files

Provides an end timestamp to audit files that
were inadvertently left open by the auditing
service.

“How to Clean Up a
not_terminated Audit File”
on page 577

Prevent audit trail overflow Prevents the audit file systems from becoming
full.

“How to Prevent Audit Trail
Overflow” on page 578

Managing Audit Records
By managing the audit trail, you can monitor the actions of users on your network.
Auditing can generate large amounts of data. The following tasks show you how to
work with all this data.

� How to Display Audit Record Formats
To write scripts that can find the audit data that you want, you need to know the order
of tokens in an audit event. The bsmrecord command displays the audit event
number, audit class, selection mask, and record format of an audit event.

� Put the format of all audit event records in an HTML file.

The -a option lists all audit event record formats. The -h option puts the list in
HTML format that can be displayed in a browser.

% bsmrecord -a -h > audit.events.html

When you display the *html file in a browser, use the browser’s Find tool to find
specific records.

For more information, see the bsmrecord(1M) man page.

Displaying the Audit Record Formats of a Program

In this example, the format of all audit records that are generated by the login
program are displayed. The login programs include rlogin, telnet, newgrp, role
login to the Solaris Management Console, and Solaris Secure Shell.

% bsmrecord -p login
terminal login
program /usr/sbin/login See login(1)

/usr/dt/bin/dtlogin See dtlogin

Step

Example
29–21

570 System Administration Guide: Security Services • January 2005

event ID 6152 AUE_login
class lo (0x00001000)

header
subject
text error message or "successful login"
return

login: logout
program various See login(1)
event ID 6153 AUE_logout

...

newgrp
program newgrp See newgrp login
event ID 6212 AUE_newgrp_login

...

rlogin
program /usr/sbin/login See login(1) - rlogin
event ID 6155 AUE_rlogin

...

SMC: role login
program SMC server See role login
event ID 6173 AUE_role_login

...

/usr/lib/ssh/sshd
program /usr/lib/ssh/sshd See login - ssh
event ID 6172 AUE_ssh

...

telnet login
program /usr/sbin/login See login(1) - telnet
event ID 6154 AUE_telnet

...

Displaying the Audit Record Formats of an Audit Class

In this example, the format of all audit records in the fd class are displayed.

% bsmrecord -c fd

rmdir
system call rmdir See rmdir(2)
event ID 48 AUE_RMDIR
class fd (0x00000020)

header
path
[attribute]
subject
[use_of_privilege]
return

Example
29–22

Chapter 29 • Managing Solaris Auditing (Tasks) 571

unlink
system call unlink See unlink(2)
event ID 6 AUE_UNLINK
...

unlinkat
system call unlinkat See openat(2)
event ID 286 AUE_UNLINKAT

...

� How to Merge Audit Files From the Audit Trail
By merging all audit files in all the audit directories, you can analyze the contents of
the entire audit trail. The auditreduce command merges all the records from its
input files into a single output file. The input files can then be deleted. When the
output file is placed in a directory that is named
/etc/security/auditserver-name/files, the auditreduce command can find
the output file without your specifying the full path.

Note – This procedure applies only to binary audit records.

1. Assume a role that includes the Audit Review profile, or become superuser.

The System Administrator role includes the Audit Review profile. You can also
create a separate role that includes the Audit Review profile. To create a role and
assign the role to a user, see “Configuring RBAC (Task Map)” on page 196.

2. Create a directory for storing merged audit files.

mkdir audit-trail-directory

3. Limit access to the directory.

chmod 700 audit-trail-directory
ls -la audit-trail-directory
drwx------ 3 root sys 512 May 12 11:47 .

drwxr-xr-x 4 root sys 1024 May 12 12:47 ..

4. Merge the audit records in the audit trail.

Change directories to the audit-trail-directory and merge the audit records into a file
with a named suffix. All directories that are listed in the dir lines of the
audit_control file on the local system are merged.

cd audit-trail-directory
auditreduce -Uppercase-option -O suffix

The uppercase options to the auditreduce command manipulate files in the
audit trail. The uppercase options include the following:

-A Selects all of the files in the audit trail.

Steps

572 System Administration Guide: Security Services • January 2005

-C Selects complete files only. This option ignores files with the suffix
not_terminated.

-M Selects files with a particular suffix. The suffix can be a machine name, or it
can be a suffix that you have specified for a summary file.

-O Creates an audit file with 14-character timestamps for both the start time
and the end time, with the suffix suffix in the current directory.

Copying Audit Files to a Summary File

In the following example, the System Administrator role, sysadmin, copies all files
from the audit trail into a merged file.

$ whoami
sysadmin
$ mkdir /var/audit/audit_summary.dir
$ chmod 700 /var/audit/audit_summary.dir
$ cd /var/audit/audit_summary.dir
$ auditreduce -A -O All
$ ls *All

20030827183214.20030827215318.All

In the following example, only complete files are copied from the audit trail into a
merged file.

$ cd /var/audit/audit_summary.dir
$ auditreduce -C -O Complete
$ ls *Complete

20030827183214.20030827214217.Complete

In the following example, only complete files are copied from the example1 machine
into a merged file.

$ cd /var/audit/audit_summary.dir
$ auditreduce -M example1 -O example1summ
$ ls *summ

20030827183214.20030827214217.example1summ

Moving Audit Files to a Summary File

The -D option to the auditreduce command deletes an audit file when you copy it
to another location. In the following example, the complete audit files from one system
are copied to the summary directory for later examination.

$ cd /var/audit/audit_summary.dir
$ auditreduce -C -O daily_example1 -D example1
$ ls *example1

20030827183214.20030827214217.daily_example1

The audit files from the example1 system that were the input to the
*daily_example1 file are removed when this command successfully completes.

Example
29–23

Example
29–24

Chapter 29 • Managing Solaris Auditing (Tasks) 573

� How to Select Audit Events From the Audit Trail
You can filter audit records for examination. For the complete list of filtering options,
see the auditreduce(1M) man page.

1. Assume a role that includes the Audit Review profile, or become superuser.

The System Administrator role includes the Audit Review profile. You can also
create a separate role that includes the Audit Review profile. To create a role and
assign the role to a user, see “Configuring RBAC (Task Map)” on page 196.

2. Select the kinds of records that you want from the audit trail, or from a specified
audit file.

auditreduce -lowercase-option argument [optional-file]

argument Specific argument that a lowercase option requires. For example, the
-c option requires an argument of an audit class, such as ua.

-d Selects all of the events on a particular date. The date format for
argument is yyymmdd. Other date options, -b and -a, select events
before and after a particular date.

-u Selects all of the events attributable to a particular user. The
argument is a user name. Another user option, -e, selects all of the
events attributable to an effective user ID.

-c Selects all of the events in a preselected audit class. The argument is
an audit class name.

-m Selects all of the instances of a particular audit event. The argument
is an audit event.

optional-file Is the name of an audit file.

Combining and Reducing Audit Files

The auditreduce command can eliminate the less interesting records as it combines
the input files. For example, you might use the auditreduce command to retain only
the login and logout records in audit files that are over a month old. If you need to
retrieve the complete audit trail, you could recover the trail from backup media.

cd /var/audit/audit_summary.dir

auditreduce -O lo.summary -b 20030827 -c lo; compress *lo.summary

Copying na Audit Records to a Summary File

In this example, all the records of nonattributable audit events in the audit trail are
collected into one file.

Steps

Example
29–25

Example
29–26

574 System Administration Guide: Security Services • January 2005

$ whoami
sysadmin
$ cd /var/audit/audit_summary.dir
$ auditreduce -c na -O nasumm
$ ls *nasumm

20030827183214.20030827215318.nasumm

The merged nasumm audit file is time stamped with the beginning and ending date of
the na records.

Finding Audit Events in a Specified Audit File

You can select audit files manually to search just the named set of files. For example,
you can further process the *nasumm file in the previous example to find system boot
events. To do so, you would specify the file name as the final argument to the
auditreduce command.

$ auditreduce -m 113 -O systemboot 20030827183214.20030827215318.nasumm

20030827183214.20030827183214.systemboot

The 20030827183214.20030827183214.systemboot file contains only system
boot audit events.

Copying One User’s Audit Records to a Summary File

In this example, the records in the audit trail that contain the name of a particular user
are merged. The -e option finds the effective user. The -u option finds the audit user.

$ cd /var/audit/audit_summary.dir

$ auditreduce -e tamiko -O tamiko

You can look for specific events in this file. In the following example, what time the
user logged in and out on Sept 7, 2003, your time, is checked. Only those files with the
user’s name as the file suffix are checked. The short form of the date is yyyymmdd.

auditreduce -M tamiko -O tamikolo -d 20030907 -u tamiko -c lo

Copying Selected Records to a Single File

In this example, login and logout messages for a particular day are selected from the
audit trail. The messages are merged into a target file. The target file is written in a
directory other than the normal audit root directory.

auditreduce -c lo -d 20030827 -O /var/audit/audit_summary.dir/logins
ls /var/audit/audit_summary.dir/*logins

/var/audit/audit_summary.dir/20030827183936.20030827232326.logins

Example
29–27

Example
29–28

Example
29–29

Chapter 29 • Managing Solaris Auditing (Tasks) 575

� How to View the Contents of Binary Audit Files
The praudit command enables you to view the contents of binary audit files. You
can pipe the output from the auditreduce command, or you can read a particular
audit file. The -x option is useful for further processing.

1. Assume a role that includes the Audit Review profile, or become superuser.

The System Administrator role includes the Audit Review profile. You can also
create a separate role that includes the Audit Review profile. To create a role and
assign the role to a user, see “Configuring RBAC (Task Map)” on page 196.

2. Use one of the following praudit commands to produce the output that is best
for your purposes.

The following examples show praudit output from the same audit event. Audit
policy has been set to include the sequence and trailer tokens.

� The praudit -s command displays audit records in a short format, one token
per line. Use the -l option to place each record on one line.

$ auditreduce -c lo | praudit -s
header,101,2,AUE_rlogin,,example1,2003-10-13 11:23:31.050 -07:00
subject,jdoe,jdoe,staff,jdoe,staff,749,749,195 1234 server1
text,successful login
return,success,0

sequence,1298

� The praudit -r command displays audit records in their raw format, one
token per line. Use the -l option to place each record on one line.

$ auditreduce -c lo | praudit -r
21,101,2,6155,0x0000,192.168.60.83,1062021202,64408258
36,2026700,2026700,10,2026700,10,749,749,195 1234 192.168.60.17
40,successful login
39,0,0

47,1298

� The praudit -x command displays audit records in XML format, one token
per line. Use the -l option to place the XML output for one record on one line.

$ auditreduce -c lo | praudit -x
<record version="2" event="login - rlogin" host="example1"
time="Wed Aug 27 14:53:22 PDT 2003" msec="64">
<subject audit-uid="jdoe" uid="jdoe" gid="staff" ruid="jdoe"
rgid="staff" pid="749" sid="749" tid="195 1234 server1"/>
<text>successful login</text>
<return errval="success" retval="0"/>
<sequence seq-num="1298"/>

</record>

Steps

576 System Administration Guide: Security Services • January 2005

Printing the Entire Audit Trail

With a pipe to the lp command, the output for the entire audit trail goes to the printer.
The printer should have limited access.

auditreduce | praudit | lp -d example.protected.printer

Viewing a Specific Audit File

In this example, a summary login file is examined in a terminal window.

cd /var/audit/audit_summary.dir/logins

praudit 20030827183936.20030827232326.logins | more

Putting Audit Records in XML Format

In this example, the audit records are converted to XML format.

praudit -x 20030827183214.20030827215318.logins > 20030827.logins.xml

The *xml file can be displayed in a browser. The contents of the file can be operated
on by a script to extract the relevant information.

� How to Clean Up a not_terminated Audit File
Occasionally, an audit daemon exits while its audit file is still open. Or, a server
becomes inaccessible and forces the machine to switch to a new server. In such
instances, an audit file remains with the string not_terminated as the end
timestamp, even though the file is no longer used for audit records. Use the
auditreduce -O command to give the file the correct timestamp.

1. List the files with the not_terminated string on your audit file system in order
of creation.

ls -R1t audit-directory*/files/* | grep not_terminated

-R Lists files in subdirectories.

-t Lists files from most recent to oldest.

-1 Lists the files in one column.

2. Clean up the old not_terminated file.

Specify the name of the old file to the auditreduce -O command.

auditreduce -O system-name old-not-terminated-file

Example
29–30

Example
29–31

Example
29–32

Steps

Chapter 29 • Managing Solaris Auditing (Tasks) 577

3. Remove the old not_terminated file.

rm system-name old-not-terminated-file

Cleaning Up Closed not_terminated Audit Files

In the following example, not_terminated files are found, renamed, then the
originals are removed.

ls -R1t */files/* | grep not_terminated
.../egret.1/20030908162220.not_terminated.egret
.../egret.1/20030827215359.not_terminated.egret
cd */files/egret.1
auditreduce -O egret 20030908162220.not_terminated.egret
ls -1t
20030908162220.not_terminated.egret Current audit file
20030827230920.20030830000909.egret Input (old) audit file
20030827215359.not_terminated.egret
rm 20030827215359.not_terminated.egret
ls -1t
20030908162220.not_terminated.egret Current audit file
20030827230920.20030830000909.egret Cleaned up audit file

The start timestamp on the new file reflects the time of the first audit event in the
not_terminated file. The end timestamp reflects the time of the last audit event in
the file.

� How to Prevent Audit Trail Overflow
If your security policy requires that all audit data be saved, do the following:

1. Set up a schedule to regularly archive audit files.

Archive audit files by backing up the files to offline media. You can also move the
files to an archive file system.

If you are collecting text audit logs with the syslog utility, archive the text logs.
For more information, see the logadm(1M) man page.

2. Set up a schedule to delete the archived audit files from the audit file system.

3. Save and store auxiliary information.

Archive information that is necessary to interpret audit records along with the
audit trail.

4. Keep records of which audit files have been archived.

5. Store the archived media appropriately.

Example
29–33

Steps

578 System Administration Guide: Security Services • January 2005

6. Reduce the volume of audit data that you store by creating summary files.

You can extract summary files from the audit trail by using options to the
auditreduce command. The summary files contain only records for specified
types of audit events. To extract summary files, see Example 29–25 and Example
29–29.

Chapter 29 • Managing Solaris Auditing (Tasks) 579

580 System Administration Guide: Security Services • January 2005

CHAPTER 30

Solaris Auditing (Reference)

This chapter describes the important components of Solaris auditing. The following is
a list of the reference information in this chapter.

� “Audit Commands” on page 581
� “Files Used in the Auditing Service” on page 586
� “Rights Profiles for Administering Auditing” on page 592
� “Auditing and Solaris Zones” on page 592
� “Audit Classes” on page 593
� “Audit Policy” on page 596
� “Process Audit Characteristics” on page 596
� “Audit Trail” on page 597
� “Conventions for Binary Audit File Names” on page 597
� “Audit Record Structure” on page 598
� “Audit Token Formats” on page 600

For an overview of Solaris auditing, see Chapter 27. For planning suggestions, see
Chapter 28. For procedures to configure auditing at your site, see Chapter 29.

Audit Commands
This section provides information about the following commands:

� “auditd Daemon” on page 582
� “audit Command” on page 582
� “bsmrecord Command” on page 583
� “auditreduce Command” on page 583
� “praudit Command” on page 585
� “auditconfig Command” on page 586

581

auditd Daemon
The following list summarizes what the auditd daemon does.

� The auditd daemon opens and closes audit files in the directories that are
specified in the audit_control file. The files are opened in order.

� The auditd daemon loads one or more plugins. Sun provides two plugins. The
/lib/security/audit_binfile.so.1 plugin writes binary audit data to a
file. The /lib/security audit_syslog.so.1 plugin sends text summaries of
audit records to the syslogd daemon.

� The auditd daemon reads audit data from the kernel and outputs the data by
using an auditd plugin.

� The auditd daemon executes the audit_warn script to warn of configuration
errors. The binfile.so.1 plugin executes the audit_warn script. The script, by
default, sends warnings to the audit_warn email alias and to the console. The
syslog.so.1 plugin does not execute the audit_warn script.

� By default, when all audit directories are full, processes that generate audit records
are suspended. In addition, the auditd daemon writes a message to the console
and to the audit_warn email alias. At this point, only the system administrator
can fix the auditing service. The administrator can log in to write audit files to
offline media, delete audit files from the system, and do other cleanup tasks.

The audit policy can be reconfigured with the auditconfig command.

The auditd daemon can be started automatically when the system is brought up to
multiuser mode. Or, you can start the daemon from the command line. When the
auditd daemon is started, it calculates the amount of free space necessary for audit
files.

The auditd daemon uses the list of audit directories in the audit_control file as
possible locations for creating audit files. The daemon maintains a pointer into this list
of directories, starting with the first directory. Every time the auditd daemon needs
to create an audit file, the daemon puts the file into the first available directory in the
list. The list starts at the auditd daemon’s current pointer. You can reset the pointer to
the beginning of the list by running the audit -s command. The audit -n command
instructs the daemon to switch to a new audit file. The new file is created in the same
directory as the current file.

audit Command
The audit command controls the actions of the auditd daemon. The audit
command can do the following tasks:

� Enable and disable auditing
� Reset the auditd daemon
� Adjust the auditing preselection mask on the local system
� Write audit records to a different audit file

582 System Administration Guide: Security Services • January 2005

For a discussion of the available options, see the audit(1M) man page.

bsmrecord Command
The bsmrecord command displays the format of audit events that are defined in the
/etc/security/audit_event file. The output includes the event’s audit ID, audit
class, audit flag, and the record’s audit tokens in order. With no option, the
bsmrecord output displays in a terminal window. With the -h option, the output is
suitable for viewing in a browser. For examples of the use of the bsmrecord
command, see “How to Display Audit Record Formats” on page 570. Also, see the
bsmrecord(1M) man page.

auditreduce Command
The auditreduce command summarizes audit records that are stored in binary
format. The command can merge audit records from one or more input audit files. The
command can also be used to perform a post selection of audit records. The records
remain in binary format. To merge the entire audit trail, run this command on the
audit server. The audit server is the system that mounts all the audit file systems for
the installation. For more information, see the auditreduce(1M) man page.

The auditreduce command enables you to track all audited actions on multiple
systems from a single location. The command can read the logical combination of all
audit files as a single audit trail. You must identically configure all systems at a site for
auditing, and create servers and local directories for the audit files. The auditreduce
command ignores how the records were generated or where the records are stored.
Without options, the auditreduce command merges audit records from all the audit
files in all of the subdirectories in the audit root directory. Typically,
/etc/security/audit is the audit root directory. The auditreduce command
sends the merged results to standard output. You can also place the results into a
single, chronologically ordered output file. The file contains binary data.

The auditreduce command can also select particular types of records for analysis.
The merging functions and selecting functions of the auditreduce command are
logically independent. The auditreduce command captures data from the input files
as the records are read, before the files are merged and then written to disk.

By specifying options to the auditreduce command, you can also do the following:

� Request audit records that were generated by specified audit classes
� Request audit records that were generated by one particular user
� Request audit records that were generated on specific dates

With no arguments, the auditreduce command checks the subdirectories within the
/etc/security/audit directory, the default audit root directory. The command
checks for a files directory in which the start-time.end-time.hostname files reside. The

Chapter 30 • Solaris Auditing (Reference) 583

auditreduce command is very useful when audit data resides in separate
directories. Figure 30–1 illustrates audit data in separate directories for different hosts.
Figure 30–2 illustrates audit data in separate directories for different audit servers.

/etc/security/audit

host2 hostnhost1

files filesfiles

date.date.host2 date.date.hostndate.date.host1

. . .

FIGURE 30–1 Audit Trail Storage Sorted by Host

audit root directory

server2 servernserver1

files filesfiles

date.date.hostndate.date.host1
date.date.host2
date.date.hostn

date.date.host1
date.date.host2
date.date.hostn

. . .

FIGURE 30–2 Audit Trail Storage Sorted by Server

If the partition for the /etc/security/audit directory is very small, you might not
store audit data in the default directory. You can pass the auditreduce command
another directory by using the -R option:

auditreduce -R /var/audit-alt

You can also specify a particular subdirectory by using the -S option:

auditreduce -S /var/audit-alt/host1

For other options and more examples, see the auditreduce(1M) man page.

584 System Administration Guide: Security Services • January 2005

praudit Command
The praudit command makes the binary output of the auditreduce command
readable. The praudit command reads audit records in binary format from standard
input and displays the records in a presentable format. The input can be piped from
the auditreduce command or from a single audit file. Input can also be produced
with the cat command to concatenate several files, or the tail command for a
current audit file.

The praudit command can generate four output formats. A fifth option, -l (long),
prints one audit record per line of output. The default is to place one audit token per
line of output. The -d option changes the delimiter that is used between token fields
and between tokens. The default delimiter is a comma.

� Default – The praudit command with no options displays one audit token per
line. The command displays the audit event by its description, such as the
ioctl(2) system call. Any value that can be displayed as text is displayed in text
format. For example, a user is displayed as the user name, not as the user ID.

� –r option – The raw option displays as a number any value that could be numeric.
For example, a user is displayed by user ID, Internet addresses are in hexadecimal
format, and modes are in octal format. The audit event is displayed as its event
number, such as 158.

� –s option – The short option displays the audit event by its table name, for
example, AUE_IOCTL. The option displays the other tokens as the default option
displays them.

� –x option – The XML option displays the audit record in XML format. This option
is useful as input to browsers, or as input to scripts that manipulate XML.

The XML is described by a DTD that the auditing service provides. Solaris software
also provides a style sheet. The DTD and the style sheet are in the
/usr/share/lib/xml directory.

In the default output format of the praudit command, each record is easily identified
as a sequence of audit tokens. Each token is presented on a separate line. Each record
begins with a header token. You could, for example, further process the output with
the awk command.

Here is the output from the praudit -l command for a header token:

header,173,2,settppriv(2),,example1,2003-10-13 13:46:02.174 -07:00

Here is the output from the praudit -r command for the same header token:

121,173,2,289,0x0000,192.168.86.166,1066077962,174352445

EXAMPLE 30–1 Processing praudit Output With a Script

You might want to process output from the praudit command as lines of text. For
example, you might want to select records that the auditreduce command cannot
select. You can use a simple shell script to process the output of the praudit
command. The following simple example script puts one audit record on one line,
searches for a user-specified string, then returns the audit file to its original form.

Chapter 30 • Solaris Auditing (Reference) 585

EXAMPLE 30–1 Processing praudit Output With a Script (Continued)

#!/bin/sh
#
This script takes an argument of a user-specified string.
The sed command prefixes the header tokens with Control-A
The first tr command puts the audit tokens for one record
onto one line while preserving the line breaks as Control-A
#
praudit | sed -e ’1,2d’ -e ’$s/^file.*$//’ -e ’s/^header/^aheader/’ \\
| tr ’\\012\\001’ ’\\002\\012’ \\
| grep "$1" \\ Finds the user-specified string
| tr ’\\002’ ’\\012’ Restores the original newline breaks

Note that the ^a in the script is Control-A, not the two characters ^ and a. The prefix
distinguishes the header token from the string header that might appear as text.

auditconfig Command
The auditconfig command provides a command-line interface to retrieve and set
audit configuration parameters. The auditconfig command can do the following
tasks:

� Display, check, and configure audit policy
� Determine if auditing is turned on or turned off
� Turn auditing off and turn auditing on
� Manage the audit directory and the audit file
� Manage the audit queue
� Get and set preselection masks
� Get and set audit event to audit class mappings
� Get and set configuration information, such as session ID and audit ID
� Configure audit characteristics for a process, a shell, and a session
� Reset audit statistics

For a discussion of the command options, see the auditconfig(1M) man page.

Files Used in the Auditing Service
The auditing service uses the following files:

� “system File” on page 587
� “syslog.conf File” on page 587
� “audit_class File” on page 587
� “audit_control File” on page 587

586 System Administration Guide: Security Services • January 2005

� “audit_event File” on page 589
� “audit_startup Script” on page 589
� “audit_user Database” on page 589
� “audit_warn Script” on page 590
� “bsmconv Script” on page 591

system File
The /etc/system file contains commands that the kernel reads during initialization
to customize the system operations. The bsmconv and bsmunconv shell scripts,
which are used to activate and deactivate auditing, modify the /etc/system file. The
bsmconv shell script adds the following line to the /etc/system file:

set c2audit:audit_load=1

The set c2audit:audit_load=1 entry causes the kernel module for auditing to be
loaded when the system is booted. The bsmunconv shell script disables auditing
when the system is rebooted. The command removes the c2audit line from the
/etc/system file.

syslog.conf File
The /etc/syslog.conf file works with the audit_control file to store audit
records in text format. The syslog.conf file can be configured to enable the syslog
utility to store audit records. For an example, see “How to Configure syslog Audit
Logs” on page 553.

audit_class File
The /etc/security/audit_class file defines the audit classes. Audit classes are
groups of audit events. You use the class name in the audit_control file to preselect
the classes whose events you want to audit. The classes accept prefixes to select only
failed events or only successful events. For more information, see “Audit Class
Syntax” on page 595.

The superuser, or an administrator in an equivalent role, can modify the definitions of
audit classes. This administrator can define new audit classes, rename existing classes,
or otherwise change existing classes by editing the audit_class file in a text editor.
For more information, see the audit_class(4) man page.

audit_control File
The /etc/security/audit_control file on each system contains configuration
information for the auditd daemon. The file enables every system to mount a remote
audit file system to store their audit records.

Chapter 30 • Solaris Auditing (Reference) 587

You can specify five kinds of information in the audit_control file. Each line of
information begins with a keyword.

� flags keyword – Begins the entry that preselects which classes of events are
audited for all users on the system. The audit classes that are specified here
determine the system-wide audit preselection mask. The audit classes are separated by
commas.

� naflags keyword – Begins the entry that preselects which classes of events are
audited when an action cannot be attributed to a specific user. The audit classes are
separated by commas. The na event class belongs in this entry. The naflags entry
can be used to log other event classes that are normally attributable but cannot be
attributed. For example, if a program that starts at boot reads a file, then an fr in
the naflags entry would create a record for that event.

� minfree keyword – Begins the entry that defines the minimum free-space level
for all audit file systems. The minfree percentage must be equal to 0 or greater
than 0. The default is 20 percent. When an audit file system is 80 percent full, the
audit data is then stored in the next available audit directory. For more
information, see the audit_warn(1M) man page.

� dir keyword – Begins the directory definition lines. Each line defines an audit file
system and directory that the system uses to store its audit files. You can define one
or more directory definition lines. The order of the dir lines is significant. The
auditd daemon creates audit files in the directories in the specified order. The first
directory is the primary audit directory for the system. The second directory is the
secondary audit directory where the auditd daemon creates audit files when the first
directory becomes full, and so on. For more information, see the audit(1M) man
page.

� plugin keyword – Specifies the plugin path and the audit classes for the syslog
plugin module. The module provides real-time conversion of Solaris audit records
to text. The audit classes in the plugin line must be a subset of the audit classes in
the flags line and the naflags line.

For more information about the audit_control file, see the audit_control(4)
man page.

EXAMPLE 30–2 Sample audit_control File

The following is a sample audit_control file for the system noddy. noddy uses
two audit file systems on the audit server blinken, and a third audit file system that
is mounted from the second audit server winken. The third file system is used only
when the audit file systems on blinken become full or unavailable. The minfree
value of 20 percent specifies that the warning script is run when the file systems are 80
percent full. The settings specify that logins and administrative operations are to be
audited. The operations are audited for success and for failure. Failures of all types,
except failures to create a file system object, are to be audited. Nonattributable events
are also audited. The syslog audit log records fewer audit events. This log contains
text summaries of failed logins and failed administrative operations.

flags:lo,am,-all,^-fc
naflags:lo,nt

588 System Administration Guide: Security Services • January 2005

EXAMPLE 30–2 Sample audit_control File (Continued)

minfree:20
dir:/etc/security/audit/blinken/files
dir:/etc/security/audit/blinken.1/files
#
Audit filesystem used when blinken fills up
#
dir:/etc/security/audit/winken

plugin:name=audit_syslog.so.1; p_flags=-lo,-am

audit_event File
The /etc/security/audit_event file contains the default audit event-class
mappings. You can edit this file to change the class mappings. When you change class
mappings, you must reboot the system or run the auditconfig -conf command to
read the changed mappings into the kernel. For more information, see the
audit_event(4) man page.

audit_startup Script
The /etc/security/audit_startup script automatically configures the auditing
service when the system enters multiuser mode. The auditd daemon starts after the
script performs the following tasks:

� Configures the audit event-class mappings
� Sets the audit policy options

For more information, see the audit_startup(1M) man page.

audit_user Database
The /etc/security/audit_user database modifies the system-wide preselected
classes for an individual user. The classes that you add to a user’s entry in the
audit_user database modify the settings in the audit_control file in two ways:

� By specifying audit classes that are always to be audited for this user
� By specifying audit classes that are never to be audited for this user

Each user entry in the audit_user database contains three fields:

username:always-audit-classes:never-audit-classes

The audit fields are processed in sequence. The always-audit-classes field turns on the
auditing of the classes in that field. The never-audit-classes field turns off the auditing of
the classes in that field.

Chapter 30 • Solaris Auditing (Reference) 589

Note – Avoid the common mistake of placing the all audit class in the
never-audit-classes field. This mistake causes all auditing to be turned off for that user,
which overrides the settings in the always-audit-classes field. The setting also overrides
system-wide audit class settings in the audit_control file.

The never-audit-classes settings for a user override the system defaults. You might not
want to override system defaults. For example, suppose you want to audit everything
for user tamiko, except for successful reads of file system objects. You also want to
apply the system defaults to tamiko. Note the placement of the second colon (:) in
the following audit_user entries:

tamiko:all,^+fr: correct entry

The correct entry means, “always audit everything, except for successful file-reads.”

tamiko:all:+fr incorrect entry

The incorrect entry means, “always audit everything, but never audit successful
file-reads.” The never-audit-classes field, which follows the second colon, overrides the
system defaults. In the correct entry, the always-audit-classes field includes the
exception to the all audit class. Because no audit class is in the never-audit-classes
field, the system defaults from the audit_control file are not overridden.

Note – Successful events and failed events are treated separately. A process could
generate more audit records for failed events than for successful events.

audit_warn Script
The /etc/security/audit_warn script notifies an email alias when the auditd
daemon encounters an unusual condition while writing audit records. You can
customize this script for your site to warn of conditions that might require manual
intervention. Or, you could specify how to handle those conditions automatically. For
all error conditions, the audit_warn script writes a message to syslog with the
severity of daemon.alert. You can use syslog.conf to configure console display
of syslog messages. The audit_warn script also sends a message to the
audit_warn email alias. You should set up this alias when you enable auditing.

When the auditd daemon detects the following conditions, the daemon invokes the
audit_warn script. The script sends email to the audit_warn alias.

� An audit directory has become more full than the minfree value allows. The
minfree value or soft limit is a percentage of the available space on an audit file
system.

590 System Administration Guide: Security Services • January 2005

The audit_warn script is invoked with the string soft and the name of the
directory whose available space is below the minimum value. The auditd daemon
switches automatically to the next suitable directory. The daemon writes the audit
files in this new directory until the directory reaches its minfree limit. The
auditd daemon then goes to each remaining directory in the order that is listed in
the audit_control file. The daemon writes audit records until each directory is
at its minfree limit.

� All the audit directories have reached the minfree threshold.

The audit_warn script is invoked with the string allsoft. A message is written
to the console. Email is also sent to the audit_warn alias.

When all audit directories that are listed in the audit_control file have reached
their minfree threshold, the auditd daemon switches back to the first directory.
The daemon writes audit records until the directory becomes completely full.

� An audit directory has become completely full with no space remaining.

The audit_warn script is invoked with the string hard and the name of the
directory. A message is written to the console. Email is also sent to the
audit_warn alias.

The auditd daemon switches automatically to the next suitable directory with any
space available. The auditd daemon goes to each remaining directory in the order
that is listed in the audit_control file. The daemon writes audit records until
each directory is full.

� All the audit directories are completely full. The audit_warn script is invoked
with the string allhard as an argument.

By default, a message is written to the console. Email is also sent to the
audit_warn alias. Processes that would otherwise generate audit records
continue to occur, but audit records are counted. Audit records are not generated.
For an example of how to handle this situation, see Example 29–14 and “How to
Prevent Audit Trail Overflow” on page 578.

� An internal error occurs. Possible internal errors include the following:

� ebusy – Another auditd daemon process is already running
� tmpfile – A temporary file cannot be used
� postsigterm – A signal was received during auditing shutdown

� A problem is discovered with the syntax of the audit_control file. By default, a
message is sent to the console. Email is also sent to the audit_warn alias.

For further information, see the audit_warn(1M) man page.

bsmconv Script
The /etc/security/bsmconv script enables the auditing service. The bsmunconv
command disables the auditing service. After the bsmconv script is run, you configure
the audit directories and audit configuration files. Upon reboot, auditing is enabled.

Chapter 30 • Solaris Auditing (Reference) 591

For further information, see the bsmconv(1M) man page.

Rights Profiles for Administering
Auditing
The Solaris OS provides rights profiles for configuring the auditing service and for
analyzing the audit trail.

� Audit Control – Enables a role to configure Solaris auditing. This rights profile
grants authorizations to configure files that are used by the auditing service. The
profile also enables a role to run audit commands. A role with the Audit Control
profile can run the following commands: audit, auditd, auditconfig,
bsmconv, and bsmunconv.

� Audit Review – Enables a role to analyze Solaris audit records. This rights profile
grants authorization to read audit records with the praudit and auditreduce
commands. A role with this rights profile can also run the auditstat command.

� System Administrator – Includes the Audit Review rights profile. A role with the
System Administrator rights profile can analyze audit records.

To configure roles to handle the auditing service, see “Configuring RBAC (Task Map)”
on page 196.

Auditing and Solaris Zones
A zone is a virtualized operating system environment that is created within a single
instance of the Solaris Operating System. Audit policy can be set in the global zone for
all zones to be audited identically.

When all zones are being audited identically, only configuration files in the global
zone are customized for the auditing service. The +zonename policy option is useful.
When this option is set, the audit records from all zones include the name of the zone.
Audit records can then be postselected by zone name. To understand audit policy, see
“Determining Audit Policy” on page 543. For an example, see “How to Configure
Audit Policy” on page 563.

Zones can also be audited individually. When the policy option, perzone, is set in the
global zone, each non-global zone runs its own audit daemon, handles its own audit
queue, and specifies the content and location of its audit records. A non-global zone

592 System Administration Guide: Security Services • January 2005

can also set most audit policy options. It cannot set policy that affects the entire
system, so a non-global zone cannot set the ahlt or perzone policy. For further
discussion, see “How to Plan Auditing in Zones” on page 540.

Note – If name service files are customized in non-global zones, and perzone policy is
not set, then careful use of the audit tools is required to select usable records. A user
ID in one zone can refer to a different user from the same ID in a different zone.

To generate usable records, set the zonename audit policy in the global zone. In the
global zone, run the auditreduce command with the zonename option. Then, in the
zonename zone, run the praudit command on the auditreduce output.

To learn about zones, see Part II, “Zones,” in System Administration Guide: Solaris
Containers—Resource Management and Solaris Zones.

Audit Classes
System-wide defaults for Solaris auditing are preselected by specifying one or more
classes of events. The classes are preselected for each system in the system’s
audit_control file. Anyone who uses the system is audited for these classes of
events. The file is described in “audit_control File” on page 587.

You can configure audit classes and make new audit classes. Audit class names can be
up to 8 characters in length. The class description is limited to 72 characters. Numeric
and non-alphanumeric characters are allowed.

You can modify what is audited for individual users by adding audit classes to a
user’s entry in the audit_user database. The audit classes are also used as
arguments to the auditconfig command. For details, see the auditconfig(1M)
man page.

Definitions of Audit Classes
The following table shows each predefined audit class, the descriptive name for each
audit class, and a short description.

Chapter 30 • Solaris Auditing (Reference) 593

TABLE 30–1 Predefined Audit Classes

Audit Class Descriptive Name Description

all all All classes (meta-class)

no no_class Null value for turning off event preselection

na non_attrib Nonattributable events

fr file_read Read of data, open for reading

fw file_write Write of data, open for writing

fa file_attr_acc Access of object attributes: stat, pathconf

fm file_attr_mod Change of object attributes: chown, flock

fc file_creation Creation of object

fd file_deletion Deletion of object

cl file_close close system call

ap application Application-defined event

ad administrative Administrative actions (old administrative meta-class)

am administrative Administrative actions (meta-class)

ss system state Change system state

as system-wide
administration

System-wide administration

ua user
administration

User administration

aa audit
administration

Audit utilization

ps process start Process start and process stop

pm process modify Process modify

pc process Process (meta-class)

ex exec Program execution

io ioctl ioctl() system call

ip ipc System V IPC operations

lo login_logout Login and logout events

nt network Network events: bind, connect, accept

ot other Miscellaneous, such as device allocation and memcntl()

594 System Administration Guide: Security Services • January 2005

You can define new classes by modifying the /etc/security/audit_class file.
You can also rename existing classes. For more information, see the audit_class(4)
man page.

Audit Class Syntax
Events can be audited for success, events can be audited for failure, and events can be
audited for both. Without a prefix, a class of events is audited for success and for
failure. With a plus (+) prefix, a class of events is audited for success only. With a
minus (-) prefix, a class of events is audited for failure only. The following table shows
some possible representations of audit classes.

TABLE 30–2 Plus and Minus Prefixes to Audit Classes

[prefix]class Explanation

lo Audit all successful attempts to log in and log out, and all failed attempts
to log in. A user cannot fail an attempt to log out.

+lo Audit all successful attempts to log in and log out.

-all Audit all failed events.

+all Audit all successful events.

Caution – The all class can generate large amounts of data and quickly fill audit file
systems. Use the all class only if you have extraordinary reasons to audit all
activities.

Audit classes that were previously selected can be further modified by a caret prefix,
^. The following table shows how the caret prefix modifies a preselected audit class.

TABLE 30–3 Caret Prefix That Modifies Already-Specified Audit Classes

^[prefix]class Explanation

-all,^-fc Audit all failed events, except do not audit failed attempts to create file objects

am,^+aa Audit all administrative events for success and for failure, except do not audit
successful attempts to administer auditing

am,^ua Audit all administrative events for success and for failure, except do not audit
user administration events

The audit classes and their prefixes can be used in the following files and commands:

� In the flags line in the audit_control file

Chapter 30 • Solaris Auditing (Reference) 595

� In the plugin ...p_flags= line in the audit_control file
� In the user’s entry in the audit_user database
� As arguments to auditconfig command options

See “audit_control File” on page 587 for an example of using the prefixes in the
audit_control file.

Audit Policy
Audit policy determines if additional information is added to the audit trail. The
effects of the different audit policy options are described in “Determining Audit
Policy” on page 543.

Process Audit Characteristics
The following audit characteristics are set at initial login:

� Process preselection mask – A combination of the audit classes from the
audit_control file and the audit_user database. When a user logs in, the
login process combines the preselected classes to establish the process preselection
mask for the user’s processes. The process preselection mask specifies whether
events in each audit class are to generate audit records.

The following algorithm describes how the system obtains the user’s process
preselection mask:

(flags line + always-audit-classes) - never-audit-classes

Add the audit classes from the flags line in the audit_control file to the
classes from the always-audit-classes field in the user’s entry in the audit_user
database. Then, subtract from the total the classes from the user’s never-audit-classes
field.

� Audit ID – A process acquires an audit ID when the user logs in. The audit ID is
inherited by all child processes that were started by the user’s initial process. The
audit ID helps enforce accountability. Even after a user becomes root, the audit ID
remains the same. The audit ID that is saved in each audit record always allows
you to trace actions back to the original user who had logged in.

� Audit Session ID – The audit session ID is assigned at login. The session ID is
inherited by all child processes.

� Terminal ID (port ID, machine ID) – The terminal ID consists of the host name
and the Internet address, followed by a unique number that identifies the physical
device on which the user logged in. Most often, the login is through the console.

596 System Administration Guide: Security Services • January 2005

The number that corresponds to the console device is 0.

Audit Trail
The audit trail is contains binary audit files. The trail is created by the auditd daemon.
Once the auditing service has been enabled with the bsmconv command, the auditd
daemon starts when the system is booted. The auditd daemon is responsible for
collecting the audit trail data and writing the audit records.

The audit records are stored in binary format on file systems that are dedicated to
audit files. Even though you can physically locate audit directories within file systems
that are not dedicated to auditing, do not do so except for directories of last resort.
Directories of last resort are directories where audit files are written only when no
other suitable directory is available.

There is one other scenario where locating audit directories outside of dedicated audit
file systems could be acceptable. You might do so in a software development
environment where auditing is optional. To make full use of disk space might be more
important than to keep an audit trail. However, in a security-conscious environment,
the placement of audit directories within other file systems is not acceptable.

You should also consider the following factors when administering audit file systems:

� A host should have at least one local audit directory. The local directory can be
used as a directory of last resort if the host is unable to communicate with the audit
server.

� Mount audit directories with the read-write (rw) option. When you mount audit
directories remotely, also use the intr and noac options.

� List the audit file systems on the audit server where they reside. The export list
should include all systems that are being audited at the site.

Conventions for Binary Audit File
Names
Each binary audit file is a self-contained collection of records. The file’s name identifies
the time span during which the records were generated and the system that generated
them.

Chapter 30 • Solaris Auditing (Reference) 597

Binary Audit File Names
Audit files that are complete have names of the following form:

start-time.end-time.system

start-time Is the time that the first audit record in the audit file was generated

end-time Is the time that the last record was written to the file

system Is the name of the system that generated the file

An audit file that is still active has a name of the following form:

start-time.not_terminated.system

For examples of not_terminated and closed audit file names, see “How to Clean Up
a not_terminated Audit File” on page 577.

Binary Audit File Timestamps
The timestamps in file names are used by the auditreduce command to locate
records within a specific time range. These timestamps are important because there
can be a month’s accumulation or more of audit files online. To search all the files for
records that were generated in the last 24 hours would be unacceptably expensive.

The start-time and end-time are timestamps with one-second resolution. They are
specified in Greenwich Mean Time (GMT). The format is four digits for the year,
followed by two digits for each month, day, hour, minute, and second, as follows:

YYYYMMDDHHMMSS

The timestamps are in GMT to ensure that they sort in proper order, even across time
zones. Because they are in GMT, the date and hour must be translated to the current
time zone to be meaningful. Beware of this point whenever you manipulate these files
with standard file commands rather than with the auditreduce command.

Audit Record Structure
An audit record is a sequence of audit tokens. Each audit token contains event
information such as user ID, time, and date. A header token begins an audit record,
and an optional trailer token concludes the record. Other audit tokens contain
information relevant to the audit event. The following figure shows a typical audit
record.

598 System Administration Guide: Security Services • January 2005

header token

arg token

data token

subject token

return token

FIGURE 30–3 Typical Audit Record Structure

Audit Record Analysis
Audit record analysis involves postselecting records from the audit trail. You can use
one of two approaches to parsing the binary data that was collected.

� You can parse the binary data stream. To parse the data stream, you need to know
the order of the fields in each token, and the order of tokens in each record. You
also need to know the variants of an audit record. For example, the ioctl()
system call creates an audit record for “Bad file name” that contains different
tokens from the audit record for “Invalid file descriptor”.

� For a description of the order of binary data in each audit token, see the
audit.log(4) man page.

� For a description of the order of tokens in an audit record, use the bsmrecord
command. Output from the bsmrecord command includes the different
formats that occur under different conditions. Square brackets ([]) indicate that
an audit token is optional. For more information, see the bsmrecord(1M) man
page. For examples, see also “How to Display Audit Record Formats” on page
570.

� You can use the praudit command. Options to the command provide different
text outputs. For example, the praudit -x command provides XML for input into
scripts and browsers. praudit outputs do not include fields whose sole purpose is
to help to parse the binary data. The outputs do not necessarily follow the order of
the binary fields. Also, the order and format of praudit output is not guaranteed
between Solaris releases.

For examples of praudit output, see “How to View the Contents of Binary Audit
Files” on page 576, and the praudit(1M) man page.

For a description of the praudit output for each audit token, see the individual
tokens in the “Audit Token Formats” on page 600 section.

Chapter 30 • Solaris Auditing (Reference) 599

Audit Token Formats
Each audit token has a token type identifier, which is followed by data that is specific
to the token. Each token type has its own format. The following table shows the token
names with a brief description of each token. Obsolete tokens are maintained for
compatibility with previous Solaris releases.

TABLE 30–4 Audit Tokens for Solaris Auditing

Token Name Description For More Information

acl Access Control List (ACL) information “acl Token” on page 601

arbitrary Data with format and type information “arbitrary Token (Obsolete)” on page 601

arg System call argument value “arg Token” on page 602

attribute File vnode tokens “attribute Token” on page 603

cmd Command arguments and environment
variables

“cmd Token” on page 603

exec_args Exec system call arguments “exec_args Token” on page 604

exec_env Exec system call environment variables “exec_env Token” on page 604

exit Program exit information “exit Token (Obsolete)” on page 604

file Audit file information “file Token” on page 605

group Process groups information “group Token (Obsolete)” on page 605

groups Process groups information “groups Token” on page 605

header Indicates start of audit record “header Token” on page 606

in_addr Internet address “in_addr Token” on page 606

ip IP header information “ip Token (Obsolete)” on page 607

ipc System V IPC information “ipc Token” on page 607

ipc_perm System V IPC object tokens “ipc_perm Token” on page 608

iport Internet port address “iport Token” on page 608

opaque Unstructured data (unspecified format) “opaque Token (Obsolete)” on page 608

path Path information “path Token” on page 609

path_attr Access path information “path_attr Token” on page 609

privilege Privilege set information “privilege Token” on page 610

600 System Administration Guide: Security Services • January 2005

TABLE 30–4 Audit Tokens for Solaris Auditing (Continued)
Token Name Description For More Information

process Process token information “process Token” on page 610

return Status of system call “return Token” on page 611

sequence Sequence number token “sequence Token” on page 612

socket Socket type and addresses “socket Token” on page 612

subject Subject token information (same format as
process token)

“subject Token” on page 613

text ASCII string “text Token” on page 615

trailer Indicates end of audit record “trailer Token” on page 615

uauth Use of authorization “uauth Token” on page 615

zonename Name of zone “zonename Token” on page 616

An audit record always begins with a header token. The header token indicates
where the audit record begins in the audit trail. In the case of attributable events, the
subject and the process tokens refer to the values of the process that caused the
event. In the case of nonattributable events, the process token refers to the system.

acl Token
The acl token records information about Access Control Lists (ACLs). This token
consists of four fixed fields:

� A token ID that identifies this token as an acl token
� A field that specifies the ACL type
� An ACL value field
� A field that lists the permissions associated with this ACL

The praudit command displays the acl token as follows:

acl,jdoe,staff,0755

arbitrary Token (Obsolete)
The arbitrary token encapsulates data for the audit trail. This token consists of four
fixed fields and an array of data. The fixed fields are as follows:

� A token ID that identifies this token as an arbitrary token

� A suggested print format field, such as hexadecimal

� An item size field that specifies the size of the data that is encapsulated, such as
short

Chapter 30 • Solaris Auditing (Reference) 601

� A count field that provides the number of following items

The remainder of the token is composed of count of the specified type. The praudit
command displays the arbitrary token as follows:

arbitrary,decimal,int,1

42

The following table shows the possible values of the print format field.

TABLE 30–5 Values for the arbitrary Token’s Print Format Field

Value Action

AUP_BINARY Prints the date in binary format

AUP_OCTAL Prints the date in octal format

AUP_DECIMAL Prints the date in decimal format

AUP_HEX Prints the date in hexadecimal format

AUP_STRING Prints the date as a string

The following table shows the possible values of the item size field.

TABLE 30–6 Values for the arbitrary Token’s Item Size Field

Value Action

AUR_BYTE Data is printed in units of bytes in 1 byte

AUR_SHORT Data is printed in units of shorts in 2 bytes

AUR_LONG Data is printed in units of longs in 4 bytes

arg Token
The arg token contains information about the arguments to a system call: the
argument number of the system call, the argument value, and an optional description.
This token allows a 32-bit integer system-call argument in an audit record. The arg
token has five fields:

� A token ID that identifies this token as an arg token
� An argument ID that tells which system call argument that the token refers to
� The argument value
� The length of the descriptive text string
� The text string

The praudit command displays the arg token without the fourth field, as follows:

argument,4,0xffbfe0ac,pri

602 System Administration Guide: Security Services • January 2005

The praudit -x command includes the names of the fields that are displayed:

<argument arg-num="4" value="0xffbfe0ac" desc="pri"/>

attribute Token
The attribute token contains information from the file vnode. This token has seven
fields:

� A token ID that identifies this token as an attribute token
� The file access mode and type
� The owner user ID
� The owner group ID
� The file system ID
� The node ID
� The device ID that the file might represent

For further information about the file system ID and the device ID, see the
statvfs(2) man page.

The attribute token usually accompanies a path token. The attribute token is
produced during path searches. If a path-search error occurs, there is no vnode
available to obtain the necessary file information. Therefore, the attribute token is
not included as part of the audit record. The praudit command displays the
attribute token as follows:

attribute,20666,root,root,247,4829,450971566127

cmd Token
The cmd token records the list of arguments and the list of environment variables that
are associated with a command.

The cmd token contains the following fields:

� A token ID that identifies this token as a cmd token
� A count of the command’s arguments
� The argument list
� The length of the next field
� The content of the arguments
� A count of the environment variables
� The list of environment variables
� The length of the next field
� The content of the environment variables

The praudit command displays the cmd token as follows:

cmd,argcnt,3,ls,-l,/etc,envcnt,0,

Chapter 30 • Solaris Auditing (Reference) 603

exec_args Token
The exec_args token records the arguments to an exec() system call. The
exec_args token has two fixed fields:

� A token ID field that identifies this token as an exec_args token

� A count that represents the number of arguments that are passed to the exec()
system call

The remainder of this token is composed of count strings. The praudit command
displays the exec_args token as follows:

exec_args,2,vi,/etc/security/audit_user

Note – The exec_args token is output only when the argv audit policy option is
active.

exec_env Token
The exec_env token records the current environment variables to an exec() system
call. The exec_env token has two fixed fields:

� A token ID field that identifies this token as an exec_env token

� A count that represents the number of arguments that are passed to the exec()
system call

The remainder of this token is composed of count strings. The praudit command
displays the exec_env token as follows:

exec_env,25,
GROUP=staff,HOME=/export/home/jdoe,HOST=exm1,HOSTTYPE=sun4u,HZ=100,
LC_COLLATE=en_US.ISO8859-1,LC_CTYPE=en_US.ISO8859-1,LC_MESSAGES=C,
LC_MONETARY=en_US.ISO8859-1,LC_NUMERIC=en_US.ISO8859-1,
LC_TIME=en_US.ISO8859-1,LOGNAME=jdoe,MACHTYPE=sparc,
MAIL=/var/mail/jdoe,OSTYPE=solaris,PATH=/usr/sbin:/usr/bin,PS1=#,
PWD=/var/audit,REMOTEHOST=192.168.13.5,SHELL=/usr/bin/csh,SHLVL=1,

TERM=dtterm,TZ=US/Pacific,USER=jdoe,VENDOR=sun

Note – The exec_env token is output only when the arge audit policy option is
active.

exit Token (Obsolete)
The exit token records the exit status of a program. The exit token contains the
following fields:

604 System Administration Guide: Security Services • January 2005

� A token ID that identifies this token as an exit token
� A program exit status as passed to the exit() system call
� A return value that describes the exit status or that provides a system error number

The praudit command displays the exit token as follows:

exit,Error 0,0

file Token
The file token is a special token that is generated by the auditd daemon. The token
marks the beginning of a new audit file and the end of an old audit file as the old file
is deactivated. The auditd daemon builds a special audit record that contains this
token to “link” together successive audit files into one audit trail. The file token has
four fields:

� A token ID that identifies this token as a file token
� A timestamp that identifies the date and the time that the file was created or was

closed
� The file name length
� A field that holds the file null-terminated name

The praudit -x command shows the fields of the file token:

file,2003-10-13 11:21:35.506 -07:00,

/var/audit/localhost/files/20031013175058.20031013182135.example1

group Token (Obsolete)
This token has been replaced by the the groups token. See “groups Token” on page
605.

groups Token
The groups token replaces the group token. The groups token records the group
entries from the process’s credential. The groups token has two fixed fields:

� A token ID field that identifies this token as a groups token
� A count that represents the number of groups that are contained in this audit

record

The remainder of this token is composed of count group entries. The praudit
command displays the groups token as follows:

Chapter 30 • Solaris Auditing (Reference) 605

groups,staff,admin

Note – The groups token is output only when the group audit policy option is active.

header Token
The header token is special in that it marks the beginning of an audit record. The
header token combines with the trailer token to bracket all the other tokens in the
record. The header token has eight fields:

� A token ID field that identifies this token as a header token
� A byte count of the total length of the audit record, including both the header and

the trailer tokens
� A version number that identifies the version of the audit record structure
� The audit event ID that identifies the audit event that the record represents
� The ID modifier that identifies special characteristics of the audit event
� The address type, either IPv4 or IPv6
� The machine’s IP address
� The time and date that the record was created

On 64-bit systems, the header token is displayed with a 64-bit timestamp, in place of
the 32-bit timestamp.

The praudit command displays the header token for a ioctl() system call as
follows:

header,176,2,ioctl(2),fe,example1,2003-09-08 11:23:31.050 -07:00

The ID modifier field has the following flags defined:

0x4000 PAD_NOTATTR nonattributable event

0x8000 PAD_FAILURE failed audit event

in_addr Token
The in_addr token contains an Internet Protocol address. Since the Solaris 8 release,
the Internet address can be displayed in IPv4 format or IPv6 format. The IPv4 address
uses 4 bytes. The IPv6 address uses 1 byte to describe the address type, and 16 bytes to
describe the address. The in_addr token has three fields:

� A token ID that identifies this token as an in_addr token
� The IP address type, either IPv4 or IPv6
� An IP address

606 System Administration Guide: Security Services • January 2005

The praudit command displays the in_addr token, without the second field, as
follows:

ip address,192.168.113.7

ip Token (Obsolete)
The ip token contains a copy of an Internet Protocol header. The ip token has two
fields:

� A token ID that identifies this token as an ip token
� A copy of the IP header, that is, all 20 bytes

The praudit command displays the ip token as follows:

ip address,0.0.0.0

The IP header structure is defined in the /usr/include/netinet/ip.h file.

ipc Token
The ipc token contains the System V IPC message handle, semaphore handle, or
shared-memory handle that is used by the caller to identify a particular IPC object.
The ipc token has three fields:

� A token ID that identifies this token as an ipc token
� A type field that specifies the type of IPC object
� The handle that identifies the IPC object

Note – The IPC object identifiers violate the context-free nature of the Solaris audit
tokens. No global “name” uniquely identifies IPC objects. Instead, IPC objects are
identified by their handles. The handles are valid only during the time that the IPC
objects are active. However, the identification of IPC objects should not be a problem.
The System V IPC mechanisms are seldom used, and the mechanisms all share the
same audit class.

The following table shows the possible values for the IPC object type field. The values
are defined in the /usr/include/bsm/audit.h file.

TABLE 30–7 Values for the IPC Object Type Field

Name Value Description

AU_IPC_MSG 1 IPC message object

Chapter 30 • Solaris Auditing (Reference) 607

TABLE 30–7 Values for the IPC Object Type Field (Continued)
Name Value Description

AU_IPC_SEM 2 IPC semaphore object

AU_IPC_SHM 3 IPC shared-memory object

The praudit command displays the ipc token as follows:

IPC,msg,3

ipc_perm Token
The ipc_perm token contains a copy of the System V IPC access permissions. This
token is added to audit records that are generated by IPC shared-memory events, IPC
semaphore events, and IPC message events. The ipc_perm token has eight fields:

� A token ID that identifies this token as an ipc_perm token
� The user ID of the IPC owner
� The group ID of the IPC owner
� The user ID of the IPC creator
� The group ID of the IPC creator
� The access mode of the IPC
� The sequence number of the IPC
� The IPC key value

The praudit command displays the ipc_perm token as follows:

IPC perm,root,sys,root,sys,0,0,0x00000000

The values are taken from the ipc_perm structure that is associated with the IPC
object.

iport Token
The iport token contains the TCP or UDP port address. The iport token has two
fields:

� A token ID that identifies this token as an iport token
� The TCP or UDP port address

The praudit command displays the iport token as follows:

ip port,0xf6d6

opaque Token (Obsolete)
The opaque token contains unformatted data as a sequence of bytes. The opaque
token has three fields:

608 System Administration Guide: Security Services • January 2005

� A token ID that identifies this token as an opaque token
� A byte count of the data
� An array of byte data

The praudit command displays the opaque token as follows:

opaque,12,0x4f5041515545204441544100

path Token
The path token contains access path information for an object. This token contains the
following fields:

� A token ID that identifies this token as an path token
� The path length
� The absolute path to the object that is based on the real root of the system

The praudit command displays the path token, without the second field, as follows:

path,/etc/security/audit_user

The praudit -x command displays the path token as follows:

<path>/etc/security/audit_user</path>

The following figure shows the format of a path token.

Token ID Object path

Path length Path

FIGURE 30–4 path Token Format

path_attr Token
The path_attr token contains access path information for an object. The access path
specifies the sequence of attribute file objects below the path token object. Systems
calls such as openat() access attribute files. For more information on attribute file
objects, see the fsattr(5) man page.

The path_attr token contains the following fields:

� A token ID that identifies this token as a path_attr token
� A count that represents the number of sections of attribute file paths

Chapter 30 • Solaris Auditing (Reference) 609

� count null-terminated strings

The praudit command displays the path_attr token as follows:

path_attr,1,attr_file_name

privilege Token
The privilege token records the use of privileges on a process. The privilege
token is not recorded for privileges in the basic set. If a privilege has been removed
from the basic set by administrative action, then the use of that privilege is recorded.
For more information on privileges, see “Privileges (Overview)” on page 186

The privilege token contains the following fields:

� A token ID that identifies this token as a privilege token
� The length of the following field
� The name of privilege set
� The length of the following field
� The list of privileges

The praudit command displays the privilege token as follows:

privilege,effective,

process Token
The process token contains information about a user who is associated with a
process, such as the recipient of a signal. The process token has nine fields:

� A token ID that identifies this token as a process token
� The audit ID
� The effective user ID
� The effective group ID
� The real user ID
� The real group ID
� The process ID
� The audit session ID
� A terminal ID that consists of a device ID and a machine ID

The audit ID, user ID, group ID, process ID, and session ID are long instead of short.

Note – The process token fields for the session ID, the real user ID, or the real group
ID might be unavailable. The value is then set to -1.

610 System Administration Guide: Security Services • January 2005

Any token that contains a terminal ID has several variations. The praudit command
hides these variations. So, the terminal ID is handled the same way for any token that
contains a terminal ID. The terminal ID is either an IP address and port number, or a
device ID. A device ID, such as the serial port that is connected to a modem, can be
zero. The terminal ID is specified in one of several formats.

The terminal ID for device numbers is specified as follows:

� 32-bit applications – 4-byte device number, 4 bytes unused
� 64-bit applications – 8-byte device number, 4 bytes unused

In releases prior to the Solaris 8 release, the terminal ID for port numbers is specified
as follows:

� 32-bit applications – 4-byte port number, 4-byte IP address
� 64-bit applications – 8-byte port number, 4-byte IP address

Since the Solaris 8 release, the terminal ID for port numbers is specified as follows:

� 32-bit with IPv4 – 4-byte port number, 4-byte IP type, 4-byte IP address
� 32-bit with IPv6 – 4-byte port number, 4-byte IP type, 16-byte IP address
� 64-bit with IPv4 – 8-byte port number, 4-byte IP type, 4-byte IP address
� 64-bit with IPv6 – 8-byte port number, 4-byte IP type, 16-byte IP address

The praudit command displays the process token as follows:

process,root,root,sys,root,sys,0,0,0,0.0.0.0

The following figure shows the format of a process token.

Process ID

Token ID Audit ID User ID Group ID Real user ID Real group ID Process ID

Session ID Terminal ID

Device ID Machine ID

FIGURE 30–5 process Token Format

return Token
The return token contains the return status of the system call (u_error) and the
process return value (u_rval1). This token has three fields:

� A token ID that identifies this token as a return token
� The error status of the system call

Chapter 30 • Solaris Auditing (Reference) 611

� The return value of the system call

The return token is always returned as part of kernel-generated audit records for
system calls. In application auditing, this token indicates exit status and other return
values.

The praudit command displays the return token for a system call as follows:

return,failure: Operation now in progress,-1

The praudit -x command displays the return token as follows:

<return errval="failure: Operation now in progress" retval="-1/">

sequence Token
The sequence token contains a sequence number. This token is useful for debugging.
The sequence token has two fields:

� A token ID that identifies this token as a sequence token
� A 32-bit unsigned long field that contains the sequence number

The sequence number is incremented every time an audit record is added to the audit
trail. The praudit command displays the sequence token as follows:

sequence,1292

The praudit -x command displays the sequence token as follows:

<sequence seq-num="1292"/>

Note – The sequence token is output only when the seq audit policy option is active.

socket Token
The socket token contains information that describes an Internet socket. In some
instances, the token has four fields:

� A token ID that identifies this token as a socket token

� A socket type field that indicates the type of socket referenced, either TCP, UDP, or
UNIX

� The local port

� The local IP address

The praudit command displays this instance of the socket token as follows:

socket,0x0002,0x83b1,localhost

612 System Administration Guide: Security Services • January 2005

In most instances, the token has eight fields:

� A token ID that identifies this token as a socket token

� The socket domain

� A socket type field that indicates the type of socket referenced, either TCP, UDP, or
UNIX

� The local port

� The address type, either IPv4 or IPv6

� The local IP address

� The remote port

� The remote IP address

Since the Solaris 8 release, the Internet address can be displayed in IPv4 format or IPv6
format. The IPv4 address uses 4 bytes. The IPv6 address uses 1 byte to describe the
address type, and 16 bytes to describe the address.

The praudit command displays the socket token as follows:

socket,0x0002,0x0002,0x83cf,example1,0x2383,server1.Subdomain.Domain.COM

The praudit -x command describes the socket token fields. The lines are wrapped
for display purposes.

<socket sock_domain="0x0002" sock_type="0x0002" lport="0x83cf"

laddr="example1" fport="0x2383" faddr="server1.Subdomain.Domain.COM"/>

subject Token
The subject token describes a user who performs or attempts to perform an
operation. The format is the same as the process token. The subject token has nine
fields:

� A token ID that identifies this token as a subject token
� The audit ID
� The effective user ID
� The effective group ID
� The real user ID
� The real group ID
� The process ID
� The audit session ID
� A terminal ID that consists of a device ID and a machine ID

The audit ID, user ID, group ID, process ID, and session ID are long instead of short.

Chapter 30 • Solaris Auditing (Reference) 613

Note – The subject token fields for the session ID, the real user ID, or the real group
ID might be unavailable. The value is then set to -1.

Any token that contains a terminal ID has several variations. The praudit command
hides these variations. So, the terminal ID is handled the same way for any token that
contains a terminal ID. The terminal ID is either an IP address and port number, or a
device ID. A device ID, such as the serial port that is connected to a modem, can be
zero. The terminal ID is specified in one of several formats.

The terminal ID for device numbers is specified as follows:

� 32-bit applications – 4-byte device number, 4 bytes unused
� 64-bit applications – 8-byte device number, 4 bytes unused

In releases prior to the Solaris 8 release, the terminal ID for port numbers is specified
as follows:

� 32-bit applications – 4-byte port number, 4-byte IP address
� 64-bit applications – 8-byte port number, 4-byte IP address

Since the Solaris 8 release, the terminal ID for port numbers is specified as follows:

� 32-bit with IPv4 – 4-byte port number, 4-byte IP type, 4-byte IP address
� 32-bit with IPv6 – 4-byte port number, 4-byte IP type, 16-byte IP address
� 64-bit with IPv4 – 8-byte port number, 4-byte IP type, 4-byte IP address
� 64-bit with IPv6 – 8-byte port number, 4-byte IP type, 16-byte IP address

The subject token is always returned as part of kernel-generated audit records for
system calls. The praudit command displays the subject token as follows:

subject,jdoe,root,staff,root,staff,424,223,0 0 example1

The following figure shows the format of the subject token.

Process ID

Token ID Audit ID User ID Group ID Real user ID Real group ID Process ID

Session ID Terminal ID

Device ID Machine ID

FIGURE 30–6 subject Token Format

614 System Administration Guide: Security Services • January 2005

text Token
The text token contains a text string. This token has three fields:

� A token ID that identifies this token as a text token
� The length of the text string
� The text string itself

The praudit command displays the text token as follows:

text,logout jdoe

trailer Token
The two tokens, header and trailer, are special in that they distinguish the end
points of an audit record and bracket all the other tokens. A header token begins an
audit record. A trailer token ends an audit record. The trailer token is an
optional token. The trailer token is added as the last token of each record only
when the trail audit policy option has been set.

When an audit record is generated with trailers turned on, the auditreduce
command can verify that the trailer correctly points back to the record header. The
trailer token supports backward seeks of the audit trail.

The trailer token has three fields:

� A token ID that identifies this token as a trailer token
� A pad number to aid in marking the end of the record
� The total number of characters in the audit record, including both the header and

trailer tokens

The praudit command displays the trailer token, without the second field, as
follows:

trailer,136

uauth Token
The uauth token records the use of authorization with a command or action.

The uauth token contains the following fields:

� A token ID that identifies this token as a uauth token
� The length of the text in the following field
� A list of authorizations

The praudit command displays the uauth token as follows:

Chapter 30 • Solaris Auditing (Reference) 615

use of authorization,solaris.admin.printer.delete

zonename Token
The zonename token records the zone in which the audit event occurred. The string
“global” indicates audit events that occur in the global zone.

The zonename token contains the following fields:

� A token ID that identifies this token as a zonename token
� The length of the text in the following field
� The name of the zone

The praudit command displays the zonename token as follows:

zonename,graphzone

616 System Administration Guide: Security Services • January 2005

Glossary

Access Control List
(ACL)

An access control list (ACL) provides finer-grained file security than
traditional UNIX file protection provides. For example, an ACL
enables you to allow group read access to a file, while allowing only
one member of that group to write to the file.

admin principal A user principal with a name of the form username/admin (as in
jdoe/admin). An admin principal can have more privileges (for
example, to change policies) than a regular user principal. See also
principal name, user principal.

AES Advanced Encryption Standard. A symmetric 128-bit block data
encryption technique. The U.S. government adopted the Rijndael
variant of the algorithm as its encryption standard in October 2000.
AES replaces user principal encryption as the government standard.

algorithm A cryptographic algorithm. This is an established, recursive
computational procedure that encrypts or hashes input.

application server See network application server.

audit files Binary audit logs. Audit files are stored separately in an audit
partition.

audit partition A hard disk partition that is configured to hold audit files.

audit policy The global and per-user settings that determine which audit events are
recorded. The global settings that apply to the audit service typically
affect which pieces of optional information are included in the audit
trail. Two settings, cnt and ahlt, affect the operation of the system
when the audit queue fills. For example, audit policy might require
that a sequence number be part of every audit record.

audit trail The collection of all audit files from all hosts.

authentication The process of verifying the claimed identity of a principal.

617

authenticator Authenticators are passed by clients when requesting tickets (from a
KDC) and services (from a server). They contain information that is
generated by using a session key known only by the client and server,
that can be verified as of recent origin, thus indicating that the
transaction is secure. When used with a ticket, an authenticator can be
used to authenticate a user principal. An authenticator includes the
principal name of the user, the IP address of the user’s host, and a time
stamp. Unlike a ticket, an authenticator can be used only once, usually
when access to a service is requested. An authenticator is encrypted by
using the session key for that client and that server.

authorization 1. In Kerberos, the process of determining if a principal can use a
service, which objects the principal is allowed to access, and the type
of access that is allowed for each object.

2. In role-based access control (RBAC), a permission that can be
assigned to a role or user (or embedded in a rights profile) for
performing a class of actions that are otherwise prohibited by security
policy.

basic set The set of privileges that are assigned to a user’s process at login. On
an unmodified system, each user’s initial inheritable set equals the
basic set at login.

Blowfish A symmetric block cipher algorithm that takes a variable-length key
from 32 bits to 448 bits. Its author, Bruce Schneier, claims that Blowfish
is optimized for applications where the key does not change often.

Basic Security Module
(BSM)

The Solaris auditing service and device allocation. Together, these
features satisfy the C2 level of security.

client Narrowly, a process that makes use of a network service on behalf of a
user; for example, an application that uses rlogin. In some cases, a
server can itself be a client of some other server or service.

More broadly, a host that a) receives a Kerberos credential, and b)
makes use of a service that is provided by a server.

Informally, a principal that makes use of a service.

client principal (RPCSEC_GSS API) A client (a user or an application) that uses
RPCSEC_GSS-secured network services. Client principal names are
stored in the form of rpc_gss_principal_t structures.

clock skew The maximum amount of time that the internal system clocks on all
hosts that are participating in the Kerberos authentication system can
differ. If the clock skew is exceeded between any of the participating
hosts, requests are rejected. Clock skew can be specified in the
krb5.conf file.

confidentiality See privacy.

618 System Administration Guide: Security Services • January 2005

consumer In the Solaris cryptographic framework, a consumer is a user of the
cryptographic services that come from providers. Consumers can be
applications, end users, or kernel operations. Kerberos, IKE, and IPsec
are examples of consumers. For examples of providers, see provider.

credential An information package that includes a ticket and a matching session
key. Used to authenticate the identity of a principal. See also ticket,
session key.

credential cache A storage space (usually a file) that contains credentials that are
received from the KDC.

cryptographic algorithm See algorithm.

DES Data Encryption Standard. A symmetric-key encryption method
developed in 1975 and standardized by ANSI in 1981 as ANSI X.3.92.
DES uses a 56-bit key.

device allocation Device protection at the user level. Device allocation enforces the
exclusive use of a device by one user at a time. Device data is purged
before device reuse. Authorizations can be used to limit who is
permitted to allocate a device.

device policy Device protection at the kernel level. Device policy is implemented as
two sets of privileges on a device. One set of privileges controls read
access to the device. The second set of privileges controls write access
to the device. See also policy.

Diffie-Hellman protocol Also known as public key cryptography. An asymmetric cryptographic
key agreement protocol that was developed by Diffie and Hellman in
1976. The protocol enables two users to exchange a secret key over an
insecure medium without any prior secrets. Diffie-Hellman is used by
Kerberos.

digest See message digest.

DSA Digital Signature Algorithm. A public key algorithm with a variable
key size from 512 to 4096 bits. The U.S. Government standard, DSS,
goes up to 1024 bits. DSA relies on SHA1 for input.

effective set The set of privileges that are currently in effect on a process.

flavor Historically, security flavor and authentication flavor had the same
meaning, as a flavor that indicated a type of authentication
(AUTH_UNIX, AUTH_DES, AUTH_KERB). RPCSEC_GSS is also a
security flavor, even though it provides integrity and privacy services
in addition to authentication.

forwardable ticket A ticket that a client can use to request a ticket on a remote host
without requiring the client to go through the full authentication
process on that host. For example, if the user david obtains a

619

forwardable ticket while on user jennifer’s machine, he can log in to
his own machine without being required to get a new ticket (and thus
authenticate himself again). See also proxiable ticket.

FQDN Fully qualified domain name. For example, central.example.com
(as opposed to simply denver).

GSS-API The Generic Security Service Application Programming Interface. A
network layer that provides support for various modular security
services, including the Kerberos service. GSS-API provides for security
authentication, integrity, and privacy services. See also authentication,
integrity, privacy.

hardening The modification of the default configuration of the operating system
to remove security vulnerabilities that are inherent in the host.

hardware provider In the Solaris cryptographic framework, a device driver and its
hardware accelerator. Hardware providers offload expensive
cryptographic operations from the computer system, thus freeing CPU
resources for other uses. See also provider.

host A machine that is accessible over a network.

host principal A particular instance of a service principal in which the principal
(signified by the primary name host) is set up to provide a range of
network services, such as ftp, rcp, or rlogin. An example of a host
principal is host/central.example.com@EXAMPLE.COM. See also
server principal.

inheritable set The set of privileges that a process can inherit across a call to exec.

initial ticket A ticket that is issued directly (that is, not based on an existing
ticket-granting ticket). Some services, such as applications that change
passwords, might require tickets to be marked initial so as to assure
themselves that the client can demonstrate a knowledge of its secret
key. This assurance is important because an initial ticket indicates that
the client has recently authenticated itself (instead of relying on a
ticket-granting ticket, which might existed for a long time).

instance The second part of a principal name, an instance qualifies the
principal’s primary. In the case of a service principal, the instance is
required. The instance the host’s fully qualified domain name, as in
host/central.example.com. For user principals, an instance is
optional. Note, however, that jdoe and jdoe/admin are unique
principals. See also primary, principal name, service principal, user
principal.

integrity A security service that, in addition to user authentication, provides for
the validity of transmitted data through cryptographic checksumming.
See also authentication, privacy.

620 System Administration Guide: Security Services • January 2005

invalid ticket A postdated ticket that has not yet become usable. An invalid ticket is
rejected by an application server until it becomes validated. To be
validated, an invalid ticket must be presented to the KDC by the client
in a TGS request, with the VALIDATE flag set, after its start time has
passed. See also postdated ticket.

KDC Key Distribution Center. A machine that has three Kerberos V5
components:

� Principal and key database
� Authentication service
� Ticket-granting service

Each realm has a master KDC and should have one or more slave
KDCs.

Kerberos An authentication service, the protocol that is used by that service, or
the code that is used to implement that service.

The Solaris Kerberos implementation that is closely based on Kerberos
V5 implementation.

While technically different, “Kerberos” and “Kerberos V5” are often
used interchangeably in the Kerberos documentation.

Kerberos (also spelled Cerberus) was a fierce, three-headed mastiff
who guarded the gates of Hades in Greek mythology.

Kerberos policy A set of rules that governs password usage in the Kerberos service.
Policies can regulate principals’ accesses, or ticket parameters, such as
lifetime.

key 1. Generally, one of two main types of keys:

� A symmetric key – An encryption key that is identical to the
decryption key. Symmetric keys are used to encrypt files.

� An asymmetric key or public key – A key that is used in public key
algorithms, such as Diffie-Hellman or RSA. Public keys include a
private key that is known only by one user, a public key that is
used by the server or general resource, and a private-public key
pair that combines the two. A private key is also called a secret key.
The public key is also called a shared key or common key.

2. An entry (principal name) in a keytab file. See also keytab file.

3. In Kerberos, an encryption key, of which there are three types:

� A private key – An encryption key that is shared by a principal and
the KDC, and distributed outside the bounds of the system. See
also private key.

621

� A service key – This key serves the same purpose as the private key,
but is used by servers and services. See also service key.

� A session key – A temporary encryption key that is used between
two principals, with a lifetime limited to the duration of a single
login session. See also session key.

keytab file A key table file that contains one or more keys (principals). A host or
service uses a keytab file in the much the same way that a user uses a
password.

kvno Key version number. A sequence number that tracks a particular key in
order of generation. The highest kvno is the latest and most current
key.

limit set The outside limit of what privileges are available to a process and its
children.

name service scope The scope in which a role is permitted to operate, that is, an individual
host or all hosts that are served by a specified name service such as
NIS, NIS+, or LDAP. Scopes are applied to Solaris Management
Console toolboxes.

MAC 1. See message authentication code (MAC).

2. Also called labeling. In government security terminology, MAC is
Mandatory Access Control. Labels such as Top Secret and Confidential
are examples of MAC. MAC contrasts with DAC, which is
Discretionary Access Control. UNIX permissions are an example of
DAC.

3. In hardware, the unique machine address on a LAN. If the machine
is on an Ethernet, the MAC is the Ethernet address.

master KDC The main KDC in each realm, which includes a Kerberos
administration server, kadmind, and an authentication and
ticket-granting daemon, krb5kdc. Each realm must have at least one
master KDC, and can have many duplicate, or slave, KDCs that
provide authentication services to clients.

MD5 An iterative cryptographic hash function that is used for message
authentication, including digital signatures. The function was
developed in 1991 by Rivest.

mechanism 1. A software package that specifies cryptographic techniques to
achieve data authentication or confidentiality. Examples: Kerberos V5,
Diffie-Hellman public key.

622 System Administration Guide: Security Services • January 2005

2. In the Solaris cryptographic framework, an implementation of an
algorithm for a particular purpose. For example, a DES mechanism
that is applied to authentication, such as CKM_DES_MAC, is a
separate mechanism from a DES mechanism that is applied to
encryption, CKM_DES_CBC_PAD.

message authentication
code (MAC)

MAC provides assurance of data integrity and authenticates data
origin. MAC does not protect against eavesdropping.

message digest A message digest is a hash value that is computed from a message.
The hash value almost uniquely identifies the message. A digest is
useful for verifying the integrity of a file.

minimization The installation of the minimal operating system that is necessary to
run the server. Any software that does not directly relate to the
operation of the server is either not installed, or deleted after the
installation.

network application
server

A server that provides a network application, such as ftp. A realm can
contain several network application servers.

network policies The settings that network utilities configure to protect network traffic.
For information on network security, see Part IV, “IP Security,” in
System Administration Guide: IP Services.

nonattributable audit
event

An audit event whose initiator cannot be determined, such as the
AUE_BOOT event.

NTP Network Time Protocol. Software from the University of Delaware that
enables you to manage precise time or network clock synchronization,
or both, in a network environment. You can use NTP to maintain clock
skew in a Kerberos environment. See also clock skew.

PAM Pluggable Authentication Module. A framework that allows for
multiple authentication mechanisms to be used without having to
recompile the services that use them. PAM enables Kerberos session
initialization at login.

passphrase A phrase that is used to verify that a private key was created by the
passphrase user. A good passphrase is 10-30 characters long, mixes
alphabetic and numeric characters, and avoids simple prose and
simple names. You are prompted for the passphrase to authenticate
use of the private key to encrypt and decrypt communications.

password policy The encryption algorithms that can be used to generate passwords.
Can also refer to more general issues around passwords, such as how
often the passwords must be changed, how many mis-entries are
permitted, and other security considerations. Security policy requires
passwords. Password policy might require passwords to be encrypted
with the MD5 algorithm, and might make further requirements related
to password strength.

623

permitted set The set of privileges that are available for use by a process.

policy Generally, a plan or course of action that influences or determines
decisions and actions. For computer systems, policy typically means
security policy. Your site’s security policy is the set of rules that define
the sensitivity of the information that is being processed and the
measures that are used to protect the information from unauthorized
access. For example, security policy might require that systems be
audited, that devices be protected with privileges, and that passwords
be changed every six weeks.

For the implementation of policy in specific areas of the Solaris OS, see
audit policy, policy in the cryptographic framework, device policy,
Kerberos policy, password policy, and RBAC policy.

policy in the
cryptographic
framework

In the Solaris cryptographic framework, policy is the disabling of
existing cryptographic mechanisms. The mechanisms then cannot be
used. Policy in the cryptographic framework might prevent the use of
a particular mechanism, such as CKM_DES_CBC, from a provider, such
as DES.

postdated ticket A postdated ticket does not become valid until some specified time
after its creation. Such a ticket is useful, for example, for batch jobs that
are intended to run late at night, since the ticket, if stolen, cannot be
used until the batch job is run. When a postdated ticket is issued, it is
issued as invalid and remains that way until a) its start time has
passed, and b) the client requests validation by the KDC. A postdated
ticket is normally valid until the expiration time of the ticket-granting
ticket. However, if the postdated ticket is marked renewable, its lifetime
is normally set to be equal to the duration of the full life time of the
ticket-granting ticket. See also invalid ticket, renewable ticket.

primary The first part of a principal name. See also instance, principal name,
realm.

principal 1. A uniquely named client/user or server/service instance that
participates in a network communication. Kerberos transactions
involve interactions between principals (service principals and user
principals) or between principals and KDCs. In other words, a
principal is a unique entity to which Kerberos can assign tickets. See
also principal name, service principal, user principal.

2. (RPCSEC_GSS API) See client principal, server principal.

principal name 1. The name of a principal, in the format primary/instance@REALM. See
also instance, primary, realm.

2. (RPCSEC_GSS API) See client principal, server principal.

624 System Administration Guide: Security Services • January 2005

privacy A security service, in which transmitted data is encrypted before being
sent. Privacy also includes data integrity and user authentication. See
also authentication, integrity, service.

private key A key that is given to each user principal, and known only to the user
of the principal and to the KDC. For user principals, the key is based
on the user’s password. See also key.

private-key encryption In private-key encryption, the sender and receiver use the same key for
encryption. See also public-key encryption.

privilege A discrete right on a process in a Solaris system. Privileges offer a
finer-grained control of processes than does root. Privileges are
defined and enforced in the kernel. For a full description of privileges,
see the privileges(5) man page.

privilege model A stricter model of security on a computer system than the superuser
model. In the privilege model, processes require privilege to run.
Administration of the system can be divided into discrete parts that
are based on the privileges that administrators have in their processes.
Privileges can be assigned to an administrator’s login process. Or,
privileges can be assigned to be in effect for certain commands only.

privilege set A collection of privileges. Every process has four sets of privileges that
determine whether a process can use a particular privilege. See limit
set, effective set set, permitted set set, and inheritable set set.

Also, the basic set set of privileges is the collection of privileges that
are assigned to a user’s process at login.

privileged application An application that can override system controls. The application
checks for security attributes, such as specific UIDs, GIDs,
authorizations, or privileges.

profile shell In RBAC, a shell that enables a role (or user) to run from the command
line any privileged applications that are assigned to the role’s rights
profiles. The profile shells are pfsh, pfcsh, and pfksh. They
correspond to the Bourne shell (sh), C shell (csh), and Korn shell
(ksh), respectively.

provider In the Solaris cryptographic framework, a cryptographic service that is
provided to consumers. PKCS #11 libraries, kernel cryptographic
modules, and hardware accelerators are examples of providers.
Providers plug in to the Solaris cryptographic framework, so are also
called plugins. For examples of consumers, see consumer.

proxiable ticket A ticket that can be used by a service on behalf of a client to perform
an operation for the client. Thus, the service is said to act as the client’s
proxy. With the ticket, the service can take on the identity of the client.
The service can use a proxiable ticket to obtain a service ticket to

625

another service, but it cannot obtain a ticket-granting ticket. The
difference between a proxiable ticket and a forwardable ticket is that a
proxiable ticket is only valid for a single operation. See also
forwardable ticket.

public-key encryption An encryption scheme in which each user has two keys, one public
key and one private key. In public-key encryption, the sender uses the
receiver’s public key to encrypt the message, and the receiver uses a
private key to decrypt it. The Kerberos service is a private-key system.
See also private-key encryption.

QOP Quality of Protection. A parameter that is used to select the
cryptographic algorithms that are used in conjunction with the
integrity service or privacy service.

RBAC Role-Based Access Control. An alternative to the all-or-nothing
superuser model. RBAC lets an organization separate superuser’s
capabilities and assign them to special user accounts called roles. Roles
can be assigned to specific individuals according to their
responsibilities.

RBAC policy The security policy that is associated with a command. Currently,
suser and solaris are the valid policies. The solaris policy
recognizes privileges and setuid security attributes. The suser
policy recognizes only setuid security attributes. Trusted Solaris™
systems, which can interoperate with a Solaris system, provide a tsol
policy, which recognizes privileges, setuid security attributes, and
labels on processes.

realm 1. The logical network that is served by a single Kerberos database and
a set of Key Distribution Centers (KDCs).

2. The third part of a principal name. For the principal name
jdoe/admin@ENG.EXAMPLE.COM, the realm is ENG.EXAMPLE.COM.
See also principal name.

relation A configuration variable or relationship that is defined in the
kdc.conf or krb5.conf files.

renewable ticket Because having tickets with very long lives is a security risk, tickets
can be designated as renewable. A renewable ticket has two expiration
times: a) the time at which the current instance of the ticket expires,
and b) maximum lifetime for any ticket. If a client wants to continue to
use a ticket, the client renews the ticket before the first expiration
occurs. For example, a ticket can be valid for one hour, with all tickets
having a maximum lifetime of ten hours. If the client that holds the
ticket wants to keep it for more than an hour, the client must renew the
ticket. When a ticket reaches the maximum ticket lifetime, it
automatically expires and cannot be renewed.

626 System Administration Guide: Security Services • January 2005

rights profile Also referred to as a right or a profile. A collection of overrides used in
RBAC that can be assigned to a role or user. A rights profile can consist
of authorizations, commands with security attributes, and other rights
profiles.

role A special identity for running privileged applications that only
assigned users can assume.

RSA A method for obtaining digital signatures and public key
cryptosystems. The method was first described in 1978 by its
developers, Rivest, Shamir, and Adleman.

SEAM Sun Enterprise Authentication Mechanism. The product name for the
initial versions of a system for authenticating users over a network,
based on the Kerberos V5 technology that was developed at the
Massachusetts Institute of Technology. The product is now called the
Kerberos service. SEAM refers to parts the Kerberos service that were
not included in various Solaris releases.

secret key See private key.

Secure Shell A special protocol for secure remote login and other secure network
services over an insecure network.

security attributes In RBAC, overrides to security policy that enable an administrative
command to succeed when the command is run by a user other than
superuser. In the superuser model, the setuid and setgid programs
are security attributes. When these attributes are applied to a
command, the command succeeds no matter who runs the command.
In the privilege model, security attributes are privileges. When a
privilege is given to a command, the command succeeds. The privilege
model is compatible with the superuser model, in that the privilege
model also recognizes the setuid and setgid programs as security
attributes.

security flavor See flavor.

security mechanism See mechanism.

security policy See policy.

security service See service.

seed A numeric starter for generating random numbers. When the starter
originates from a random source, the seed is called a random seed.

server A principal that provides a resource to network clients. For example, if
you rlogin to the machine central.example.com, then that
machine is the server that provides the rlogin service. See also
service principal.

627

server principal (RPCSEC_GSS API) A principal that provides a service. The server
principal is stored as an ASCII string in the form service@host. See also
client principal.

service 1. A resource that is provided to network clients, often by more than
one server. For example, if you rlogin to the machine
central.example.com, then that machine is the server that
provides the rlogin service.

2. A security service (either integrity or privacy) that provides a level
of protection beyond authentication. See also integrity and privacy.

service key An encryption key that is shared by a service principal and the KDC,
and is distributed outside the bounds of the system. See also key.

service principal A principal that provides Kerberos authentication for a service or
services. For service principals, the primary name is a name of a
service, such as ftp, and its instance is the fully qualified host name of
the system that provides the service. See also host principal, user
principal.

SHA1 Secure Hashing Algorithm. The algorithm operates on any input
length less than 264 to produce a message digest. The SHA1 algorithm
is input to DSA.

software provider In the Solaris cryptographic framework, a kernel software module or a
PKCS #11 library that provides cryptographic services. See also
provider.

session key A key that is generated by the authentication service or the
ticket-granting service. A session key is generated to provide secure
transactions between a client and a service. The lifetime of a session
key is limited to a single login session. See also key.

slave KDC A copy of a master KDC, which is capable of performing most
functions of the master. Each realm usually has several slave KDCs
(and only one master KDC). See also KDC, master KDC.

stash file A stash file contains an encrypted copy of the master key for the KDC.
This master key is used when a server is rebooted to automatically
authenticate the KDC before it starts the kadmind and krb5kdc
processes. Because the stash file includes the master key, the stash file
and any backups of it should be kept secure. If the encryption is
compromised, then the key could be used to access or modify the KDC
database.

superuser model The typical UNIX model of security on a computer system. In the
superuser model, an administrator has all-or-nothing control of the
machine. Typically, to administer the machine, a user becomes
superuser (root) and can do all administrative activities.

628 System Administration Guide: Security Services • January 2005

ticket An information packet that is used to securely pass the identity of a
user to a server or service. A ticket is valid for only a single client and
a particular service on a specific server. A ticket contains the principal
name of the service, the principal name of the user, the IP address of
the user’s host, a time stamp, and a value that defines the lifetime of
the ticket. A ticket is created with a random session key to be used by
the client and the service. Once a ticket has been created, it can be
reused until the ticket expires. A ticket only serves to authenticate a
client when it is presented along with a fresh authenticator. See also
authenticator, credential, service, session key.

ticket file See credential cache.

TGS Ticket-Granting Service. That portion of the KDC that is responsible
for issuing tickets.

TGT Ticket-Granting Ticket. A ticket that is issued by the KDC that enables
a client to request tickets for other services.

user principal A principal that is attributed to a particular user. A user principal’s
primary name is a user name, and its optional instance is a name that
is used to described the intended use of the corresponding credentials
(for example, jdoe or jdoe/admin). Also known as a user instance.
See also service principal.

virtual private network
(VPN)

A network that provides secure communication by using encryption
and tunneling to connect users over a public network.

629

630 System Administration Guide: Security Services • January 2005

Index

Numbers and Symbols
* (asterisk)

checking for in RBAC authorizations, 221
device_allocate file, 95, 96
wildcard character

in ASET, 164, 166
in RBAC authorizations, 228, 231

@ (at sign), device_allocate file, 96
\ (backslash)

device_allocate file, 96
device_maps file, 95

^ (caret) in audit class prefixes, 595
. (dot)

authorization name separator, 228
displaying hidden files, 134
path variable entry, 48

= (equal sign), file permissions symbol, 128
- (minus sign)

audit class prefix, 595
file permissions symbol, 128
file type symbol, 124
sulog file, 73

+ (plus sign)
ACL entry, 140
audit class prefix, 595
file permissions symbol, 128
sulog file, 73

(pound sign)
device_allocate file, 96
device_maps file, 95

? (question mark), ASET tune files, 166
; (semicolon)

device_allocate file, 95

; (semicolon) (Continued)
separator of security attributes, 235

$$ (double dollar sign), parent shell process
number, 241

[] (square brackets), bsmrecord output, 599
> (redirect output), preventing, 48
>> (append output), preventing, 48
~/.gkadmin file, description, 511
~/.k5login file, description, 511
~/.rhosts file, description, 354
~/.shosts file, description, 354
~/.ssh/authorized_keys file

description, 353
override, 355

~/.ssh/config file
description, 354
override, 355

~/.ssh/environment file, description, 354
~/.ssh/id_dsa file, override, 355
~/.ssh/id_rsa file, override, 355
~/.ssh/identity file, override, 355
~/.ssh/known_hosts file

description, 353
override, 355

~/.ssh/rc file, description, 354
3des-cbc encryption algorithm, ssh_config

file, 347
3des encryption algorithm, ssh_config

file, 347

631

A
-a option

bsmrecord command, 570
digest command, 272
encrypt command, 275
getfacl command, 144
Kerberized commands, 504
mac command, 274
smrole command, 204

-A option, auditreduce command, 573
absolute mode

changing file permissions, 128, 137-138
changing special file permissions, 139-140
description, 128
setting special permissions, 129

access
control lists

See ACL
getting to server

with Kerberos, 520-523
granting to your account, 502-503
login authentication with Solaris Secure

Shell, 335-336
obtaining for a specific service, 522-523
restricting for

devices, 44-46, 78
system hardware, 75-76

restricting for KDC servers, 440
root access

displaying attempts on console, 73
monitoring su command attempts, 46,

72-73
preventing login (RBAC), 206-208
restricting, 52, 74

Secure RPC authentication, 293
security

ACLs, 51-52, 130-132
controlling system usage, 46-51
devices, 78
file access restriction, 48
firewall setup, 55-56
login access restrictions, 39
login authentication, 335-336
login control, 39
monitoring system usage, 50
network control, 52-57
NFS client-server, 295-298
PATH variable setting, 47

access, security (Continued)
peripheral devices, 44
physical security, 38-39
remote systems, 321
reporting problems, 57
root login tracking, 46
saving failed logins, 63-64
setuid programs, 49
system hardware, 75-76

sharing files, 52
system logins, 42

access control list
See ACL

Access Control Lists (ACLs), See ACL
ACL

changing entries, 143
checking entries, 140
commands, 132
copying ACL entries, 142
default entries for directories, 131-132
deleting entries, 132, 143-144
description, 51-52, 130-132
directory entries, 131-132
displaying entries, 132, 144-145
format of entries, 130-132
kadm5.acl file, 468, 470, 474
modifying entries, 143
restrictions on copying entries, 130
setting entries, 141-142
setting on a file, 141
task map, 140-145
user procedures, 140-145
valid file entries, 131

acl audit token, format, 601
add_drv command, description, 92
adding

ACL entries, 141-142
administration principals (Kerberos), 389
allocatable device, 82-83
attributes to a rights profile, 215-218
audit classes, 557
audit directories, 560-562
audit policy, 564-565
auditing of roles, 206
auditing of zones, 540-543
cryptomgt role, 205-206
custom roles (RBAC), 204
customized role, 204

632 System Administration Guide: Security Services • January 2005

adding (Continued)
DH authentication to mounted file
systems, 298
dial-up passwords, 65-67
hardware provider mechanisms and

features, 288
keys for DH authentication, 299-300
library plugin, 282
local user, 207
new rights profile, 215-218
Operator role, 200
PAM modules, 310
password encryption module, 71-72
plugins to cryptographic

framework, 280-282
privileges directly to user or role, 244-245
privileges to command, 244
RBAC properties to legacy

applications, 220-221
rights profiles with Solaris Management

Console, 217
roles

for particular profiles, 199-202
from command line, 202-204
to a user, 201
with limited scope, 201

security attributes to legacy
applications, 220-221

security-related role, 205-206
security-related roles, 201
security to devices, 79-80, 82-87
security to system hardware, 75-76
service principal to keytab file

(Kerberos), 489-490
software provider, 280-282
System Administrator role, 200
user-level software provider, 282

admin_server section, krb5.conf file, 388
administering

ACLs, 140-145
auditing

audit classes, 534, 593
audit events, 533
audit files, 576-577
audit records, 535
audit trail overflow prevention, 578-579
auditreduce command, 572-573
cost control, 546

administering, auditing (Continued)
description, 530
efficiency, 547
process preselection mask, 582
reducing storage-space requirements, 546
task map, 549
in zones, 592-593

auditing in zones, 540-541
cryptographic framework, 266
cryptographic framework and zones, 268
cryptographic framework task map, 277-278
device allocation, 81-82
device policy, 78
dial-up logins, 66
file permissions, 133-134, 134-140
Kerberos

keytabs, 487-494
policies, 475-482
principals, 462-475

NFS client-server file security, 295-298
password algorithms, 67-68
privileges, 240
properties of a role, 213-215
RBAC properties, 215-218
remote logins with Solaris Secure

Shell, 331-333
rights profiles, 215-218
roles, 199-202
roles to replace superuser, 197-199
Secure RPC task map, 298
Solaris Secure Shell

clients, 346
overview, 343-345
servers, 346
task map, 326

without privileges, 188
administrative (old) audit class, 594
administrative audit class, 594
AES kernel provider, 279
aes128-cbc encryption algorithm,

ssh_config file, 347
aes128-ctr encryption algorithm,

ssh_config file, 347
agent daemon, Solaris Secure Shell, 335-336
ahlt audit policy

description, 544
setting, 564

633

algorithms
definition in cryptographic framework, 264
listing in the cryptographic

framework, 278-280
password

configuration, 68-69
password encryption, 41

all, in user audit fields, 590
All (RBAC), rights profile, 227
all audit class

caution for using, 595
description, 594

allhard string, audit_warn script, 591
allocate command

allocate error state, 94
authorizations for, 94
authorizations required, 238
description, 93
tape drive, 88
user authorization, 83
using, 87-88

allocate error state, 94
allocating devices

by users, 87-88
forcibly, 84-85
task map, 87

AllowGroups keyword, sshd_config
file, 347

AllowTcpForwarding keyword
changing, 330
sshd_config file, 347

AllowUsers keyword, sshd_config file, 347
allsoft string, audit_warn script, 591
ALTSHELL in Solaris Secure Shell, 351
always-audit classes

audit_user database, 589
process preselection mask, 596

analysis, praudit command, 585
appending arrow (>>), preventing

appending, 48
application audit class, 594
application server, configuring, 399-400
arbitrary audit token

format, 601
item size field, 601
print format field, 602

arcfour encryption algorithm, ssh_config
file, 347

ARCFOUR kernel provider, 279
Archive tape drive device-clean script, 97
archiving, audit files, 578-579
arg audit token, format, 602
arge audit policy

and exec_env token, 604
description, 544

argv audit policy
and exec_args token, 604
description, 544

ASET
aliases file

description, 157
examples, 166
UID_ALIASES variable, 160

aset command
interactive version, 167-168
-p option, 169
starting, 150

aset.restore command, 161
ASETDIR variable, 163
asetenv file, 158
ASETSECLEVEL variable, 163
CKLISTPATH_level variable, 165
collecting reports, 169-171
configuring, 158-161, 161
description, 49, 149-167
environment file, 158
environment variables, 162
error messages, 171
execution log, 154
master files, 152, 157, 158
NFS services and, 161
PERIODIC_SCHEDULE variable, 160, 163
restoring original system state, 161
running ASET periodically, 168-169
running interactively, 167-168
running periodically, 168-169
scheduling ASET execution, 160, 163
stopping from running periodically, 169
task map, 167-171
TASKS variable, 159, 164
troubleshooting, 171
tune file examples, 165
tune files, 157, 160
uid_aliases file, 157
UID_ALIASES variable, 157, 160, 164
working directory, 163

634 System Administration Guide: Security Services • January 2005

ASET (Continued)
YPCHECK variable, 160, 165

assigning
privileges to commands in a rights

profile, 244
privileges to commands in a script, 247-248
privileges to user or role, 244-245
role to a user, 200, 201
role to a user locally, 204-206

assuming role
how to, 208
in a terminal window, 209-211
in Solaris Management Console, 211-212
Primary Administrator, 209-210
root, 210
System Administrator, 210-211

asterisk (*)
checking for in RBAC authorizations, 221
device_allocate file, 95, 96
wildcard character

in ASET, 164, 166
in RBAC authorizations, 228, 231

at command, authorizations required, 237
at sign (@), device_allocate file, 96
atq command, authorizations required, 237
attribute audit token, 603
attributes, keyword in BART, 119
audio devices, security, 98
audit administration audit class, 594
audit characteristics

audit ID, 596
process preselection mask, 582
processes, 596
session ID, 596
terminal ID, 596
user process preselection mask, 596

audit_class file, adding a class, 557
audit_class file, description file, 587
audit class preselection, effect on public

objects, 533
audit classes

adding, 557
definitions, 593
description, 532, 533
entries in audit_control file, 588
exceptions in audit_user database, 589
exceptions to system-wide settings, 534
mapping events, 534

audit classes (Continued)
modifying default, 557
overview, 534
prefixes, 595
preselecting, 551-553
preselection, 532
process preselection mask, 596
setting system-wide, 593
syntax, 595
system-wide, 588

audit command
description, 582-583
preselection mask for existing processes (-s

option), 568
rereading audit files (-s option), 582
resetting directory pointer (-n option), 582
updating auditing service, 568-569

audit configuration file, See audit_control
file

audit_control file
audit daemon rereading after editing, 568
changing kernel mask for nonattributable

events, 568
configuring, 551-553
description, 587
entries, 588
entries and zones, 592-593
examples, 588
exceptions in audit_user database, 589
flags line

process preselection mask, 596
minfree warning, 591
overview, 531
prefixes in flags line, 595
syntax problem, 591

Audit Control rights profile, 592
audit daemon, See auditd daemon
audit directory

creating, 562
description, 532
partitioning for, 560-562
sample structure, 583

audit_event file
changing class membership, 557-559
description, 533

audit events
audit_event file, 533
changing class membership, 557-559

635

audit events (Continued)
description, 533
mapping to classes, 534
selecting from audit trail, 574-575
selecting from audit trail in zones, 592
summary, 532
viewing from binary files, 576-577

audit files
auditreduce command, 583
combining, 572-573, 583
configuring, 550-559
copying messages to single file, 575
managing, 578-579
minimum free space for file systems, 588
names, 598
order for opening, 588
partitioning disk for, 560-562
printing, 577
reducing, 572-573, 583
reducing storage-space requirements, 546,

547
switching to new file, 582
time stamps, 598

audit ID
mechanism, 596
overview, 529-530

audit logs
See also audit files
comparing binary and textual, 535
configuring textual audit logs, 553-555
in text, 588
modes, 535

audit messages, copying to single file, 575
audit.notice entry, syslog.conf file, 553
audit policy

defaults, 543-546
description, 532
effects of, 543-546
public, 545
setting, 563-565
setting ahlt, 564
setting in global zone, 592-593
setting perzone, 565

audit preselection mask, modifying for
individual users, 555-556

audit records
audit directories full, 582, 591
converting to readable format, 577, 585

audit records (Continued)
description, 532
displaying, 576-577
displaying formats of

procedure, 570-572
summary, 583

displaying formats of a program, 570-571
displaying formats of an audit class, 571-572
displaying in XML format, 577
events that generate, 530
format, 598
formatting example, 570
merging, 572-573
overview, 535
reducing audit files, 572-573
sequence of tokens, 598
syslog.conf file, 531
/var/adm/auditlog file, 553

Audit Review rights profile, 592
audit session ID, 596
audit_startup script

configuring, 563-565
description, 589

audit threshold, 588
audit tokens

See also individual audit token names
audit record format, 598
description, 532, 535
format, 600
list of, 600
new in current release, 538

audit trail
analysis costs, 546
analysis with praudit command, 585
cleaning up not terminated files, 577-578
creating

auditd daemon’s role, 582
description, 532
effect of audit policy on, 543
events included, 534
merging all files, 583
monitoring in real time, 547
no public objects, 533
overview, 531
preventing overflow, 578-579
selecting events from, 574-575
viewing events from, 576-577
viewing events from different zones, 592

636 System Administration Guide: Security Services • January 2005

audit_user database
exception to system-wide audit classes, 534
prefixes for classes, 595
process preselection mask, 596
specifying user exceptions, 555-556
user audit fields, 589

audit_warn script
auditd daemon execution of, 582
conditions invoking, 590
configuring, 562-563
description, 590
strings, 591

auditconfig command
audit classes as arguments, 534, 593
description, 586
prefixes for classes, 595
setting audit policy, 564-565

auditd daemon
audit trail creation, 582, 597
audit_warn script

description, 590
execution of, 582

functions, 582
order audit files are opened, 588
rereading information for the kernel, 568
rereading the audit_control file, 568

auditing
changes in current release, 537-538
changes in device policy, 80
configuring in global zone, 541, 564
device allocation, 86-87
disabling, 567-568
enabling, 566-567
planning, 540-543
planning in zones, 540-541
preselection definition, 532
privileges and, 257-258
rights profiles for, 592
roles, 206
updating information, 568-569
zones and, 592-593

auditlog file, text audit records, 553
auditreduce command, 583

-c option, 575
cleaning up audit files, 577-578
description, 583
examples, 572-573
filtering options, 574

auditreduce command (Continued)
merging audit records, 572-573
-O option, 572-573
options, 583
selecting audit records, 574-575
timestamp use, 598
trailer tokens, and, 615
using lowercase options, 574
using uppercase options, 572
without options, 583

auth_attr database
description, 232-233
summary, 229

AUTH_DES authentication, See AUTH_DH
authentication

AUTH_DH authentication, and NFS, 293
authentication

AUTH_DH client-server session, 295-298
configuring cross-realm, 396-399
description, 54-55
DH authentication, 294-298
disabling with -X option, 505
Kerberos and, 361
name services, 293
network security, 54-55
NFS-mounted files, 303
overview of Kerberos, 520
Secure RPC, 293
Solaris Secure Shell

methods, 322-324
process, 344-345

terminology, 515
types, 54-55
use with NFS, 293

authentication methods
GSS-API credentials in Solaris Secure

Shell, 322
host-based in Solaris Secure Shell, 323,

326-328
keyboard-interactive in Solaris Secure

Shell, 323
password in Solaris Secure Shell, 323
public keys in Solaris Secure Shell, 323
Solaris Secure Shell, 322-324

authenticator
in Kerberos, 515, 522

authlog file, saving failed login
attempts, 64-65

637

authorizations
Kerberos and, 361
types, 54-55

authorizations (RBAC)
checking for wildcards, 221
checking in privileged application, 183
commands that require

authorizations, 237-238
database, 229-236
definition, 182
delegating, 228-229
description, 179, 228-229
for allocating device, 83-84
for device allocation, 94
granularity, 228
naming convention, 228
not requiring for device allocation, 86
solaris.device.allocate, 83, 93
solaris.device.revoke, 94

authorized_keys file, description, 353
AuthorizedKeysFile keyword,

sshd_config file, 347
auths command, description, 236
AUTHS_GRANTED keyword, policy.conf

file, 235
auto_transition option, SASL and, 319
Automated Security Enhancement Tool, See

ASET
automatic login

disabling, 505
enabling, 504

automatically enabling auditing, 589
automating principal creation, 463-464
auxprop_login option, SASL and, 319

B
-b option, auditreduce command, 574
backup

Kerberos database, 424-426
slave KDCs, 380-381

Banner keyword, sshd_config file, 347
BART

components, 100
overview, 99-102
programmatic output, 120
security considerations, 103-104

BART (Continued)
task map, 102-103
verbose output, 120

bart command, 99
bart compare command, 101
bart create command, 100-101, 104
Basic Audit Reporting Tool, See BART
basic privilege set, 190
Basic Security Module (BSM)

See auditing
See device allocation

Basic Solaris User rights profile, 226
Batchmode keyword, ssh_config file, 347
BindAddress keyword, ssh_config file, 347
binding control flag, PAM, 313
blowfish-cbc encryption algorithm,

ssh_config file, 347
Blowfish encryption algorithm

kernel provider, 279
policy.conf file, 69
ssh_config file, 347
using for password, 69

Bourne shell, privileged version, 185
bsmconv script

creating device_maps file, 94-95
description, 591
enabling auditing service, 566-567

bsmrecord command
[] (square brackets) in output, 599
description, 583
displaying audit record formats, 570-572
example, 570
listing all formats, 570
listing formats of class, 571-572
listing formats of program, 570-571
optional tokens ([]), 599

bsmunconv script, disabling auditing
service, 567-568

C
-c option

auditreduce command, 574, 575
bsmrecord command, 571-572

-C option, auditreduce command, 573
C shell, privileged version, 185
c2audit:audit_load entry, system file, 587

638 System Administration Guide: Security Services • January 2005

cache, credential, 520
canon_user_plugin option, SASL and, 319
caret (^) in audit class prefixes, 595
CD-ROM drives

allocating, 90
security, 97

cdrw command, authorizations required, 237
ChallengeResponseAuthentication

keyword, See
KbdInteractiveAuthentication
keyword

changepw principal, 488
changing

ACL entries, 143
allocatable devices, 85-86
audit_class file, 557
audit_control file, 551-553
audit_event file, 557-559
default password algorithm, 67-68
device policy, 79-80
file ownership, 135-136
file permissions

absolute mode, 137-138
special, 139-140
symbolic mode, 137

group ownership of file, 136
passphrase for Solaris Secure Shell, 333
password algorithm for a domain, 69
password algorithm task map, 67-68
properties of role, 213-215
rights profile contents, 215-218
rights profile from command line, 216
root user into role, 206-208
secret keys, 295
special file permissions, 139-140
user properties from command line, 219
your password with kpasswd, 500
your password with passwd, 500

CheckHostIP keyword, ssh_config file, 347
chgrp command

description, 124
syntax, 136

chkey command, 295, 302
chmod command

changing special permissions, 139-140
description, 124
syntax, 139

choosing, your password, 499

chown command, description, 124
Cipher keyword, sshd_config file, 347
Ciphers keyword, Solaris Secure Shell, 347
cklist.rpt file, 152, 156
CKLISTPATH_level variable (ASET), 165
classes, See audit classes
cleaning up, binary audit files, 577-578
clear protection level, 506
ClearAllForwardings keyword, Solaris

Secure Shell port forwarding, 347
client names, planning for in Kerberos, 379-380
ClientAliveCountMax keyword, Solaris

Secure Shell port forwarding, 347
ClientAliveInterval keyword, Solaris

Secure Shell port forwarding, 347
clients

AUTH_DH client-server session, 295-298
configuring for Solaris Secure Shell, 344, 346
configuring Kerberos, 407-418
definition in Kerberos, 515

clntconfig principal, creating, 391
clock skew

Kerberos and, 383, 418-419
clock synchronizing

Kerberos and, 383, 392, 396, 434
cmd audit token, 538, 603
cnt audit policy, description, 544
combining audit files

auditreduce command, 572-573, 583
from different zones, 592

command execution, Solaris Secure Shell, 345
command-line equivalents of SEAM

Administration Tool, 459
commands

See also individual commands
ACL commands, 132
auditing commands, 581
cryptographic framework commands, 266
determining user’s privileged

commands, 250-251
device allocation commands, 93
device policy commands, 91-92
file protection commands, 123
for administering privileges, 255
Kerberos, 513
RBAC administration commands, 236-237
Secure RPC commands, 295
Solaris Secure Shell commands, 355-357

639

commands (Continued)
that assign privileges, 191
that check for privileges, 183
user-level cryptographic commands, 266-267

common keys
calculating, 297
DH authentication and, 294-298

components
BART, 100
device allocation mechanism, 92
RBAC, 179-182
Solaris Secure Shell user session, 345

Compression keyword, Solaris Secure
Shell, 347

CompressionLevel keyword, ssh_config
file, 347

Computer Emergency Response
Team/Coordination Center (CERT/CC), 57

computer security, See system security
computing

DH key, 301
digest of a file, 272-273
MAC of a file, 273-275
secret key, 270-272

configuration decisions
auditing

file storage, 541-542
policy, 543-546
who and what to audit, 542-543
zones, 540-541

Kerberos
client and service principal

names, 379-380
clock synchronization, 383
database propagation, 382
mapping host names onto realms, 379
number of realms, 378-379
ports, 380
realm hierarchy, 379
realm names, 378
realms, 378-379
slave KDCs, 380-381

password algorithm, 41
configuration files

ASET, 150
audit_class file, 587
audit_control file, 551-553, 582, 587
audit_event file, 589

configuration files (Continued)
audit_startup script, 589
audit_user database, 589
device_maps file, 94
nsswitch.conf file, 39
pam.conf file, 311, 314
for password algorithms, 41
policy.conf file, 41, 68-69, 236
Solaris Secure Shell, 344
syslog.conf file, 64-65, 257, 587
system file, 587
with privilege information, 256-257

configuring
ahlt audit policy, 564
ASET, 158-161, 161
audit_class file, 557
audit_control file, 551-553
audit_event file, 557-559
audit files, 550-559
audit files task map, 550
audit policy, 563-565
audit policy temporarily, 564-565
audit_startup script, 563-565
audit trail overflow prevention, 578-579
audit_user database, 555-556
audit_warn script, 562-563
auditconfig command, 586
auditing in zones, 592-593
auditing service task map, 559
custom roles, 204
device allocation, 81-82
device policy, 78
devices task map, 77
DH key for NIS+ user, 300-301
DH key for NIS user, 302-303
DH key in NIS, 301-302
DH key in NIS+, 299-300
dial-up logins, 66
hardware security, 75-76
host-based authentication for Solaris Secure

Shell, 326-328
Kerberos

adding administration principals, 389
clients, 407-418
cross-realm authentication, 396-399
master KDC server, 387-392
NFS servers, 401-403
overview, 385-440

640 System Administration Guide: Security Services • January 2005

configuring, Kerberos (Continued)
slave KDC server, 392-396
task map, 385-386

name service, 208
password for hardware access, 75-76
perzone audit policy, 565
port forwarding in Solaris Secure

Shell, 329-330
RBAC, 197-208
RBAC task map, 196-197
rights profile from command line, 216
rights profiles, 215-218
roles, 199-202, 213-215

from command line, 202-204
root user as role, 206-208
Solaris Secure Shell, 325-326

clients, 346
servers, 346

Solaris Secure Shell task map, 326
ssh-agent daemon, 336
textual audit logs, 553-555

configuring application servers, 399-400
ConnectionAttempts keyword,

ssh_config file, 347
console

displaying su command attempts, 73
root access prevention, 74
root access restriction to, 74

CONSOLE in Solaris Secure Shell, 351
consumers, definition in cryptographic

framework, 264
context-sensitive help, SEAM Administration

Tool, 460
control flags, PAM, 313
control manifests (BART), 99
controlling

access to system hardware, 75
system access, 59-60
system usage, 46-51

conversation keys
decrypting in secure RPC, 296-297
generating in secure RPC, 296

converting
audit records to readable format, 577, 585

copying
ACL entries, 142
files using Solaris Secure Shell, 338-339

copying audit messages to single file, 575

cost control, and auditing, 546
crammd5.so.1 plug-in, SASL and, 318
creating

audit trail
auditd daemon, 597
auditd daemon’s role, 582

credential table, 403
customized role, 204
d_passwd file, 66
dial-up passwords, 65-67
/etc/d_passwd file, 66
file digests, 272-273
keytab file, 390
local user, 207
new device-clean scripts, 98
new policy (Kerberos), 468, 479-480
new principal (Kerberos), 468-470
Operator role, 200
partitions for binary audit files, 560-562
passwords for temporary user, 66
rights profiles, 215-218
rights profiles with Solaris Management

Console, 217
roles

for particular profiles, 199-202
on command line, 202-204
with limited scope, 201

root user as role, 206-208
secret keys

for encryption, 270-272
security-related roles, 201
Solaris Secure Shell keys, 331-333
stash file, 396, 434
System Administrator role, 200
tickets with kinit, 496

cred database
adding client credential, 299
adding user credential, 300
DH authentication, 294-298

cred table
DH authentication and, 295
information stored by server, 297

credential
cache, 520
description, 296, 515
obtaining for a server, 521-522
obtaining for a TGS, 520-521
or tickets, 363

641

credential table, adding single entry to, 403-404
credentials, mapping, 381
crontab files

authorizations required, 237
running ASET periodically, 150
stop running ASET periodically, 169

cross-realm authentication,
configuring, 396-399

CRYPT_ALGORITHMS_ALLOW keyword,
policy.conf file, 42

CRYPT_ALGORITHMS_DEPRECATE keyword,
policy.conf file, 42

crypt_bsdbf password algorithm, 41
crypt_bsdmd5 password algorithm, 41
crypt command, file security, 51
crypt.conf file

changing with new password module, 71-72
third-party password modules, 71-72

CRYPT_DEFAULT keyword, policy.conf
file, 42

CRYPT_DEFAULT system variable, 68
crypt_sunmd5 password algorithm, 41
crypt_unix password algorithm, 41, 68-72
Crypto Management (RBAC)

creating role, 205-206
use of rights profile, 282, 284

cryptoadm command
description, 265
disabling cryptographic mechanisms, 282,

284
disabling hardware mechanisms, 287-288
installing PKCS #11 library, 282
listing providers, 279
-m option, 282, 284
-p option, 282, 284
restoring kernel software provider, 284

cryptoadm install command, installing
PKCS #11 library, 282

cryptographic framework
administering with role, 205-206
connecting providers, 267
consumers, 264
cryptoadm command, 265, 266
definition of terms, 264
description, 263-264
elfsign command, 266, 267
error messages, 277
installing providers, 268

cryptographic framework (Continued)
interacting with, 265-266
listing providers, 278-280
PKCS #11 library, 264
providers, 264
refreshing, 288-289
registering providers, 267
restarting, 288-289
signing providers, 267
task maps, 269-270
user-level commands, 266-267
zones and, 268, 288-289

cryptographic services, See cryptographic
framework

Cryptoki, See PKCS #11 library
csh command, privileged version, 185
.cshrc file, path variable entry, 48
Custom Operator (RBAC), creating role, 204
customizing, manifests, 106-109
customizing a report (BART), 115-116

D
-d option

auditreduce command, 575
getfacl command, 145
praudit command, 585
setfacl command, 144

-D option
auditreduce command, 573
ppriv command, 242

d_passwd file
creating, 66
description, 44
disabling dial-up logins temporarily, 67

daemons
auditd, 582
kcfd, 266
keyserv, 299
nscd (name service cache daemon), 200, 236
rpc.nispasswd, 70
running with privileges, 188
ssh-agent, 335-336, 336
sshd, 343-345
table of Kerberos, 513-514
vold, 84

Data Encryption Standard, See DES encryption

642 System Administration Guide: Security Services • January 2005

data forwarding, Solaris Secure Shell, 345
databases

audit_user, 589
auth_attr, 232-233
backing up and propagating KDC, 424-426
creating KDC, 389
cred for Secure NFS, 295, 299
exec_attr, 234-235
KDC propagation, 382
prof_attr, 233-234
publickey for Secure NFS, 295
RBAC, 229-236
secret keys, 295
user_attr, 231
with privilege information, 256-257

deallocate command
allocate error state, 94
authorizations for, 94
authorizations required, 238
description, 93
device-clean scripts and, 98
using, 90-91

deallocating
devices, 90-91
forcibly, 85
microphone, 91

debugging, privileges, 242
debugging sequence number, 612
decrypt command

description, 267
syntax, 276

decrypting
conversation keys, 296-297
files, 276
secret keys, 295

default/login file, description, 354
default_realm section, krb5.conf file, 388
defaultpriv keyword, user_attr

database, 257
defaults

ACL entries for directories, 131-132
audit_startup script, 589
praudit output format, 585
privilege settings in policy.conf file, 256
system-wide auditing, 593
system-wide in policy.conf file, 41
umask value, 127-128

delegating, RBAC authorizations, 228-229

delete_entry command, ktutil
command, 493

deleting
ACL entries, 132, 143-144
archived audit files, 578
audit files, 572
host’s service, 493
not_terminated audit files, 577-578
policies (Kerberos), 482
principal (Kerberos), 472
rights profiles, 215

DenyGroups keyword, sshd_config file, 347
DenyUsers keyword, sshd_config file, 347
DES encryption

kernel provider, 279
secure NFS, 294

destroying, tickets with kdestroy, 498
determining

files with setuid permissions, 146
if file has ACL, 140
privileges on a process, 241-242
privileges task map, 248

/dev/arp device, getting IP MIB-II
information, 81

/dev/urandom device, 270-272
devfsadm command, description, 92
device_allocate file

description, 95-97
format, 96
sample, 85, 95

device allocation
adding devices, 81-82
allocatable devices, 96, 97
allocate command, 93
allocate error state, 94
allocating devices, 87-88
auditing, 86-87
authorizations for commands, 94
authorizing users to allocate, 83-84
changing allocatable devices, 85-86
commands, 93
components of mechanism, 92
configuration file, 94
deallocate command, 93

device-clean scripts and, 98
using, 90-91

deallocating devices, 90-91
device_allocate file, 95-97

643

device allocation (Continued)
device-clean scripts

audio devices, 98
CD-ROM drives, 97
description, 97-98
diskette drives, 97
options, 98
tape drives, 97
writing new scripts, 98

device_maps file, 94-95
disabling, 567
enabling, 82-83
examples, 88
forcibly allocating devices, 84-85
forcibly deallocating devices, 85
making device allocatable, 82-83
managing devices, 81-82
mounting devices, 88-90
not requiring authorization, 86
preventing, 86
requiring authorization, 85-86
task map, 81-82
unmounting allocated device, 91
user procedures, 87
using, 87
using allocate command, 87-88
viewing information, 84

device-clean scripts
and object reuse, 97-98
audio devices, 98
CD-ROM drives, 97
description, 97-98
diskette drives, 97
options, 98
tape drives, 96, 97
writing new scripts, 98

device management, See device policy
device_maps file

description, 94
format, 94
sample entries, 94

device policy
add_drv command, 91
auditing changes, 80
changing, 79-80
commands, 91
configuring, 78-81
kernel protection, 91-98

device policy (Continued)
managing devices, 78
overview, 44-46
removing from device, 80
task map, 78
update_drv command, 79-80, 91
viewing, 78-79

Device Security (RBAC), creating role, 201
devices

adding device policy, 79-80
allocating for use, 87
auditing allocation of, 86-87
auditing policy changes, 80
authorizing users to allocate, 83-84
changing device policy, 79-80
changing which are allocatable, 85-86
deallocating a device, 90-91
/dev/urandom device, 270-272
device allocation

See device allocation
forcibly allocating, 84-85
forcibly deallocating, 85
getting IP MIB-II information, 81
listing, 78-79
listing device names, 84
login access control, 43
making allocatable, 82-83
managing, 78
managing allocation of, 81-82
mounting allocated devices, 88-90
not requiring authorization for use, 86
policy commands, 91-92
preventing use of all, 86
preventing use of some, 86
privilege model and, 193
protecting by device allocation, 44
protecting in the kernel, 44
removing policy, 80
security, 44-46
superuser model and, 193
unmounting allocated device, 91
viewing allocation information, 84
viewing device policy, 78-79
zones and, 45

dfstab file
security modes, 405
sharing files, 52

644 System Administration Guide: Security Services • January 2005

DH authentication
configuring in NIS, 301-302
configuring in NIS+, 299-300
description, 294-298
for NIS+ client, 300
for NIS client, 301-302
mounting files with, 303
sharing files with, 303

DHCP Management (RBAC), creating role, 201
dial-up passwords

creating, 65-67
disabling, 44
disabling temporarily, 67
/etc/d_passwd file, 44
security, 43-44

dialups file, creating, 66
Diffie-Hellman authentication, See DH

authentication
digest command

description, 266
example, 273
syntax, 272

digestmd5.so.1 plug-in, SASL and, 318
digests

computing for file, 272-273
of files, 272-273, 273

dir line, audit_control file, 588
direct realms, 398-399
directories

See also files
ACL entries, 131-132
audit_control file definitions, 588
audit directories full, 582, 591
auditd daemon pointer, 582
checklist task setting (ASET), 159, 165
displaying files and related

information, 124, 134-135
master files (ASET), 157
mounting audit directories, 597
permissions

defaults, 127-128
description, 125

public directories, 127
reports (ASET), 156
working directory (ASET), 163, 167-168

disabling
abort sequence, 76
audit policy, 563-565

disabling (Continued)
auditing service, 567-568
cryptographic mechanisms, 282
device allocation, 567
dial-up logins temporarily, 67
dial-up passwords, 67
direct root access, 74
executable stacks, 147
executables that compromise

security, 132-133
hardware mechanisms, 287-288
keyboard abort, 76
keyboard shutdown, 76
logging of executable stack messages, 147
logins temporarily, 62-63
programs from using executable stacks, 147
remote root access, 74
service on a host (Kerberos), 493-494
system abort sequence, 76
user logins, 62-63

disk partitioning, for binary audit files, 560-562
disk-space requirements, 546
diskette drives

allocating, 89-90
device-clean scripts, 97

displaying
ACL entries, 132, 140, 144-145
allocatable devices, 84
ASET task status, 151, 154
audit policies, 563
audit record formats, 570-572
audit records, 576-577
audit records in XML format, 577
device policy, 78-79
file information, 134-135
files and related information, 124
format of audit records, 570-572
providers in the cryptographic

framework, 278-280
roles you can assume, 209, 236
root access attempts on console, 73
selected audit records, 572-573
su command attempts on console, 73
sublist of principals (Kerberos), 465
user’s login status, 61
users with no passwords, 62

dminfo command, 94
DNS, Kerberos and, 379-380

645

domain_realm section
krb5.conf file, 379, 388

dot (.)
authorization name separator, 228
displaying hidden files, 134
path variable entry, 48

double dollar sign ($$), parent shell process
number, 241

DSAAuthentication keyword, See
PubkeyAuthentication keyword

DTD for praudit command, 585
.dtprofile script, use in Solaris Secure

Shell, 336
duplicating, principals (Kerberos), 470
DynamicForward keyword, ssh_config

file, 347

E
-e option

auditreduce command, 575
ppriv command, 242

ebusy string, audit_warn script, 591
eeprom command, 39, 75-76
eeprom.rpt file, 153, 156
effective privilege set, 189
efficiency, auditing and, 547
eject command, device cleanup and, 97
elfsign command

description, 266, 267
enabling

auditing, 566-567
auditing service, 566-567
auditing service task map, 559
cryptographic mechanisms, 283
device allocation, 82-83
Kerberized applications only, 439-440
kernel software provider use, 284
keyboard abort, 76
mechanisms and features on hardware

provider, 288
encrypt command

description, 267
error messages, 277
syntax, 271
troubleshooting, 277

encrypting
communications between hosts, 334
encrypt command, 275-277
files, 51, 270, 275-277
network traffic between hosts, 321-324
passwords, 67-68
private key of NIS user, 302
Secure NFS, 294
using user-level commands, 266-267

encryption
DES algorithm, 294
generating symmetric key for, 270-272
installing third-party password

modules, 71-72
list of password algorithms, 41
password algorithm, 41
privacy service, 361
specifying algorithms in ssh_config

file, 347
specifying password algorithm

locally, 67-68
specifying password algorithms in

policy.conf file, 41
with -x option, 505

ending, signal received during auditing
shutdown, 591

env.rpt file, 153, 156
environment variables

See also variables
ASETDIR (ASET), 163
ASETSECLEVEL (ASET), 163
audit token for, 604
CKLISTPATH_level (ASET), 159, 165
overriding proxy servers and ports, 340
PATH, 47
PERIODIC_SCHEDULE (ASET), 160, 163
presence in audit records, 544, 600
Solaris Secure Shell and, 351
summary (ASET), 162
TASKS (ASET), 159, 164
UID_ALIASES (ASET), 157, 160, 164
use with ssh-agent command, 356
YPCHECK (ASET), 160, 165

equal sign (=), file permissions symbol, 128
error messages

encrypt command, 277
Kerberos, 441-453
with kpasswd, 500

646 System Administration Guide: Security Services • January 2005

errors
allocate error state, 94
audit directories full, 582, 591
internal errors, 591

EscapeChar keyword, ssh_config file, 347
/etc/d_passwd file

and /etc/passwd file, 44
creating, 66
disabling dial-up logins temporarily, 67

/etc/default/kbd file, 76
/etc/default/login file

description, 354
login default settings, 64
preventing root access to console, 74
restricting root access to console, 74
Solaris Secure Shell and, 351

/etc/default/su file
displaying su command attempts on

console, 73
monitoring access attempts to the

console, 73
monitoring su command, 72-73

/etc/dfs/dfstab file
security modes, 405
sharing files, 52

/etc/dialups file, creating, 66
/etc/group file, ASET checks, 152
/etc/hosts.equiv file, description, 354
/etc/krb5/kadm5.acl file, description, 512
/etc/krb5/kadm5.keytab file,

description, 512
/etc/krb5/kdc.conf file, description, 512
/etc/krb5/kpropd.acl file,

description, 512
/etc/krb5/krb5.conf file, description, 512
/etc/krb5/krb5.keytab file,

description, 512
/etc/krb5/warn.conf file, description, 512
/etc/logindevperm file, 43
/etc/nologin file

description, 354
disabling user logins temporarily, 62-63

/etc/nsswitch.conf file, 39
/etc/pam.conf file

control flags, 313
description, 311
examples, 314
Kerberos and, 512

/etc/pam.conf file (Continued)
service names, 312

/etc/passwd file, ASET checks, 152
/etc/publickey file, DH authentication

and, 295
/etc/security/audit_event file, audit

events and, 533
/etc/security/audit_startup file, 589
/etc/security/audit_warn script, 590
/etc/security/bsmconv script, 94-95

description, 591
/etc/security/crypt.conf file

changing with new password module, 71-72
third-party password modules, 71-72

/etc/security/device_allocate file, 95
/etc/security/device_maps file, 94
/etc/security/policy.conf file,

algorithms configuration, 68-69
/etc/ssh_host_dsa_key.pub file,

description, 353
/etc/ssh_host_key.pub file,

description, 353
/etc/ssh_host_rsa_key.pub file,

description, 353
/etc/ssh/shosts.equiv file,

description, 354
/etc/ssh/ssh_config file

configuring Solaris Secure Shell, 346
description, 354
host-specific parameters, 350
keywords, 347-351
override, 355

/etc/ssh/ssh_host_dsa_key file,
description, 353

/etc/ssh/ssh_host_key file
description, 353
override, 355

/etc/ssh/ssh_host_rsa_key file,
description, 353

/etc/ssh/ssh_known_hosts file
controlling distribution, 352
description, 353
override, 355
secure distribution, 352

/etc/ssh/sshd_config file
description, 353
keywords, 347-351

/etc/ssh/sshrc file, description, 354

647

/etc/syslog.conf file
auditing and, 553, 587
executable stack messages and, 133
failed logins and, 64-65
PAM and, 311

/etc/system file, 587
event, description, 533
event modifier field flags (header token), 606
exec_args audit token

argv policy and, 604
format, 604

exec_attr database
description, 234-235
summary, 229

exec audit class, 594
exec_env audit token, format, 604
executable stacks

disabling logging messages, 147
logging messages, 133
protecting against, 132, 147

execute permissions, symbolic mode, 128
execution log (ASET), 154
exit audit token, format, 604
EXTERNAL security mechanism plug-in, SASL

and, 318

F
-f option

Kerberized commands, 504, 506-508
setfacl command, 142

-F option
deallocate command, 94
Kerberized commands, 505, 506-508
st_clean script, 98

failed login attempts
loginlog file, 63-64
syslog.conf file, 64-65

failure
audit class prefix, 595
turning off audit classes for, 595

FallBackToRsh keyword, ssh_config
file, 348

fd_clean script, description, 97
file_attr_acc audit class, 594
file_attr_mod audit class, 594
file audit token, format, 605

file_close audit class, 594
file_creation audit class, 594
file_deletion audit class, 594
file permission modes

absolute mode, 128
symbolic mode, 128

FILE privileges, 187
file_read audit class, 594
file systems

NFS, 293
security

authentication and NFS, 293
TMPFS file system, 127

sharing files, 52
TMPFS, 127

file vnode audit token, 603
file_write audit class, 594
files

ACL entries
adding or modifying, 143
checking, 140
deleting, 132, 143-144
displaying, 132, 144-145
setting, 141-142
valid entries, 131

ASET checks, 152
BART manifests, 117-118
changing ACL, 143
changing group ownership, 136
changing ownership, 124, 135-136
changing special file permissions, 139-140
computing a digest, 272-273
computing digests of, 272-273, 273
computing MAC of, 273-275
copying ACL entries, 142
copying with Solaris Secure Shell, 338-339
decrypting, 276
deleting ACL, 143-144
determining if has ACL, 140
digest of, 272-273
displaying ACL entries, 144-145
displaying file information, 134-135
displaying hidden files, 134
displaying information about, 124
encrypting, 270, 275-277
file types, 124
finding files with setuid permissions, 146
for administering Solaris Secure Shell, 353

648 System Administration Guide: Security Services • January 2005

files (Continued)
hashing, 270
kdc.conf, 517
Kerberos, 511-513
manifests (BART), 117-118
mounting with DH authentication, 303
ownership

and setgid permission, 126-127
and setuid permission, 126

permissions
absolute mode, 128, 137-138
changing, 124, 128-130, 137
defaults, 127-128
description, 125
setgid, 126-127
setuid, 126
sticky bit, 127
symbolic mode, 128, 137
umask value, 127-128

privileges relating to, 187
protecting with ACLs, 140-145
protecting with UNIX permissions, 134-140
public objects, 533
security

access restriction, 48
ACL, 51-52
changing ownership, 135-136
changing permissions, 128-130, 137
directory permissions, 125
displaying file information, 124, 134-135
encryption, 51, 270
file permissions, 125
file types, 124
special file permissions, 129
umask default, 127-128
UNIX permissions, 123-130
user classes, 124

setting ACL, 141-142
sharing with DH authentication, 303
special files, 125-127
symbols of file type, 124
syslog.conf file, 587
verifying integrity with digest, 272-273
with privilege information, 256-257

find command, finding files with setuid
permissions, 146

firewall.rpt file, 153, 156

firewall systems
ASET setup, 153
connecting from outside, 340-341
outside connections with Solaris Secure Shell

from command line, 340-341
from configuration file, 339-341

packet smashing, 56-57
packet transfers, 56-57
secure host connections, 339
security, 55-56
trusted hosts, 56

flags line
audit_control file, 588
plugin line and, 553
process preselection mask, 596

forced cleanup, st_clean script, 98
format of audit records, bsmrecord

command, 570
forwardable tickets

definition, 516
description, 363
example, 496
with -F option, 505, 506-508
with -f option, 504, 506-508

ForwardAgent keyword, Solaris Secure Shell
forwarded authentication, 348

ForwardX11 keyword, Solaris Secure Shell port
forwarding, 348

FQDN (Fully Qualified Domain Name), in
Kerberos, 379-380

ftp command
description, 513
Kerberos and, 504-506
setting protection level in, 506

ftpd daemon, Kerberos and, 513-514

G
GatewayPorts keyword, Solaris Secure

Shell, 348
gateways, See firewall systems
generating

keys for Solaris Secure Shell, 331-333
secret keys, 295
Solaris Secure Shell keys, 331-333
symmetric key for encryption, 270-272

Generic Security Service API, See GSS-API

649

getdevpolicy command, description, 92
getfacl command

-a option, 144
-d option, 145
description, 132
displaying ACL entries, 144-145
examples, 144-145
verifying ACL entries, 141

getting
access to a specific service, 522-523
credential for a server, 521-522
credential for a TGS, 520-521

gkadmin command
See also SEAM Administration Tool
description, 513

.gkadmin file
description, 511
SEAM Administration Tool and, 459

GlobalKnownHostsFile keyword,
ssh_config file, 348

GlobalKnownHostsFile2 keyword, See
GlobalKnownHostsFile keyword

granting access to your account, 502-503
group ACL entries

default entries for directories, 131-132
description, 131
setting, 141-142

group audit policy
and groups token, 544, 606
description, 544

group audit token, replaced by groups
token, 605

group ID numbers (GIDs), special logins
and, 42

groups, changing file ownership, 136
groups audit token, 606
GSS-API

authentication in Solaris Secure Shell, 322
credentials in secure RPC, 299-300
credentials in Solaris Secure Shell, 344
Kerberos and, 362, 375

gssapi.so.1 plug-in, SASL and, 318
GSSAPIAuthentication keyword, Solaris

Secure Shell, 348
GSSAPIDelegateCredentials keyword,

Solaris Secure Shell, 348
GSSAPIKeyExchange keyword, Solaris Secure

Shell, 348

GSSAPIStoreDelegatedCredentials
keyword, ssh_config file, 348

gsscred command, description, 513
gsscred table, using, 525
gssd daemon, Kerberos and, 513-514

H
-h option, bsmrecord command, 570
hard disk, space requirements for auditing, 546
hard string, audit_warn script, 591
hardware

listing attached hardware accelerators, 286
protecting, 38-39, 75-76
requiring password for access, 75-76

hardware providers
disabling cryptographic

mechanisms, 287-288
enabling mechanisms and features on, 288
listing, 286
loading, 286

hashing, files, 270
header audit token

event-modifier field flags, 606
format, 606
order in audit record, 606

help
SEAM Administration Tool, 459-460, 460
URL for online, 384

Help Contents, SEAM Administration Tool, 460
hierarchical realms

configuring, 397-398
in Kerberos, 367-369, 379

high ASET security level, 151
hmac-md5 algorithm, ssh_config file, 349
hmac-sha1 encryption algorithm,

ssh_config file, 349
host-based authentication

configuring in Solaris Secure Shell, 326-328
description, 322

Host keyword
ssh_config file, 348, 350

host names, mapping onto realms, 379
host principal, creating, 391
host principal, DNS and, 380
HostbasedAuthentication keyword,

Solaris Secure Shell, 348

650 System Administration Guide: Security Services • January 2005

HostbasedUsesNamesFromPacketOnly
keyword, sshd_config file, 348

HostKey keyword, sshd_config file, 348
HostKeyAlgorithms keyword, ssh_config

file, 348
HostKeyAlias keyword, ssh_config

file, 348
hosts

disabling Kerberos service on, 493-494
Solaris Secure Shell hosts, 322
trusted hosts, 56

hosts.equiv file, description, 354

I
-i option

bart create command, 104, 109
encrypt command, 275
st_clean script, 98

-I option
bart create command, 104
st_clean script, 98

identity files (Solaris Secure Shell), naming
conventions, 353

IdentityFile keyword, ssh_config
file, 348

IDs
audit

mechanism, 596
overview, 529-530

audit session, 596
mapping UNIX to Kerberos principals, 525

IgnoreRhosts keyword, sshd_config
file, 348

IgnoreUserKnownHosts keyword,
sshd_config file, 348

in_addr audit token, format, 607
inheritable privilege set, 190
initial ticket, definition, 516
install subcommand, cryptoadm

command, 282
installing

password encryption module, 71-72
providers in cryptographic framework, 268

instance, in principal names, 366-367
integrity

Kerberos and, 361

integrity (Continued)
security service, 369

interactively running ASET, 167-168
INTERNAL plug-in, SASL and, 318
Internet firewall setup, 55-56
Internet-related tokens

in_addr token, 607
ip token, 607
iport token, 608
socket token, 612

invalid ticket, definition, 516
ioctl audit class, 594
ioctl() system calls, 594

AUDIO_SETINFO(), 98
IP addresses, Solaris Secure Shell checking, 347
ip audit token, format, 607
IP MIB-II, getting information from

/dev/arp, 81
ipc audit class, 594
ipc audit token, 607

format, 607
ipc_perm audit token, format, 608
IPC privileges, 188
ipc type field values (ipc token), 607
iport audit token, format, 608
item size field, arbitrary token, 601

J
JASS toolkit, pointer to, 49

K
-k option

encrypt command, 275
Kerberized commands, 505
mac command, 274

-K option
Kerberized commands, 505
usermod command, 245

.k5.REALM file, description, 512

.k5login file
description, 502-503, 511
rather than revealing password, 502

kadm5.acl file
description, 512

651

kadm5.acl file (Continued)
format of entries, 474
master KDC entry, 389, 422
new principals and, 468, 470

kadm5.keytab file
description, 488, 512

kadmin command
creating host principal, 391
description, 513
ktadd command, 489-490
ktremove command, 491
removing principals from keytab with, 491
SEAM Administration Tool and, 458

kadmin.local command
adding administration principals, 389
automating creation of principals, 463
creating keytab file, 390
description, 513

kadmin.log file, description, 512
kadmind daemon

Kerberos and, 514
master KDC and, 514

kadmind principal, 488
kbd file, 76
KbdInteractiveAuthentication keyword,

Solaris Secure Shell, 348
kcfd daemon, 288-289
kclient command, description, 513
kdb5_util command

creating KDC database, 389
creating stash file, 396, 434
description, 513

KDC
backing up and propagating, 424-426
configuring master, 387-392
configuring server, 387-396
configuring slave, 392-396
copying administration files from slave to

master, 394, 433
creating database, 389
creating host principal, 391
database propagation, 382
master

definition, 514
planning, 380-381
ports, 380
restricting access to servers, 440
slave, 380-381

KDC, slave (Continued)
definition, 514

slave or master, 368-369, 387
starting daemon, 396, 434
swapping master and slave, 419-424
synchronizing clocks, 392, 396, 434

kdc.conf file
description, 512
ticket lifetime and, 517

kdc.log file, description, 512
kdestroy command

description, 513
example, 498

KeepAlive keyword, Solaris Secure Shell, 348
Kerberos

administering, 457-494
Administration Tool

See SEAM Administration Tool
commands, 503-510, 513
components of, 370-371
configuration decisions, 377-384
configuring KDC servers, 387-396
daemons, 513-514
dfstab file option, 405
enabling Kerberized applications

only, 439-440
error messages, 441-453
examples of using Kerberized

commands, 508-510
files, 511-513
gaining access to server, 520-523
granting access to your account, 502-503
Kerberos V5 protocol, 362
online help, 384
options to Kerberized commands, 504
overview

authentication system, 362-369, 520
Kerberized commands, 504-506

password management, 499-503
planning for, 377-384
realms

See realms (Kerberos)
reference, 511-526
remote applications, 366
table of network command options, 505
terminology, 514-519
troubleshooting, 453
using, 495-510

652 System Administration Guide: Security Services • January 2005

Kerberos authentication
and Secure RPC, 294
dfstab file option, 405

Kerberos commands, 503-510
enabling only Kerberized, 439-440
examples, 508-510

kern.notice entry, syslog.conf file, 133
kernel providers, listing, 279
Key Distribution Center, See KDC
KEYBOARD_ABORT system variable, 76
keylogin command

use, 295
verifying DH authentication setup, 300

KeyRegenerationInterval keyword,
sshd_config file, 348

keys
creating DH key for NIS user, 302-303
creating for Solaris Secure Shell, 331-333
definition in Kerberos, 515
generating for Solaris Secure Shell, 331-333
generating symmetric key, 270-272
service key, 487-494
session keys

Kerberos authentication and, 520
using for MAC, 274

keyserv daemon, 299
keyserver

description, 295
starting, 299

keytab file
adding master KDC’s host principal to, 392
adding service principal to, 488, 489-490
administering, 487-494
administering with ktutil command, 488
creating, 390
disabling a host’s service with

delete_entry command, 493
read into keytab buffer with read_kt

command, 492, 493
removing principals with ktremove

command, 491
removing service principal from, 491
viewing contents with ktutil

command, 491, 492
viewing keylist buffer with list

command, 492, 493
keytab option, SASL and, 319

keywords
See also specific keyword
attribute in BART, 119
command-line overrides in Solaris Secure

Shell, 356
Solaris Secure Shell, 347-351

kinit command
description, 513
example, 496
-F option, 496
ticket lifetime, 517

klist command
description, 513
example, 497-498
-f option, 497-498

known_hosts file
controlling distribution, 352
description, 353

Korn shell, privileged version, 185
kpasswd command

description, 513
error message, 500
example, 501
passwd command and, 500

kprop command, description, 513
kpropd.acl file, description, 512
kpropd daemon, Kerberos and, 514
kproplog command, description, 513
krb5.conf file

description, 512
domain_realm section, 379
editing, 388
ports definition, 380

krb5.keytab file, description, 512
krb5cc_uid file, description, 512
krb5kdc daemon

Kerberos and, 514
master KDC and, 514
starting, 396, 434

ksh command, privileged version, 185
ktadd command

adding service principal, 488, 489-490
syntax, 489

ktkt_warnd daemon
Kerberos and, 513-514, 514

ktremove command, 491
ktutil command

administering keytab file, 488

653

ktutil command (Continued)
delete_entry command, 493
description, 513
list command, 492, 493
read_kt command, 492, 493
viewing list of principals, 491, 492

L
-l option

digest command, 272
encrypt command, 271
mac command, 273
praudit command, 585

-L option, ssh command, 337-338
LDAP name service

passwords, 40
specifying password algorithm, 70-71

least privilege, principle of, 187
libraries, user-level providers, 279
lifetime of ticket, in Kerberos, 517-518
limit privilege set, 190
limiting, use of privileges by user or

role, 245-247
limitpriv keyword, user_attr

database, 257
list command, 492, 493
list_devices command

authorizations for, 94
authorizations required, 238
description, 93

list privilege, SEAM Administration Tool
and, 486

ListenAddress keyword, sshd_config
file, 348

listing
available providers in cryptographic

framework, 278-280
cryptographic framework providers, 286
device policy, 78-79
hardware providers, 286
providers in the cryptographic

framework, 278-280
roles you can assume, 209, 236
users with no passwords, 62

LocalForward keyword, ssh_config
file, 348

log files
audit records, 535, 577
BART

programmatic output, 120-121
verbose output, 120-121

configuring for auditing service, 553-555
examining audit records, 583
execution log (ASET), 154
failed login attempts, 64-65
monitoring su command, 72-73
space for audit records, 582
syslog audit records, 587

log_level option, SASL and, 320
logadm command, archiving textual audit

files, 578
logging in

and AUTH_DH, 295
disabling temporarily, 62-63
displaying user’s login status, 61
log of failed logins, 64-65
monitoring failures, 63-64
root login

account, 42
restricting to console, 74
tracking, 46

security
access control on devices, 43
access restrictions, 39
saving failed attempts, 63-64
system access control, 39
tracking root login, 46

system logins, 42
task map, 60
users’ basic privilege set, 190
with Solaris Secure Shell, 334-335

login environment variables, Solaris Secure
Shell and, 351

login file
login default settings, 64

.login file, path variable entry, 48
login file

preventing root access to console, 74
restricting root access to console, 74

login_logout audit class, 594
LoginGraceTime keyword, sshd_config

file, 349
loginlog file, saving failed login

attempts, 63-64

654 System Administration Guide: Security Services • January 2005

logins command
displaying user’s login status, 61
displaying users with no passwords, 62
syntax, 61

LogLevel keyword, Solaris Secure Shell, 349
LookupClientHostname keyword,

sshd_config file, 349
low ASET security level, 150

M
-m option

cryptoadm command, 282, 284
Kerberized commands, 505

-M option, auditreduce command, 573
mac command

description, 266
syntax, 273

machine security, See system security
MACS keyword, Solaris Secure Shell, 349
mail, using with Solaris Secure Shell, 337-338
makedbm command, description, 236
managing

See also administering
audit files, 572-573, 578-579
audit records task map, 569-570
audit trail overflow, 578-579
auditing, 549
auditing in zones, 592-593
device allocation task map, 81-82
devices, 81-82
file permissions, 133-134
passwords with Kerberos, 499-503
privileges task map, 240
RBAC task map, 212-213

manifests
See also bart create
control, 99
customizing, 106-109
file format, 117-118
test, 101

mapping
host names onto realms (Kerberos), 379
UIDs to Kerberos principals, 525

mapping GSS credentials, 381
mappings, events to classes (auditing), 534

mask (auditing)
description of process preselection, 596
system-wide process preselection, 588

mask ACL entries
default entries for directories, 131-132
description, 131
setting, 141-142

master files (ASET), 152, 157, 158
master KDC

configuring, 387-392
definition, 514
slave KDCs and, 368-369, 387
swapping with slave KDC, 419-424

max_life value, description, 517
max_renewable_life value, description, 518
MaxAuthTries keyword, sshd_config

file, 349
MaxAuthTriesLog keyword, sshd_config

file, 349
MaxStartups keyword, sshd_config

file, 349
MD5 encryption algorithm

kernel provider, 279
policy.conf file, 68-69

mech_dh mechanism
GSS-API credentials, 345
secure RPC, 299-300

mech_krb mechanism, GSS-API
credentials, 345

mech_list option, SASL and, 319
mechanism, definition in cryptographic

framework, 265
mechanisms

disabling all on hardware provider, 287-288
enabling some on hardware provider, 288

medium ASET security level, 151
merging, binary audit records, 572-573
message authentication code (MAC), computing

for file, 273-275
messages file, executable stack messages, 133
microphone

allocating, 88
deallocating, 91

minfree line
audit_control file, 588
audit_warn condition, 590

minus sign (-)
audit class prefix, 595

655

minus sign (-) (Continued)
entry in sulog file, 73
file permissions symbol, 128
symbol of file type, 124

mode, definition in cryptographic
framework, 265

modifying
policies (Kerberos), 481-482
principal’s password (Kerberos), 471
principals (Kerberos), 470-471
role assignment to a user, 201
roles (RBAC), 213-215
users (RBAC), 218-219

modules
PAM, 314
password encryption, 41
types in PAM, 312

monitoring
audit trail in real time, 547
failed logins, 63-64
su command attempts, 46, 72-73
superuser access to console, 73
superuser task map, 72
system usage, 50
use of privileged commands, 206

mount command, with security attributes, 83
mounting

allocated CD-ROM, 90
allocated devices, 88-90
allocated diskette, 89-90
audit directories, 597
files with DH authentication, 303

mt command, tape device cleanup and, 97

N
-n option

audit command, 582
bart create command, 104

naflags line
audit_control file, 588
plugin line and, 553

name services
See also individual name services
scope and RBAC, 185

names
audit classes, 593

names (Continued)
audit files, 598
device names

device_maps file, 95, 96
naming conventions

audit directories, 552, 588
audit files, 598
devices, 84
RBAC authorizations, 228
Solaris Secure Shell identity files, 353

NET privileges, 188
network, privileges relating to, 188
network audit class, 594
network security

authentication, 54-55
authorizations, 54-55
controlling access, 52-57
firewall systems

need for, 55
packet smashing, 56-57
trusted hosts, 56

overview, 53
reporting problems, 57

Network Security (RBAC), creating role, 201
Network Time Protocol, See NTP
never-audit classes, audit_user database, 590
new features

auditing enhancements, 537-538
BART, 99-121
commands

bart compare, 101
bart create, 100-101
cryptoadm, 278
decrypt, 276
digest, 272-273
encrypt, 275-277
getdevpolicy, 78-79
kcfd, 288-289
kclient, 372
kpropd, 371
mac, 273-275
ppriv, 241-242
praudit -x, 576
ssh-keyscan, 356
ssh-keysign, 356

cryptographic framework, 263-268
device policy, 45
Kerberos enhancements, 371-373

656 System Administration Guide: Security Services • January 2005

new features (Continued)
PAM enhancements, 307-308
privileges, 186-193
process rights management, 186-193
SASL, 317
Solaris cryptographic framework, 263-268
Solaris Secure Shell enhancements, 324-325
strong password encryption, 41
system security enhancements, 37-38

newkey command
creating key for NIS user, 302-303
generating keys, 295

NFS file systems
ASET and, 161
authentication, 293
providing client-server security, 295-298
secure access with AUTH_DH, 303

NFS servers, configuring for Kerberos, 401-403
NIS+ name service

adding authenticated user, 301
ASET checks, 160
authentication, 293
cred database, 300
cred table, 295
passwords, 40
specifying password algorithm, 70

NIS name service
authentication, 293
passwords, 40
specifying password algorithm, 69

nisaddcred command
adding client credential, 299
generating keys, 295

no_class audit class, 594
nobody user, 52
noexec_user_stack_log variable, 133, 147
noexec_user_stack variable, 132, 147
NoHostAuthenticationForLocalHost

keyword, ssh_config file, 349
nologin file, description, 354
non_attrib audit class, 594
nonattributable classes, 588
nonhierarchical realms, in Kerberos, 367-369
nscd (name service cache daemon)

starting with svcadm command, 200
use, 236

nsswitch.conf file, login access
restrictions, 39

NTP
Kerberos and, 383
master KDC and, 392
slave KDC and, 396, 434

null audit class, 594
NumberOfPasswordPrompts keyword,

ssh_config file, 349

O
-o option, encrypt command, 275
-O option, auditreduce command, 572-573
object reuse requirements

device-clean scripts
tape drives, 97
writing new scripts, 98

for devices, 97-98
obtaining

access to a specific service, 522-523
credential for a server, 521-522
credential for a TGS, 520-521
forwardable tickets, 496
privileged commands, 213-215
privileges, 191, 244-245
privileges on a process, 241-242
tickets with kinit, 496

od command, generating secret keys, 270-272
online help

SEAM Administration Tool, 459-460
URL for, 384

opaque audit token, format, 608
OpenSSH, See Solaris Secure Shell
Operator (RBAC)

contents of rights profile, 225
creating role, 200
recommended role, 178

optional control flag, PAM, 313
options to Kerberized commands, 504
other ACL entries, description, 131
other audit class, 594
overflow prevention, audit trail, 578-579
ovsec_adm.xxxxx file, description, 512
ownership of files

ACLs and, 51-52, 130-132
changing, 124, 135-136
changing group ownership, 136

657

P
-p option

aset command, 169
bart create, 109
bsmrecord command, 570-571
cryptoadm command, 282, 284
logins command, 62

packages, Solaris Secure Shell, 352
packet transfers

firewall security, 55
packet smashing, 56-57

PAM
adding a module, 310
configuration file, 311, 314
control flags, 313
/etc/syslog.conf file, 311
Kerberos and, 371, 374
module types, 312
modules, 314
overview, 305
planning, 309
service names, 312
stacking, 307
task map, 308

pam_*.so.1 files, description, 314
pam.conf file

control flags, 313
description, 311
examples, 314
Kerberos and, 512
service names, 312

pam_roles command, description, 236
PAMAuthenticationViaKBDInt keyword,

sshd_config file, 349
panels, table of SEAM Administration

Tool, 483-486
passphrases

changing for Solaris Secure Shell, 333
encrypt command, 275
example, 334
mac command, 274
storing safely, 276
using for MAC, 274
using in Solaris Secure Shell, 333, 335-336

PASSREQ in Solaris Secure Shell, 351
passwd command

and kpasswd command, 500
and name services, 40

passwd file
and /etc/d_passwd file, 44
ASET checks, 152

password authentication, Solaris Secure
Shell, 322

PasswordAuthentication keyword, Solaris
Secure Shell, 349

passwords
authentication in Solaris Secure Shell, 322
changing with kpasswd command, 500
changing with passwd -r command, 40
changing with passwd command, 500
creating for dial-up, 65-67
dial-up passwords

disabling temporarily, 67
/etc/d_passwd file, 44

disabling dial-up temporarily, 67
displaying users with no passwords, 62
eliminating in Solaris Secure Shell, 335-336,

336
encryption algorithms, 41
finding users with no passwords, 62
granting access without revealing, 502-503
hardware access and, 75-76
installing third-party encryption

module, 71-72
LDAP, 40

specifying new password
algorithm, 70-71

local, 40
login security, 39
managing, 499-503
modifying a principal’s password, 471
NIS, 40

specifying new password algorithm, 69
NIS+, 40

specifying new password algorithm, 70
policies and, 500
PROM security mode, 39, 75-76
requiring for hardware access, 75-76
secret-key decryption, 295
specifying algorithm, 68-69

in name services, 69
locally, 67-68

suggestions on choosing, 499
system logins, 39, 42
task map, 60
UNIX and Kerberos, 499-503

658 System Administration Guide: Security Services • January 2005

passwords (Continued)
using Blowfish encryption algorithm for, 69
using MD5 encryption algorithm for, 68-69
using new algorithm, 69

path_attr audit token, 538, 609
path audit policy, description, 545
path audit token, format, 609
PATH environment variable

and security, 47
setting, 47

PATH in Solaris Secure Shell, 351
PERIODIC_SCHEDULE variable (ASET), 160,

163
permissions

ACLs and, 51-52, 130-132
ASET handling of, 150, 151
changing file permissions

absolute mode, 128, 137-138
chmod command, 124
symbolic mode, 128, 137

defaults, 127-128
directory permissions, 125
file permissions

absolute mode, 128, 137-138
changing, 128-130, 137
description, 125
special permissions, 127, 129
symbolic mode, 128, 137

finding files with setuid permissions, 146
setgid permissions

absolute mode, 129, 139
description, 126-127
symbolic mode, 128

setuid permissions
absolute mode, 129, 139
description, 126
security risks, 126
symbolic mode, 128

special file permissions, 125-127, 127, 129
sticky bit, 127
tune files (ASET), 157, 160
umask value, 127-128
user classes and, 124

PermitEmptyPasswords keyword,
sshd_config file, 349

PermitRootLogin keyword, sshd_config
file, 349

permitted privilege set, 190

PermitUserEnvironment keyword,
sshd_config file, 349

perzone audit policy
description, 545
setting, 565
using, 592-593

pfcsh command, description, 185
pfexec command, description, 236
pfksh command, description, 185
pfsh command, description, 185
physical security, description, 38-39
PKCS #11 library

adding as provider, 282
in Solaris cryptographic framework, 264

pkcs11_kernel.so user-level provider, 279
pkcs11_softtoken.so user-level

provider, 279
pkgadd command

installing third-party providers, 281
installing third-party software, 71

plain.so.1 plug-in, SASL and, 318
planning

auditing, 540-543
auditing in zones, 540-541
auditing task map, 539
Kerberos

client and service principal
names, 379-380

clock synchronization, 383
configuration decisions, 377-384
database propagation, 382
number of realms, 378-379
ports, 380
realm hierarchy, 379
realm names, 378
realms, 378-379
slave KDCs, 380-381

PAM, 309
RBAC, 197-199

plug-ins, SASL and, 318
pluggable authentication module, See PAM
plugin line

audit_control file, 588
flags line and, 553

plugin_list option, SASL and, 319
plugins

in auditing service, 553
in cryptographic framework, 264

659

plus sign (+)
ACL entry, 140
audit class prefix, 595
entry in sulog file, 73
file permissions symbol, 128

policies
administering, 457-494
creating (Kerberos), 468
creating new (Kerberos), 479-480
deleting, 482
for auditing, 543-546
modifying, 481-482
on devices, 78-79
overview, 33
passwords and, 500
SEAM Administration Tool panels

for, 483-486
specifying password algorithm, 67-68
task map for administering, 475
viewing attributes, 477-479
viewing list of, 475-477

policy
definition in cryptographic framework, 265
definition in Solaris OS, 33

policy.conf file
adding password encryption module, 71-72
Basic Solaris User rights profile, 226
description, 235-236, 236
keywords

for password algorithms, 42
for privileges, 235, 256
for RBAC authorizations, 235
for rights profiles, 235

specifying encryption algorithms in, 68-69
specifying password algorithm

in name services, 69
specifying password algorithms, 68-69

port forwarding
configuring in Solaris Secure Shell, 329-330
Solaris Secure Shell, 337-338, 338

Port keyword, Solaris Secure Shell, 349
ports, for Kerberos KDC, 380
postdated ticket

definition, 516
description, 363

postsigterm string, audit_warn script, 591
pound sign (#)

device_allocate file, 96

pound sign (#) (Continued)
device_maps file, 95

ppriv command
for debugging, 242
listing privileges, 241

praudit command
converting audit records to readable

format, 577, 585
DTD for -x option, 585
options, 585
output formats, 585
piping auditreduce output to, 577
use in a script, 585-586
viewing audit records, 576-577
with no options, 585
XML format, 577

PreferredAuthentications keyword,
ssh_config file, 349

prefixes for audit classes, 595
preselecting, audit classes, 551-553
preselection in auditing, auditing, 532
preselection mask (auditing)

description, 596
reducing storage costs, 582
system-wide, 588

preventing
access to system hardware, 75
audit trail overflow, 578-579
executables from compromising

security, 132-133
kernel software provider use, 284-286
use of hardware mechanism, 287-288

primary, in principal names, 366-367
Primary Administrator (RBAC)

assuming role, 209-210
recommended role, 178
rights profile contents, 224

primary audit directory, 588
principal

adding administration, 389
adding service principal to keytab, 488,

489-490
administering, 457-494
automating creation of, 463-464
creating, 468-470
creating clntconfig, 391
creating host, 391
deleting, 472

660 System Administration Guide: Security Services • January 2005

principal (Continued)
duplicating, 470
Kerberos, 366-367
modifying, 470-471
principal name, 366-367
removing from keytab file, 491
removing service principal from keytab, 491
SEAM Administration Tool panels

for, 483-486
service principal, 367
setting up defaults, 472-473
task map for administering, 463
user ID comparison, 403
user principal, 367
viewing attributes, 466-468
viewing list of, 464-466
viewing sublist of principals, 465

principal file, description, 512
principal.kadm5 file, description, 512
principal.kadm5.lock file,

description, 512
principal.ok file, description, 512
principal.ulog file, description, 512
principle of least privilege, 187
print format field, arbitrary token, 602
Printer Management rights profile, 225
printing, audit log, 577
PrintMotd keyword, sshd_config file, 349
priv.debug entry, syslog.conf file, 257
PRIV_DEFAULT keyword

policy.conf file, 235, 256
PRIV_LIMIT keyword

policy.conf file, 235, 256
privacy

availability, 506
Kerberos and, 361
security service, 369

private keys
See also secret keys
definition in Kerberos, 515
Solaris Secure Shell identity files, 353

private protection level, 506
privilege audit token, 538, 610
privilege checking, in applications, 183
privilege sets

adding privileges to, 192
basic, 190
effective, 189

privilege sets (Continued)
inheritable, 190
limit, 190
listing, 190
permitted, 190
removing privileges from, 192

privileged application
authorization checking, 183
description, 180
ID checking, 182
privilege checking, 183

privileged ports, alternative to Secure RPC, 55
privileges

adding to command, 244
administering, 240
assigning to a command, 191
assigning to a script, 192
assigning to a user, 191
assigning to user or role, 244-245
auditing and, 257-258
categories, 187
commands, 255
compared to superuser model, 186-193
debugging, 193, 242
description, 179, 187
determining directly assigned ones, 248-249
devices and, 193
differences from superuser model, 188
effects on SEAM Administration Tool, 486
escalation, 258
executing commands with privilege, 192
files, 256-257
finding missing, 243
how to use, 248
implemented in sets, 189
inherited by processes, 191
limiting use by user or role, 245-247
listing on a process, 241-242
processes with assigned privileges, 191
programs aware of privileges, 191
protecting kernel processes, 186
removing from a user, 192
removing from basic set, 246
removing from limit set, 246
task map, 239
using in shell script, 247-248

privileges file, description, 188
PROC privileges, 188

661

process audit characteristics
audit ID, 596
audit session ID, 596
process preselection mask, 596
terminal ID, 596

process audit class, 594
process audit token, format, 610
process modify audit class, 594
process preselection mask, description, 596
process privileges, 188
process rights management, See privileges
process start audit class, 594
processing time costs, of auditing service, 546
prof_attr database

description, 233-234
summary, 229

.profile file, path variable entry, 48
profile shells, description, 185
profiles, See rights profiles
profiles command, description, 236
PROFS_GRANTED keyword, policy.conf

file, 235
programs

checking for RBAC authorizations, 220
privilege-aware, 190, 191

PROM security mode, 75-76
propagation

KDC database, 382
Kerberos database, 424-426

protecting
BIOS, pointer to, 75-76
files with cryptographic framework, 270
PROM, 75-76
system from risky programs, 145-147

protecting files
task map, 133
user procedures, 134-140
with ACLs, 130-132, 140-145
with ACLs task map, 140
with UNIX permissions, 123-130, 134-140
with UNIX permissions task map, 134

protection level
clear, 506
private, 506
safe, 506
setting in ftp, 506

Protocol keyword, ssh_config file, 349

providers
adding library, 282
adding software provider, 280-282
adding user-level software provider, 282
connecting to cryptographic framework, 267
definition as plugins, 264
definition in cryptographic framework, 265
disabling hardware mechanisms, 287-288
installing, 268
listing hardware providers, 286
listing in cryptographic framework, 278-280
preventing use of kernel software

provider, 284-286
registering, 267
restoring use of kernel software

provider, 284
signing, 267

proxiable ticket, definition, 517
proxy ticket, definition, 517
ProxyCommand keyword, ssh_config

file, 349
pseudo-tty, use in Solaris Secure Shell, 345
PubkeyAuthentication keyword, Solaris

Secure Shell, 349
public audit policy

description, 545
read-only events, 545

public directories
auditing, 533
sticky bit and, 127

public key authentication, Solaris Secure
Shell, 322

public key cryptography
AUTH_DH client-server session, 295-298
changing public keys and secret keys, 295
common keys

calculation, 297
database of public keys, 295
generating keys

conversation keys, 296
public and secret, 295

secret keys, 295
public keys

changing passphrase, 333
DH authentication and, 294-298
generating public-private key pair, 331-333
Solaris Secure Shell identity files, 353

public objects, auditing, 533

662 System Administration Guide: Security Services • January 2005

publickey map, DH authentication, 294-298
pwcheck_method option, SASL and, 319

Q
question mark (?), in ASET tune files, 166
quoting syntax in BART, 119

R
-r option

bart create, 109
passwd command, 40
praudit command, 585

-R option
bart create, 104, 109
ssh command, 337-338

random numbers, od command, 270-272
raw praudit output format, 585
RBAC

adding custom roles, 204
adding new rights profile, 217
adding roles, 199-202
adding roles from command line, 202-204
administration commands, 236-237
audit profiles, 592
auditing roles, 206
authorization database, 232-233
authorizations, 182
basic concepts, 179-182
changing user properties

from command line, 219
checking scripts or programs for

authorizations, 220
commands for managing, 236-237
compared to superuser model, 177-179
configuring, 197-208
database relationships, 229-230
databases, 229-236
editing rights profiles, 215-218
elements, 179-182
modifying roles, 213-215
modifying users, 218-219
name services and, 230
planning, 197-199
profile shells, 185

RBAC (Continued)
rights profile database, 233-234
rights profiles, 184
securing scripts, 220
using privileged applications, 211-212

RC4, See ARCFOUR kernel provider
rcp command

description, 513
Kerberos and, 504-506

read_kt command, 492, 493
read permissions, symbolic mode, 128
readable audit record format

converting audit records to, 577, 585
realms (Kerberos)

configuration decisions, 378-379
configuring cross-realm

authentication, 396-399
contents of, 368
direct, 398-399
hierarchical, 397-398
hierarchical or nonhierarchical, 367-369
hierarchy, 379
in principal names, 366-367
mapping host names onto, 379
names, 378
number of, 378-379
requesting tickets for specific, 505
servers and, 368-369

reauth_timeout option, SASL and, 319
redirecting arrow (>), preventing

redirection, 48
reducing

audit files, 572-573, 583
storage-space requirements for audit

files, 547
refreshing, cryptographic services, 288-289
registering providers, cryptographic

framework, 267
rem_drv command, description, 92
remote logins

authentication, 54-55
authorization, 54-55
preventing superuser from, 74
security and, 297

RemoteForward keyword, ssh_config
file, 349

removing
ACL entries, 143-144

663

removing (Continued)
cryptographic providers, 283, 284
device policy, 80
policy from device, 80
principals with ktremove command, 491
privileges from basic set, 246
privileges from limit set, 246
service principal from keytab file, 491
software providers

permanently, 285, 286
temporarily, 285

renewable ticket, definition, 517
replacing, superuser with roles, 197-199
replayed transactions, 297
reporting tool, See bart compare
reports

ASET, 156, 157, 162
BART, 99
comparing (ASET), 157
directory (ASET), 156

required control flag, PAM, 313
requisite control flag, PAM, 313
restarting

audit daemon, 568
cryptographic services, 288-289
ssh service, 330
sshd daemon, 330

restoring, cryptographic providers, 284
restricted shell (rsh), 48
restricting

superuser task map, 72
user privileges, 246

restricting access for KDC servers, 440
RETRIES in Solaris Secure Shell, 351
return audit token, format, 611
rewoffl option

mt command
tape device cleanup and, 97

.rhosts file, description, 354
RhostsAuthentication keyword, Solaris

Secure Shell, 349
RhostsRSAAuthentication keyword,

Solaris Secure Shell, 349
right, See rights profiles
rights profiles

for auditing service, 592
changing contents of, 215-218
changing from command line, 216

rights profiles (Continued)
contents of typical, 223
creating

in Solaris Management Console, 217
on command line, 215

creating roles for, 199-202
databases

See prof_attr database and exec_attr
database

description, 180, 184
major rights profiles descriptions, 223
methods of creating, 215-218
modifying, 215-218
ordering, 227
troubleshooting, 217
using the System Administrator profile, 75
viewing contents, 227

Rights tool, description, 215-218
rlogin command

description, 513
Kerberos and, 504-506

rlogind daemon, Kerberos and, 513-514
role-based access control, See RBAC
roleadd command

description, 236
using, 202

roledel command, description, 236
rolemod command

changing properties of role, 214
description, 237

roles
adding custom roles, 204
adding for particular profiles, 199-202
adding from command line, 202-204
assigning privileges to, 244-245
assigning with usermod command, 204-206
assuming, 209-211, 211-212
assuming after login, 184
assuming in a terminal window, 185,

209-211
assuming in Solaris Management

Console, 211-212
assuming Primary Administrator

role, 209-210
assuming root role, 210
assuming System Administrator

role, 210-211
auditing, 206

664 System Administration Guide: Security Services • January 2005

roles (Continued)
changing properties of, 213-215
creating

Crypto Management role, 205-206
Custom Operator role, 204
Device Security role, 201
DHCP Management role, 201
for particular profiles, 199-202
Network Security role, 201
on command line, 202-204
Operator role, 200
role with limited scope, 201
root role, 206-208
security-related roles, 201
System Administrator role, 200

description, 184-185
determining directly assigned

privileges, 249
determining role’s privileged

commands, 251-253
listing local roles, 209, 236
making root user into role, 206-208
modifying, 213-215
modifying assignment to a user, 201
recommended roles, 178
summary, 180
troubleshooting, 201
use in RBAC, 178
using an assigned role, 209-211, 211-212
using to access the hardware, 75-76

roles command
description, 236
using, 209

root principal, adding to host’s keytab, 488
root role (RBAC), assuming role, 210
root user

changing to root role, 206-208
displaying access attempts on console, 73
login account

description, 42
monitoring su command attempts, 46, 72-73
preventing console login, 74
replacing in RBAC, 184
restricting access, 52, 74
restricting to console login, 74
tracking logins, 46

RPCSEC_GSS API, Kerberos and, 375
RSA kernel provider, 279

RSAAuthentication keyword, Solaris Secure
Shell, 349

rsh command
description, 513
Kerberos and, 504-506

rsh command (restricted shell), 48
rshd daemon, Kerberos and, 513-514
rstchown system variable, 136
rules file (BART), 101-102
rules file attributes, See keywords
rules file format (BART), 118-119
rules file specification language, See quoting

syntax
Running ASET task map, 167-171

S
-s option

audit command, 582
praudit command, 585

-S option, st_clean script, 98
safe protection level, 506
SASL

environment variable, 319
options, 319-320
overview, 317
plug-ins, 318

saslauthd_path option, SASL and, 319
saving, failed login attempts, 63-64
scope (RBAC), description, 185
scp command

copying files with, 338-339
description, 356

scripts
audit_startup script, 589
audit_warn script, 590
bsmconv effect, 587
bsmconv for device allocation, 82
bsmconv script, 591
bsmconv to enable auditing, 566-567
checking for RBAC authorizations, 220
device-clean scripts

See also device-clean scripts
for cleaning devices, 97-98
monitoring audit files example, 547
processing praudit output, 585-586
running with privileges, 192

665

scripts (Continued)
securing, 220
use of privileges in, 247-248

SCSI devices, st_clean script, 97
SEAM Administration Tool

and limited administration
privileges, 486-487

and list privileges, 486
and X Window system, 459
command-line equivalents, 459
context-sensitive help, 460
creating a new policy, 468, 479-480
creating a new principal, 468-470
default values, 461
deleting a principal, 472
deleting policies, 482
displaying sublist of principals, 465
duplicating a principal, 470
files modified by, 459
Filter Pattern field, 465
gkadmin command, 457
.gkadmin file, 459
help, 459-460
Help Contents, 460
how affected by privileges, 486
kadmin command, 457
login window, 461
modifying a policy, 481-482
modifying a principal, 470-471
online help, 459-460
or kadmin command, 458
overview, 458-462
panel descriptions, 483-486
privileges, 486
setting up principal defaults, 472-473
starting, 461-462
table of panels, 483-486
viewing a principal’s attributes, 466-468
viewing list of policies, 475-477
viewing list of principals, 464-466
viewing policy attributes, 477-479

secondary audit directory, 588
secret keys

creating, 270-272
generating, 270-272, 295

secure connection
across a firewall, 339
logging in, 334-335

Secure NFS, 294
Secure RPC

alternative, 55
and Kerberos, 294
description, 293
implementation of, 295-298
keyserver, 295
overview, 54-55

securing
logins task map, 60
passwords task map, 60
scripts, 220

security
across insecure network, 339
auditing and, 531
BART, 103-104
computing digest of files, 272-273
computing MAC of files, 273-275
devices, 44-46
DH authentication, 295-298
encrypting files, 275-277
Kerberos authentication, 405
NFS client-server, 295-298
password encryption, 41
pointer to JASS toolkit, 49
policy overview, 33
preventing direct root login, 74
preventing remote login, 74
protecting against denial of service, 50
protecting against Trojan horse, 47
protecting devices, 97-98
protecting hardware, 75-76
protecting PROM, 75-76
system hardware, 75-76

security attributes
checking for, 182
considerations when directly

assigning, 185-186
description, 180
Printer management rights profile, 182
privileges on commands, 183
special ID on commands, 183
using to mount allocated device, 83

security mechanism, specifying with -m
option, 505

security modes, setting up environment with
multiple, 405-406

security policy, default (RBAC), 229

666 System Administration Guide: Security Services • January 2005

security service, Kerberos and, 369
selecting

audit classes, 551-553
audit records, 574-575
events from audit trail, 574-575

semicolon (;)
device_allocate file, 95
separator of security attributes, 235

sendmail command, authorizations
required, 238

seq audit policy
and sequence token, 545, 612
description, 545

sequence audit token
and seq audit policy, 612
format, 612

ServerKeyBits keyword, sshd_config
file, 350

servers
AUTH_DH client-server session, 295-298
configuring for Solaris Secure Shell, 346
definition in Kerberos, 515
gaining access with Kerberos, 520-523
obtaining credential for, 521-522
realms and, 368-369

service
definition in Kerberos, 515
disabling on a host, 493-494
obtaining access for specific service, 522-523

service keys
definition in Kerberos, 515
keytab files and, 487-494

service management facility
enabling keyserver, 299
refreshing cryptographic framework, 281
restarting cryptographic framework, 288-289
restarting Solaris Secure Shell, 330

service names, PAM, 312
service principal

adding to keytab file, 488, 489-490
description, 367
planning for names, 379-380
removing from keytab file, 491

session ID, audit, 596
session keys

definition in Kerberos, 515
Kerberos authentication and, 520

setfacl command
-d option, 144
description, 132
examples, 143
-f option, 142
syntax, 141-142

setgid permissions
absolute mode, 129, 139
description, 126-127
security risks, 127
symbolic mode, 128

setting
audit policy, 563-565
principal defaults (Kerberos), 472-473

setuid permissions
absolute mode, 129, 139
description, 126
finding files with permissions set, 146
security risks, 49, 126
symbolic mode, 128

sftp command, description, 356
sh command, privileged version, 185
SHA1 kernel provider, 279
sharing files

and network security, 52
with DH authentication, 303

shell, privileged versions, 185
shell commands

/etc/d_passwd file entries, 44
passing parent shell process number, 241

shell process, listing its privileges, 241-242
shell scripts, writing privileged, 247
short praudit output format, 585
shosts.equiv file, description, 354
.shosts file, description, 354
signal received during auditing shutdown, 591
signing providers, cryptographic

framework, 267
single-sign-on system, 503-510

Kerberos and, 361
size of audit files

reducing, 572-573, 583
reducing storage-space requirements, 547

slave_datatrans file
description, 512
KDC propagation and, 424-426

slave_datatrans_slave file, description, 512

667

slave KDCs
configuring, 392-396
definition, 514
master KDC and, 368-369
or master, 387
planning for, 380-381
swapping with master KDC, 419-424

smartcard documentation, pointer to, 32
smattrpop command, description, 237
smexec command, description, 237
smmultiuser command, description, 237
smprofile command

changing rights profile, 215
description, 237

smrole command
changing properties of role, 214
description, 237
using, 204

smuser command
changing user’s RBAC properties, 218
description, 237

socket audit token, 612
soft limit

audit_warn condition, 590
minfree line description, 588

soft string, audit_warn script, 591
Solaris auditing task map, 549
Solaris cryptographic framework, See

cryptographic framework
solaris.device.revoke authorization, 94
Solaris Secure Shell

adding to system, 352
administering, 343-345
administrator task map, 325-326, 326
authentication

requirements for, 322-324
authentication methods, 322-324
authentication steps, 344-345
basis from OpenSSH, 324-325
changes in current release, 324-325
changing passphrase, 333
command execution, 345
configuring clients, 346
configuring port forwarding, 329-330
configuring server, 346
connecting across a firewall, 339
connecting outside firewall

from command line, 340-341

Solaris Secure Shell, connecting outside firewall
(Continued)

from configuration file, 339-341
copying files, 338-339
creating keys, 331-333
data forwarding, 345
description, 321
files, 353
forwarding mail, 337-338
generating keys, 331-333
keywords, 347-351
local port forwarding, 337-338, 338
logging in fewer prompts, 335-336
logging in to remote host, 334-335
login environment variables and, 351
naming identity files, 353
packages, 352
protocol versions, 321
public key authentication, 322
remote port forwarding, 338
scp command, 338-339
TCP and, 329
typical session, 343-345
user procedures, 330-331
using port forwarding, 337-338
using without password, 335-336

solaris security policy, 234
special permissions

setgid permissions, 126-127
setuid permissions, 126
sticky bit, 127

square brackets ([]), bsmrecord output, 599
sr_clean script, description, 97
ssh-add command

description, 355
example, 335-336
storing private keys, 335-336

ssh-agent command
configuring, 336
description, 356
from command line, 335-336
in scripts, 336

ssh command
description, 355
overriding keyword settings, 356
port forwarding options, 337-338
using, 334-335
using a proxy command, 340-341

668 System Administration Guide: Security Services • January 2005

.ssh/config file
description, 354
override, 355

ssh_config file
configuring Solaris Secure Shell, 346
host-specific parameters, 350
keywords, 347-351

See specific keyword
override, 355

.ssh/environment file, description, 354
ssh_host_dsa_key file, description, 353
ssh_host_dsa_key.pub file,

description, 353
ssh_host_key file

description, 353
override, 355

ssh_host_key.pub file, description, 353
ssh_host_rsa_key file, description, 353
ssh_host_rsa_key.pub file,

description, 353
.ssh/id_dsa file, 355
.ssh/id_rsa file, 355
.ssh/identity file, 355
ssh-keygen command

description, 356
using, 331-333

ssh-keyscan command, description, 356
ssh-keysign command, description, 356
.ssh/known_hosts file

description, 353
override, 355

ssh_known_hosts file, 353
.ssh/rc file, description, 354
sshd command, description, 355
sshd_config file

description, 353
keywords, 347-351

See specific keyword
overrides of /etc/default/login

entries, 351
sshd.pid file, description, 353
sshrc file, description, 354
st_clean script

description, 97
for tape drives, 97

stacking, in PAM, 307
standard cleanup, st_clean script, 98

starting
ASET from shell, 150
ASET interactively, 167-168
audit daemon, 569
auditing, 566-567
device allocation, 82-83
KDC daemon, 396, 434
running ASET periodically, 168-169
Secure RPC keyserver, 299

stash file
creating, 396, 434
definition, 514

sticky bit permissions
absolute mode, 129, 139
description, 127
symbolic mode, 128

stopping, dial-up logins temporarily, 67
storage costs, and auditing, 546
storage overflow prevention, audit

trail, 578-579
storing

audit files, 541-542, 560-562
passphrase, 276

StrictHostKeyChecking keyword,
ssh_config file, 350

StrictModes keyword, sshd_config
file, 350

su command
displaying use on console, 73
in role assumption, 209-211, 211-212
monitoring use, 72-73

su file, monitoring su command, 72-73
subject audit token, format, 613
Subsystem keyword, sshd_config file, 350
success

audit class prefix, 595
turning off audit classes for, 595

sufficient control flag, PAM, 314
sulog file, 72-73

monitoring contents of, 72
SUPATH in Solaris Secure Shell, 351
superuser

compared to privilege model, 186-193
compared to RBAC model, 177-179
differences from privilege model, 188
eliminating in RBAC, 184
monitoring access attempts to the

console, 73

669

suser security policy, 234
svcadm command

administering cryptographic
framework, 265, 266

enabling cryptographic framework, 288-289
enabling keyserver daemon, 299
refreshing cryptographic

framework, 280-282
restarting name service, 200
restarting NFS server, 561
restarting Solaris Secure Shell, 330
restarting syslog daemon, 65, 554

svcs command
listing cryptographic services, 288-289
listing keyserver service, 299

swapping master and slave KDCs, 419-424
symbolic links, file permissions, 125
symbolic mode

changing file permissions, 128, 137
description, 128

synchronizing clocks, 392, 396, 418-419, 434
SYS privileges, 188
sysconf.rpt file, 153, 156
syslog.conf file

and auditing, 587
audit.notice level, 553
audit records, 531
executable stack messages, 133
kern.notice level, 133
priv.debug entry, 257
saving failed login attempts, 64-65

SYSLOG_FAILED_LOGINS
in Solaris Secure Shell, 351
system variable, 64

syslog format, audit records, 587
SyslogFacility keyword, sshd_config

file, 350
System Administrator (RBAC)

assuming role, 210-211
creating role, 200
protecting hardware, 75
recommended role, 178
rights profile, 224

system calls
arg audit token, 602
close, 594
exec_args audit token, 604
exec_env audit token, 604

system calls (Continued)
ioctl(), 594
ioctl to clean audio device, 98
return audit token, 611

system file, bsmconv effect on, 587
system hardware, controlling access to, 75-76
system properties, privileges relating to, 188
system security

ACL, 130-132
dial-up logins and passwords, 43-44
dial-up passwords

disabling temporarily, 67
displaying

user’s login status, 61
users with no passwords, 62

firewall systems, 55-56
hardware protection, 38-39, 75-76
login access restrictions, 39
machine access, 38-39
overview, 38
password encryption, 41
passwords, 39
preventing root login to console, 74
privileges, 186-193
protecting from risky programs, 145-147
restricted shell, 48
restricting root login to console, 74
role-based access control (RBAC), 47,

177-179
root access restrictions, 52, 74
saving failed login attempts, 63-64
special logins, 42
su command monitoring, 46, 72-73
task map, 145

system state audit class, 594
System V IPC

ipc audit class, 594
ipc audit token, 607
ipc_perm audit token, 608
privileges, 188

system variables
See also variables
CRYPT_DEFAULT, 68
KEYBOARD_ABORT, 76
noexec_user_stack, 147
noexec_user_stack_log, 147
rstchown, 136
SYSLOG_FAILED_LOGINS, 64

670 System Administration Guide: Security Services • January 2005

system-wide administration audit
class, 594

systems, protecting from risky
programs, 145-147

T
tables, gsscred, 525
tail command, example of use, 547
tape drives

allocating, 88
cleaning of data, 97
device-clean scripts, 97

task maps
administering cryptographic

framework, 277-278
administering policies (Kerberos), 475
administering principals (Kerberos), 463
administering Secure RPC, 298
allocating devices, 87
ASET, 167-171
auditing, 549
changing default algorithm for password

encryption, 67-68
configuring audit files, 550
configuring auditing service, 559
configuring device policy, 78
configuring devices, 77
configuring Kerberos NFS servers, 401
configuring RBAC, 196-197
configuring Solaris Secure Shell, 326
controlling access to system hardware, 75
cryptographic framework, 269-270
device allocation, 81-82
device policy, 78
devices, 77
enabling auditing service, 559
Kerberos configuration, 385-386
Kerberos maintenance, 386
managing and using privileges, 239
managing audit records, 569-570
managing device allocation, 81-82
managing device policy, 78
managing RBAC, 212-213
monitoring and restricting superuser, 72
PAM, 308
planning auditing, 539

task maps (Continued)
protecting against programs with security
risk, 145
protecting files, 133
protecting files with ACLs, 140
protecting files with cryptographic

mechanisms, 270
protecting files with UNIX permissions, 134
protecting system hardware, 75
running ASET, 167-171
securing logins and passwords, 60
securing systems, 59-60
Solaris Secure Shell, 325-326
system access, 59-60
Using BART task map, 102-103
using device allocation, 87
using RBAC, 195-196
using roles, 208
using Solaris Secure Shell, 330-331
using the cryptographic framework, 269-270

TASKS variable (ASET), 159, 164
taskstat command (ASET), 151, 154
TCP

addresses, 608
Solaris Secure Shell and, 329, 345

telnet command
description, 513
Kerberos and, 504-506

telnetd daemon, Kerberos and, 513-514
terminal ID, audit, 596
terminating, signal received during auditing

shutdown, 591
terminology

authentication-specific, 515
Kerberos, 514-519
Kerberos-specific, 514

test manifests, 101
text audit token, format, 615
TGS, getting credential for, 520-521
TGT, in Kerberos, 363-365
third-party password algorithms, adding, 71-72
ticket file, See credential cache
ticket-granting service, See TGS
ticket-granting ticket, See TGT
tickets

creating, 495-496
creating with kinit, 496
definition, 362

671

tickets (Continued)
definition in Kerberos, 515
destroying, 498
-F option or -f option, 505
file

See credential cache
forwardable, 363, 496, 506-508, 516
initial, 516
invalid, 516
-k option, 505
klist command, 497-498
lifetime, 517-518
maximum renewable lifetime, 518
obtaining, 495-496
or credentials, 363
postdatable, 516
postdated, 363
proxiable, 517
proxy, 517
renewable, 517
requesting for specific realm, 505
types of, 516-519
viewing, 497-498
warning about expiration, 413

TIMEOUT in Solaris Secure Shell, 351
timestamps

ASET reports, 155
audit files, 598

/tmp/krb5cc_uid file, description, 512
/tmp/ovsec_adm.xxxxx file, description, 512
tmpfile string, audit_warn script, 591
TMPFS file system, security, 127
trail audit policy

and trailer token, 545
description, 545

trailer audit token
format, 615
order in audit record, 615
praudit display, 615

transparency, definition in Kerberos, 362
Trojan horse, 47
troubleshooting

allocating a device, 88
ASET errors, 171
encrypt command, 277
Kerberos, 453
lack of privilege, 242-244
list_devices command, 84

troubleshooting (Continued)
mounting a device, 90
privilege requirements, 242-244
rights profiles, 217
role capabilities, 201

truss command, for privilege
debugging, 242-243

trusted hosts, 56
tune files (ASET)

description, 157
examples, 165, 166
modifying, 160
rules, 166

tune.rpt file, 152, 156
types of tickets, 516-519
TZ in Solaris Secure Shell, 351

U
-U option

allocate command, 94
list_devices command, 93

uauth audit token, 538, 615
UDP

addresses, 608
port forwarding and, 329
Solaris Secure Shell and, 329
using for remote audit logs, 535

uid_aliases file (ASET), 157, 160
UID_ALIASES variable (ASET), 157, 160, 164
umask value

and file creation, 127-128
typical settings, 127

umount command, with security attributes, 83
uninstalling, cryptographic providers, 283
UNIX file permissions, See files, permissions
unmounting, allocated devices, 91
update_drv command

description, 92
using, 79-80

updating, auditing service, 568-569
URL for online help, SEAM Tool, 384
use_authid option, SASL and, 320
UseLogin keyword, sshd_config file, 350
user accounts

See also users
ASET check, 152

672 System Administration Guide: Security Services • January 2005

user accounts (Continued)
displaying login status, 61

User Accounts tool, description, 218-219
user ACL entries

default entries for directories, 131-132
description, 131
setting, 141-142

user administration audit class, 594
user_attr database

defaultpriv keyword, 257
description, 229, 231
limitpriv keyword, 257
RBAC relationships, 229-230

user audit fields, audit_user database, 589
user classes of files, 124
user database (RBAC), See user_attr database
user ID

audit ID and, 529-530, 596
in NFS services, 403

User keyword, ssh_config file, 350
user principal, description, 367
user procedures

allocating devices, 87
assuming a role, 208
chkey command, 302
computing digest of a file, 272-273
computing MAC of a file, 273-275
decrypting files, 275-277
encrypting files, 270
encrypting NIS user’s private key, 302
generating a symmetric key, 270-272
protecting files, 134-140
using ACLs, 140-145
using an assigned role, 208
using Solaris Secure Shell, 330-331

user scripts, configuring for ssh-agent
daemon, 336

useradd command
adding local user, 207
description, 237

userdel command, description, 237
UserKnownHostsFile keyword,

ssh_config file, 350
UserKnownHostsFile2 keyword, See

UserKnownHostsFile keyword
usermod command

changing user’s RBAC properties, 218
description, 237

usermod command (Continued)
using to assign role, 204-206

users
adding local user, 207
allocating devices, 87-88
assigning allocate authorization to, 83-84
assigning privileges to, 244-245
assigning RBAC defaults, 235-236
basic privilege set, 190
changing properties from command

line, 219
computing digest of files, 272-273
computing MAC of files, 273-275
creating local user, 207
deallocating devices, 90-91
determining directly assigned

privileges, 248-249
determining own privileged

commands, 250-251
disabling login, 62-63
displaying login status, 61
encrypting files, 275-277
having no passwords, 62
initial inheritable privileges, 190
modifying audit preselection mask

of, 555-556
modifying properties (RBAC), 218-219
mounting allocated devices, 88-90
restricting basic privileges, 246
unmounting allocated devices, 91

using
ACLs, 141-142
allocate command, 87-88
ASET, 167-171
BART, 103
cryptoadm command, 278
cryptographic framework task map, 269-270
deallocate command, 91
device allocation, 87
digest command, 272-273
encrypt command, 275-277
file permissions, 133-134
mac command, 273-275
mount command, 89
new password algorithm, 69
ppriv command, 241
privileges, 248
privileges task map, 248

673

using (Continued)
RBAC task map, 195-196
roles, 209
roles task map, 208
smrole command, 245
Solaris Secure Shell task map, 330-331
ssh-add command, 335-336
ssh-agent daemon, 335-336
truss command, 242-243
umount command, 91
usermod command, 245

/usr/aset/asetenv file, 158
/usr/aset directory, 150
/usr/aset/masters/tune files

description, 157
modifying, 160
rules, 166

/usr/aset/masters/uid_aliases file, 157
/usr/aset/reports directory, structure, 156
/usr/aset/reports directory structure, 154
/usr/aset/reports/latest directory, 156
/usr/lib/kprop command, description, 513
/usr/lib/krb5/kadmind daemon, Kerberos

and, 514
/usr/lib/krb5/kpropd daemon, Kerberos

and, 514
/usr/lib/krb5/krb5kdc daemon, Kerberos

and, 514
/usr/lib/krb5/ktkt_warnd daemon,

Kerberos and, 514
/usr/lib/libsasl.so library,

overview, 317
/usr/sbin/gkadmin command,

description, 513
/usr/sbin/kadmin command,

description, 513
/usr/sbin/kadmin.local command,

description, 513
/usr/sbin/kclient command,

description, 513
/usr/sbin/kdb5_util command,

description, 513
/usr/sbin/kproplog command,

description, 513
/usr/share/lib/xml directory, 585
usrgrp.rpt file

description, 152, 156
example, 156

uucico command, login program, 66

V
-v option

digest command, 272
mac command, 274
ppriv command, 241

v1 protocol, Solaris Secure Shell, 321
v2 protocol, Solaris Secure Shell, 321
/var/adm/auditlog file, text audit

records, 553
/var/adm/loginlog file, saving failed login

attempts, 63-64
/var/adm/messages file, executable stack

messages, 133
/var/adm/sulog file, monitoring contents

of, 72
/var/krb5/.k5.REALM file, description, 512
/var/krb5/kadmin.log file,

description, 512
/var/krb5/kdc.log file, description, 512
/var/krb5/principal file, description, 512
/var/krb5/principal.kadm5 file,

description, 512
/var/krb5/principal.kadm5.lock file,

description, 512
/var/krb5/principal.ok file,

description, 512
/var/krb5/principal.ulog file,

description, 512
/var/krb5/slave_datatrans file,

description, 512
/var/krb5/slave_datatrans_slave file,

description, 512
/var/log/authlog file, failed logins, 64-65
/var/run/sshd.pid file, description, 353
variables

adding to audit record, 544, 604
ASET environment variables

ASETDIR, 163
ASETSECLEVEL, 163
CKLISTPATH_level, 158, 159, 165
PERIODIC_SCHEDULE, 160, 163
summary, 162
TASKS, 159, 164
UID_ALIASES, 157, 160, 164

674 System Administration Guide: Security Services • January 2005

variables, ASET environment variables
(Continued)

YPCHECK, 160, 165
auditing those associated with a

command, 603
for proxy servers and ports, 340
KEYBOARD_ABORT, 76
login and Solaris Secure Shell, 351
noexec_user_stack, 132
noexec_user_stack_log, 133
rstchown, 136
setting in Solaris Secure Shell, 351

verifiers
description, 296
returned to NFS client, 297
window, 296

VerifyReverseMapping keyword,
ssh_config file, 350

viewing
ACL entries, 144-145
audit record formats, 570-572
available cryptographic mechanisms, 280,

284
binary audit files, 576-577
contents of rights profiles, 227
cryptographic mechanisms

available, 280, 284
existing, 279, 280, 284

device allocation information, 84
device policy, 78-79
digest of a file, 273
directly assigned privileges, 249
existing cryptographic mechanisms, 280, 284
file permissions, 134-135
keylist buffer with list command, 492, 493
list of policies, 475-477
list of principals, 464-466
MAC of a file, 274
policy attributes, 477-479
principal’s attributes, 466-468
privileges in a shell, 241, 249
privileges on a process, 241
tickets, 497-498
user’s login status, 61
users with no passwords, 62
XML audit records, 576, 585

viruses
denial of service attack, 50

viruses (Continued)
Trojan horse, 47

vnode audit token, format, 603
vold daemon, turned off by device

allocation, 84

W
warn.conf file, description, 512
warning about ticket expiration, 413
wildcard characters

for hosts in Solaris Secure Shell, 340
in ASET files, 164
in ASET tune files, 166
in RBAC authorizations, 228

window verifier, 296
write permissions, symbolic mode, 128

X
-x option

Kerberized commands, 505
praudit command, 585

-X option, Kerberized commands, 505
X Window system, and SEAM Administration

Tool, 459
X11 forwarding

configuring in ssh_config file, 348
in Solaris Secure Shell, 345

X11DisplayOffset keyword, sshd_config
file, 350

X11Forwarding keyword, sshd_config
file, 350

X11UseLocalHost keyword, sshd_config
file, 350

xauth command, X11 forwarding, 350
XAuthLocation keyword, Solaris Secure Shell

port forwarding, 350
XML format, audit records, 577
XML option, praudit command, 585
Xylogics tape drive device-clean script, 97

Y
YPCHECK variable (ASET), 160, 165

675

Z
zonename audit policy

description, 545
using, 592-593

zonename audit token, 538, 616
zones

auditing and, 592-593
configuring auditing in global zone, 564
cryptographic framework and, 268
cryptographic services and, 288-289
devices and, 45
perzone audit policy, 592-593
planning auditing in, 540-541
zonename audit policy, 592-593

676 System Administration Guide: Security Services • January 2005

	System Administration Guide: Security Services
	Preface
	Who Should Use This Book
	How the System Administration Volumes Are Organized
	Related Third-Party Web Site References
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	Security Overview
	Security Services (Overview)
	System Security
	Solaris Cryptographic Services
	Authentication Services
	Authentication With Encryption
	Solaris Auditing
	Security Policy

	System, File, and Device Security
	Managing Machine Security (Overview)
	Enhancements to Machine Security in the Solaris 10 Release
	Controlling Access to a Computer System
	Maintaining Physical Security
	Maintaining Login Control
	Managing Password Information
	Local Passwords
	NIS and NIS+ Passwords
	LDAP Passwords

	Password Encryption
	Password Algorithm Identifiers
	Algorithms Configuration in the policy.conf File

	Special System Logins
	Remote Logins
	Dial-Up Logins

	Controlling Access to Devices
	Device Policy (Overview)
	Device Allocation (Overview)

	Controlling Access to Machine Resources
	Limiting and Monitoring Superuser
	Configuring Role-Based Access Control to Replace Superuser
	Preventing Unintentional Misuse of Machine Resources
	Setting the PATH Variable
	Assigning a Restricted Shell to Users
	Restricting Access to Data in Files

	Restricting setuid Executable Files
	Using the Automated Security Enhancement Tool
	Using the Solaris Security Toolkit
	Using Solaris Resource Management Features
	Using Solaris Zones
	Monitoring Use of Machine Resources
	Monitoring File Integrity

	Controlling Access to Files
	Protecting Files With Encryption
	Using Access Control Lists
	Sharing Files Across Machines
	Restricting root Access to Shared Files

	Controlling Network Access
	Network Security Mechanisms
	Authentication and Authorization for Remote Access
	Firewall Systems
	Encryption and Firewall Systems

	Reporting Security Problems

	Controlling Access to Systems (Tasks)
	Controlling System Access (Task Map)
	Securing Logins and Passwords (Task Map)
	Securing Logins and Passwords
	How to Display a User's Login Status
	How to Display Users Without Passwords
	How to Temporarily Disable User Logins
	How to Monitor Failed Login Attempts
	How to Monitor All Failed Login Attempts
	How to Create a Dial-Up Password
	How to Temporarily Disable Dial-Up Logins

	Changing the Password Algorithm (Task Map)
	Changing the Default Algorithm for Password Encryption
	How to Specify an Algorithm for Password Encryption
	How to Specify a New Password Algorithm for an NIS Domain
	How to Specify a New Password Algorithm for an NIS+ Domain
	How to Specify a New Password Algorithm for an LDAP Domain
	How to Install a Password Encryption Module From a Third Party

	Monitoring and Restricting Superuser (Task Map)
	Monitoring and Restricting Superuser
	How to Monitor Who Is Using the su Command
	How to Display Superuser (root) Access Attempts to the Console
	How to Prevent Remote Login by Superuser (root)

	SPARC: Controlling Access to System Hardware (Task Map)
	Controlling Access to System Hardware
	How to Require a Password for Hardware Access
	How to Disable a System's Abort Sequence

	Controlling Access to Devices (Tasks)
	Configuring Devices (Task Map)
	Configuring Device Policy (Task Map)
	Configuring Device Policy
	How to View Device Policy
	How to Change the Device Policy on an Existing Device
	How to Audit Changes in Device Policy
	How to Retrieve IP MIB-II Information From a /dev/* Device

	Managing Device Allocation (Task Map)
	Managing Device Allocation
	How to Make a Device Allocatable
	How to Authorize Users to Allocate a Device
	How to View Allocation Information About a Device
	Forcibly Allocating a Device
	Forcibly Deallocating a Device
	How to Change Which Devices Can Be Allocated
	How to Audit Device Allocation

	Allocating Devices (Task Map)
	Allocating Devices
	How to Allocate a Device
	How to Mount an Allocated Device
	How to Deallocate a Device

	Device Protection (Reference)
	Device Policy Commands
	Device Allocation
	Components of Device Allocation
	Device Allocation Commands
	Authorizations for the Allocation Commands

	Allocate Error State
	device_maps File
	device_allocate File
	Device-Clean Scripts
	Device-Clean Script for Tapes
	Device-Clean Scripts for Diskettes and CD-ROM Drives
	Device-Clean Script for Audio
	Writing New Device-Clean Scripts

	Using the Basic Audit Reporting Tool (Tasks)
	Basic Audit Reporting Tool (Overview)
	BART Features
	BART Components
	BART Manifest
	BART Report
	BART Rules File

	Using BART (Task Map)
	Using BART (Tasks)
	BART Security Considerations
	How to Create a Manifest
	How to Customize a Manifest
	How to Compare Manifests for the Same System Over Time
	How to Compare Manifests From a Different System With the Manifest of a Control System
	How to Customize a BART Report by Specifying File Attributes
	How to Customize a BART Report by Using a Rules File

	BART Manifest, Rules File, and Reporting (Reference)
	BART Manifest File Format
	BART Rules File Format
	Rules File Attributes
	Quoting Syntax

	BART Reporting
	BART Output

	Controlling Access to Files (Tasks)
	Using UNIX Permissions to Protect Files
	Commands for Viewing and Securing Files
	File and Directory Ownership
	UNIX File Permissions
	Special File Permissions (setuid, setgid and Sticky Bit)
	setuid Permission
	setgid Permission
	Sticky Bit

	Default umask Value
	File Permission Modes

	Using Access Control Lists to Protect Files
	ACL Entries for Files
	ACL Entries for Directories
	Commands for Administering ACLs

	Preventing Executable Files From Compromising Security
	Protecting Files (Task Map)
	Protecting Files With UNIX Permissions (Task Map)
	How to Display File Information
	How to Change the Owner of a File
	How to Change Group Ownership of a File
	How to Change File Permissions in Symbolic Mode
	How to Change File Permissions in Absolute Mode
	How to Change Special File Permissions in Absolute Mode

	Protecting Files With ACLs (Task Map)
	How to Check if a File Has an ACL
	How to Add ACL Entries to a File
	How to Copy an ACL
	How to Change ACL Entries on a File
	How to Delete ACL Entries From a File
	How to Display ACL Entries for a File

	Protecting Against Programs With Security Risk (Task Map)
	How to Find Files With Special File Permissions
	How to Disable Programs From Using Executable Stacks

	Using the Automated Security Enhancement Tool (Tasks)
	Automated Security Enhancement Tool (ASET)
	ASET Security Levels
	ASET Task List
	System Files Permissions Tuning
	System Files Checks
	User and Group Checks
	System Configuration Files Check
	Environment Variables Check
	eeprom Check
	Firewall Setup

	ASET Execution Log
	Example of an ASET Execution Log File

	ASET Reports
	Format of ASET Report Files
	Examining ASET Report Files
	Comparing ASET Report Files

	ASET Master Files
	Tune Files
	The uid_aliases File
	The Checklist Files

	ASET Environment File (asetenv)
	Configuring ASET
	Modifying the Environment File (asetenv)
	Choosing Which Tasks to Run: TASKS
	Specifying Directories for System Files Checks Task: CKLISTPATH
	Scheduling ASET Execution: PERIODIC_SCHEDULE
	Specifying an Aliases File: UID_ALIASES
	Extending Checks to NIS+ Tables: YPCHECK
	Modifying the Tune Files

	Restoring System Files Modified by ASET
	Network Operation With the NFS System
	Providing a Global Configuration for Each Security Level
	Collecting ASET Reports

	ASET Environment Variables
	ASETDIR Environment Variable
	ASETSECLEVEL Environment Variable
	PERIODIC_SCHEDULE Environment Variable
	TASKS Environment Variable
	UID_ALIASES Environment Variable
	YPCHECK Environment Variable
	CKLISTPATH_level Environment Variables

	ASET File Examples
	Tune File Examples
	Aliases File Examples

	Running ASET (Task Map)
	How to Run ASET Interactively
	How to Run ASET Periodically
	How to Stop Running ASET Periodically
	How to Collect ASET Reports on a Server

	Troubleshooting ASET Problems
	ASET Error Messages

	Roles, Rights Profiles, and Privileges
	Using Roles and Privileges (Overview)
	Role-Based Access Control (Overview)
	RBAC: An Alternative to the Superuser Model
	Solaris RBAC Elements and Basic Concepts
	RBAC Authorizations
	Authorizations and Privileges
	Privileged Applications and RBAC
	Applications That Check UIDs and GIDs
	Applications That Check for Privileges
	Applications That Check Authorizations

	RBAC Rights Profiles
	RBAC Roles
	Profile Shell in RBAC
	Name Service Scope and RBAC
	Security Considerations When Directly Assigning Security Attributes

	Privileges (Overview)
	Privileges Protect Kernel Processes
	Privilege Descriptions
	Administrative Differences on a System With Privileges
	How Privileges Are Implemented
	How Processes Get Privileges
	Assigning Privileges
	Expanding a User or Role's Privileges
	Restricting a User or Role's Privileges
	Assigning Privileges to a Script

	Privileges and Devices
	Privileges and Debugging

	Using Role-Based Access Control (Tasks)
	Using RBAC (Task Map)
	Configuring RBAC (Task Map)
	Configuring RBAC
	How to Plan Your RBAC Implementation
	How to Create and Assign a Role By Using the GUI
	How to Create a Role From the Command Line
	How to Assign a Role to a Local User
	How to Audit Roles
	How to Make root User Into a Role

	Using Roles (Task Map)
	Using Roles
	How to Assume a Role in a Terminal Window
	How to Assume a Role in the Solaris Management Console

	Managing RBAC (Task Map)
	Managing RBAC
	How to Change the Properties of a Role
	How to Create or Change a Rights Profile
	How to Change the RBAC Properties of a User
	How to Add RBAC Properties to Legacy Applications

	Role-Based Access Control (Reference)
	Contents of Rights Profiles
	Primary Administrator Rights Profile
	System Administrator Rights Profile
	Operator Rights Profile
	Printer Management Rights Profile
	Basic Solaris User Rights Profile
	All Rights Profile
	Order of Rights Profiles
	Viewing the Contents of Rights Profiles

	Authorization Naming and Delegation
	Authorization Naming Conventions
	Example of Authorization Granularity
	Delegation Authority in Authorizations

	Databases That Support RBAC
	RBAC Database Relationships
	RBAC Databases and the Name Service
	user_attr Database
	auth_attr Database
	prof_attr Database
	exec_attr Database
	policy.conf File

	RBAC Commands
	Commands That Manage RBAC
	Commands That Require Authorizations

	Privileges (Tasks)
	Managing and Using Privileges (Task Map)
	Managing Privileges (Task Map)
	Managing Privileges
	How to Determine the Privileges on a Process
	How to Determine Which Privileges a Program Requires
	How to Add Privileges to a Command
	How to Assign Privileges to a User or Role
	How to Limit a User's or Role's Privileges
	How to Run a Shell Script With Privileged Commands

	Determining Your Privileges (Task Map)
	Determining Your Assigned Privileges
	How to Determine the Privileges That You Have Been Directly Assigned
	How to Determine the Privileged Commands That You Can Run
	How to Determine the Privileged Commands That a Role Can Run

	Privileges (Reference)
	Administrative Commands for Handling Privileges
	Files With Privilege Information
	Privileges and Auditing
	Prevention of Privilege Escalation
	Legacy Applications and the Privilege Model

	Solaris Cryptographic Services
	Solaris Cryptographic Framework (Overview)
	Solaris Cryptographic Framework
	Terminology in the Solaris Cryptographic Framework
	Scope of the Solaris Cryptographic Framework
	Administrative Commands in the Solaris Cryptographic Framework
	User-Level Commands in the Solaris Cryptographic Framework
	Binary Signatures for Third-Party Software

	Plugins to the Solaris Cryptographic Framework
	Cryptographic Services and Zones

	Solaris Cryptographic Framework (Tasks)
	Using the Cryptographic Framework (Task Map)
	Protecting Files With the Solaris Cryptographic Framework (Task Map)
	Protecting Files With the Solaris Cryptographic Framework
	How to Generate a Symmetric Key
	How to Compute a Digest of a File
	How to Compute a MAC of a File
	How to Encrypt and Decrypt a File

	Administering the Cryptographic Framework (Task Map)
	Administering the Cryptographic Framework
	How to List Available Providers
	How to Add a Software Provider
	How to Prevent the Use of a User-Level Mechanism
	How to Prevent the Use of a Kernel Software Provider
	How to List Hardware Providers
	How to Disable Hardware Provider Mechanisms and Features
	How to Refresh or Restart All Cryptographic Services

	Authentication Services and Secure Communication
	Using Authentication Services (Tasks)
	Overview of Secure RPC
	NFS Services and Secure RPC
	DES Encryption With Secure NFS
	Kerberos Authentication
	Diffie-Hellman Authentication
	Implementation of Diffie-Hellman Authentication
	Generating the Public Keys and Secret Keys
	Running the keylogin Command
	Generating the Conversation Key
	Initially Contacting the Server
	Decrypting the Conversation Key
	Storing Information on the Server
	Returning the Verifier to the Client
	Authenticating the Server
	Handling Transactions

	Administering Secure RPC (Task Map)
	Administering Authentication With Secure RPC
	How to Restart the Secure RPC Keyserver
	How to Set Up a Diffie-Hellman Key for an NIS+ Host
	How to Set Up a Diffie-Hellman Key for an NIS+ User
	How to Set Up a Diffie-Hellman Key for an NIS Host
	How to Set Up a Diffie-Hellman Key for an NIS User
	How to Share NFS Files With Diffie-Hellman Authentication

	Using PAM
	PAM (Overview)
	Benefits of Using PAM
	PAM Components
	PAM Framework

	Changes to PAM for the Solaris 10 Release

	PAM (Tasks)
	PAM (Task Map)
	Planning for Your PAM Implementation
	How to Add a PAM Module
	How to Prevent Rhost-Style Access From Remote Systems With PAM
	How to Log PAM Error Reports

	PAM Configuration File (Reference)
	PAM Configuration File Syntax
	Service Names for PAM
	PAM Module Types
	PAM Control Flags
	PAM Modules
	Examples From the Generic pam.conf File

	Using SASL
	SASL (Overview)
	SASL (Reference)
	SASL Plug-ins
	SASL Environment Variable
	SASL Options

	Using Solaris Secure Shell (Tasks)
	Solaris Secure Shell (Overview)
	Solaris Secure Shell Authentication
	Solaris Secure Shell in the Enterprise

	Solaris Secure Shell Enhancements in the Solaris 10 Release
	Solaris Secure Shell (Task Map)
	Configuring Solaris Secure Shell (Task Map)
	Configuring Solaris Secure Shell
	How to Set Up Host-Based Authentication for Solaris Secure Shell
	How to Enable Solaris Secure Shell v1
	How to Configure Port Forwarding in Solaris Secure Shell

	Using Solaris Secure Shell (Task Map)
	Using Solaris Secure Shell
	How to Generate a Public/Private Key Pair for Use With Solaris Secure Shell
	How to Change the Passphrase for a Solaris Secure Shell Private Key
	How to Log In to a Remote Host With Solaris Secure Shell
	How to Reduce Password Prompts in Solaris Secure Shell
	How to Set Up the ssh-agent Command to Run Automatically
	How to Use Port Forwarding in Solaris Secure Shell
	How to Copy Files With Solaris Secure Shell
	How to Set Up Default Connections to Hosts Outside a Firewall

	Solaris Secure Shell (Reference)
	A Typical Solaris Secure Shell Session
	Session Characteristics in Solaris Secure Shell
	Authentication and Key Exchange in Solaris Secure Shell
	Acquiring GSS Credentials in Solaris Secure Shell

	Command Execution and Data Forwarding in Solaris Secure Shell

	Client and Server Configuration in Solaris Secure Shell
	Client Configuration in Solaris Secure Shell
	Server Configuration in Solaris Secure Shell

	Keywords in Solaris Secure Shell
	Host-Specific Parameters in Solaris Secure Shell
	Solaris Secure Shell and Login Environment Variables

	Maintaining Known Hosts in Solaris Secure Shell
	Solaris Secure Shell Packages and Initialization
	Solaris Secure Shell Files
	Solaris Secure Shell Commands

	Kerberos Service
	Introduction to the Kerberos Service
	What Is the Kerberos Service?
	How the Kerberos Service Works
	Initial Authentication: the Ticket-Granting Ticket
	Subsequent Kerberos Authentications
	The Kerberos Remote Applications
	Kerberos Principals
	Kerberos Realms
	Kerberos Realms and Servers

	Kerberos Security Services
	The Components of Various Kerberos Releases
	Kerberos Components
	Kerberos Enhancements in the Solaris 10 Release
	Kerberos Components in the Solaris 9 Release
	SEAM 1.0.2 Components
	Kerberos Components in the Solaris 8 Release
	SEAM 1.0.1 Components
	SEAM 1.0 Components

	Planning for the Kerberos Service
	Why Plan for Kerberos Deployments?
	Kerberos Realms
	Realm Names
	Number of Realms
	Realm Hierarchy

	Mapping Host Names Onto Realms
	Client and Service Principal Names
	Ports for the KDC and Admin Services
	The Number of Slave KDCs
	Mapping GSS Credentials to UNIX Credentials
	Automatic User Migration to a Kerberos Realm
	Which Database Propagation System to Use
	Clock Synchronization Within a Realm
	Client Installation Options
	Kerberos Encryption Types
	Online Help URL in the SEAM Administration Tool

	Configuring the Kerberos Service (Tasks)
	Configuring the Kerberos Service (Task Map)
	Configuring Additional Kerberos Services (Task Map)
	Configuring KDC Servers
	How to Configure a Master KDC
	How to Configure a Slave KDC

	Configuring Cross-Realm Authentication
	How to Establish Hierarchical Cross-Realm Authentication
	How to Establish Direct Cross-Realm Authentication

	Configuring Kerberos Network Application Servers
	How to Configure a Kerberos Network Application Server

	Configuring Kerberos NFS Servers
	How to Configure Kerberos NFS Servers
	How to Create a Credential Table
	How to Add a Single Entry to the Credential Table
	How to Provide Credential Mapping Between Realms
	How to Set Up a Secure NFS Environment With Multiple Kerberos Security Modes

	Configuring Kerberos Clients
	Configuring Kerberos Clients (Task Map)
	How to Create a Kerberos Client Installation Profile
	How to Automatically Configure a Kerberos Client
	How to Interactively Configure a Kerberos Client
	How to Manually Configure a Kerberos Client
	How to Access a Kerberos Protected NFS File System as the root User
	Configuring Automatic Migration of Users in a Kerberos Realm

	Synchronizing Clocks Between KDCs and Kerberos Clients
	Swapping a Master KDC and a Slave KDC
	How to Configure a Swappable Slave KDC
	How to Swap a Master KDC and a Slave KDC

	Administering the Kerberos Database
	Backing Up and Propagating the Kerberos Database
	The kpropd.acl File
	The kprop_script Command

	How to Back Up the Kerberos Database
	How to Restore the Kerberos Database
	How to Reload a Kerberos Database
	How to Reconfigure a Master KDC to Use Incremental Propagation
	How to Reconfigure a Slave KDC to Use Incremental Propagation
	How to Configure a Slave KDC to Use Full Propagation
	How to Verify That the KDC Servers Are Synchronized
	How to Manually Propagate the Kerberos Database to the Slave KDCs
	Setting Up Parallel Propagation
	Configuration Steps for Setting Up Parallel Propagation
	Administering the Stash File
	How to Remove a Stash File

	Increasing Security on Kerberos Servers
	How to Enable Only Kerberized Applications
	How to Restrict Access to KDC Servers

	Kerberos Error Messages and Troubleshooting
	Kerberos Error Messages
	SEAM Administration Tool Error Messages
	Common Kerberos Error Messages (A-M)
	Common Kerberos Error Messages (N-Z)

	Kerberos Troubleshooting
	Problems With the Format of the krb5.conf File
	Problems Propagating the Kerberos Database
	Problems Mounting a Kerberized NFS File System
	Problems Authenticating as root
	Observing Mapping from GSS Credentials to UNIX Credentials

	Administering Kerberos Principals and Policies (Tasks)
	Ways to Administer Kerberos Principals and Policies
	SEAM Administration Tool
	Command-Line Equivalents of the SEAM Tool
	The Only File Modified by the SEAM Tool
	Print and Online Help Features of the SEAM Tool
	Working With Large Lists in the SEAM Tool
	How to Start the SEAM Tool

	Administering Kerberos Principals
	Administering Kerberos Principals (Task Map)
	Automating the Creation of New Kerberos Principals
	How to View the List of Kerberos Principals
	How to View a Kerberos Principal's Attributes
	How to Create a New Kerberos Principal
	How to Duplicate a Kerberos Principal
	How to Modify a Kerberos Principal
	How to Delete a Kerberos Principal
	How to Set Up Defaults for Creating New Kerberos Principals
	How to Modify the Kerberos Administration Privileges

	Administering Kerberos Policies
	Administering Kerberos Policies (Task Map)
	How to View the List of Kerberos Policies
	How to View a Kerberos Policy's Attributes
	How to Create a New Kerberos Policy
	How to Duplicate a Kerberos Policy
	How to Modify a Kerberos Policy
	How to Delete a Kerberos Policy

	SEAM Tool Reference
	SEAM Tool Panel Descriptions
	Using the SEAM Tool With Limited Kerberos Administration Privileges

	Administering Keytab Files
	Administering Keytab Files (Task Map)
	How to Add a Kerberos Service Principal to a Keytab File
	How to Remove a Service Principal From a Keytab File
	How to Display the Keylist (Principals) in a Keytab File
	How to Temporarily Disable Authentication for a Service on a Host

	Using Kerberos Applications (Tasks)
	Kerberos Ticket Management
	Do You Need to Worry About Tickets?
	Creating a Kerberos Ticket
	Examples—Creating a Kerberos Ticket

	Viewing Kerberos Tickets
	Example—Viewing Kerberos Tickets

	Destroying Kerberos Tickets

	Kerberos Password Management
	Advice on Choosing a Password
	Changing Your Password
	Examples—Changing Your Password

	Granting Access to Your Account
	Example — Using the .k5login File to Grant Access to Your Account

	Kerberos User Commands
	Overview of Kerberized Commands
	Forwarding Kerberos Tickets
	Examples — Using Kerberized Commands
	Example — Using the -a, -f, and -x Options With telnet
	Example — Using rlogin With the -F Option
	Example — Setting the Protection Level in ftp

	The Kerberos Service (Reference)
	Kerberos Files
	Kerberos Commands
	Kerberos Daemons
	Kerberos Terminology
	Kerberos-Specific Terminology
	Authentication-Specific Terminology
	Types of Tickets
	Ticket Lifetimes
	Kerberos Principal Names

	How the Kerberos Authentication System Works
	Gaining Access to a Service Using Kerberos
	Obtaining a Credential for the Ticket-Granting Service
	Obtaining a Credential for a Server
	Obtaining Access to a Specific Service

	Using Kerberos Encryption Types
	Using the gsscred Table
	Notable Differences Between Solaris Kerberos and MIT Kerberos

	Solaris Auditing
	Solaris Auditing (Overview)
	What Is Auditing?
	How Does Auditing Work?
	How Is Auditing Related to Security?
	Audit Terminology and Concepts
	Audit Events
	Audit Classes and Preselection
	Audit Records and Audit Tokens
	Audit Files
	Audit Storage
	Examining the Audit Trail

	Solaris Auditing Enhancements in the Solaris 10 Release

	Planning for Solaris Auditing
	Planning Solaris Auditing (Task Map)
	Planning Solaris Auditing (Tasks)
	How to Plan Auditing in Zones
	How to Plan Storage for Audit Records
	How to Plan Who and What to Audit

	Determining Audit Policy
	Controlling Auditing Costs
	Cost of Increased Processing Time of Audit Data
	Cost of Analysis of Audit Data
	Cost of Storage of Audit Data

	Auditing Efficiently

	Managing Solaris Auditing (Tasks)
	Solaris Auditing (Task Map)
	Configuring Audit Files (Task Map)
	Configuring Audit Files
	How to Modify the audit_control File
	How to Configure syslog Audit Logs
	How to Change a User's Audit Characteristics
	How to Add an Audit Class
	How to Change an Audit Event's Class Membership

	Configuring and Enabling the Auditing Service (Task Map)
	Configuring and Enabling the Auditing Service
	How to Create Partitions for Audit Files
	How to Configure the audit_warn Email Alias
	How to Configure Audit Policy
	How to Enable Auditing
	How to Disable Auditing
	How to Update the Auditing Service

	Managing Audit Records (Task Map)
	Managing Audit Records
	How to Display Audit Record Formats
	How to Merge Audit Files From the Audit Trail
	How to Select Audit Events From the Audit Trail
	How to View the Contents of Binary Audit Files
	How to Clean Up a not_terminated Audit File
	How to Prevent Audit Trail Overflow

	Solaris Auditing (Reference)
	Audit Commands
	auditd Daemon
	audit Command
	bsmrecord Command
	auditreduce Command
	praudit Command
	auditconfig Command

	Files Used in the Auditing Service
	system File
	syslog.conf File
	audit_class File
	audit_control File
	audit_event File
	audit_startup Script
	audit_user Database
	audit_warn Script
	bsmconv Script

	Rights Profiles for Administering Auditing
	Auditing and Solaris Zones
	Audit Classes
	Definitions of Audit Classes
	Audit Class Syntax

	Audit Policy
	Process Audit Characteristics
	Audit Trail
	Conventions for Binary Audit File Names
	Binary Audit File Names
	Binary Audit File Timestamps

	Audit Record Structure
	Audit Record Analysis

	Audit Token Formats
	acl Token
	arbitrary Token (Obsolete)
	arg Token
	attribute Token
	cmd Token
	exec_args Token
	exec_env Token
	exit Token (Obsolete)
	file Token
	group Token (Obsolete)
	groups Token
	header Token
	in_addr Token
	ip Token (Obsolete)
	ipc Token
	ipc_perm Token
	iport Token
	opaque Token (Obsolete)
	path Token
	path_attr Token
	privilege Token
	process Token
	return Token
	sequence Token
	socket Token
	subject Token
	text Token
	trailer Token
	uauth Token
	zonename Token

	Glossary
	Index

