
TEXAS INSTRUMENTS
HOME COMPUTER

Mini Memory

This Solid State Software™ Command Module is designed
to be used with the Tl Home Computer. It increases the
memory capacity and power of your computer with thèse
features:

• Adds 4K bytes of Random Access Memory (RAM) for
program or data storage in the module itself.

• Has a built-in battery to préserve data or programs
stored in the module, even when you remove the module
from the computer or turn the computer off.

• Contains 4K bytes of Read Only Memory (ROM) and 6K
bytes of Graphics Read Only Memory (GROM)
programmed with additional Tl BASIC subprograms that
allow you to link BASIC programs to assembly language
subprograms, access the machine resources of your
computer, and address the Memory Expansion unit (sold
separately) from a Tl BASIC program.

• Allows you to troubleshoot your assembly language
programs by means of the EASY BUG debugging
program.

Copyright © 1982 by Texas Instruments Incorporated
Command Module program and data base contents
copyright © 1981 by Texas Instruments Incorporated
See important warranty information at back of book.

TEXAS INSTRUMENTS
HOME COMPUTER

This program was adapted and developed by the staff of the Texas
Instruments Personal Computer Division, with contributions by:
Wenn Lin
Granville Ott
Herman Schuurman
Paul Urbanus

This manual was developed by the staff of the Texas Instruments
Learning Center, with contributions by:
Ira McComic
Jacquelyn Quiram
Jan Stevens

Copyright © 1982 by Texas Instruments Incorporated

Mini Memory

TABLE OF CONTENTS

INTRODUCTION 5
Applications 6
General Memory Information 7
Sources of Background Information 8

HOWTOUSETHIS MANUAL 9
USING THE MODULE 10

Load and Run 11
Run 12
Re-lnitialize 12

LOADING AND SAVING Tl BASIC DATA FILES 13
Additional Files Introduced to the System 13
File Access 14

Data File Spécifications 14
Setting Up a Mini Memory File for Data Storage . . . 15
Setting Up a Memory Expansion File for
Data Storage 16

Reading and Writing a Data File 17
LOADING AND SAVING Tl BASIC PROGRAMS 18

Loading and Storing a Program 19
Mixing Assembiy Language Programs and
Tl BASIC Files 19

ADDITIONAL Tl BASIC SUBPROGRAMS 20
INIT Subprogram 21
LOAD Subprogram 22

Loading Object Files 22
Loading Data Files 23

LINKSubprogram 24
Parameter Passing 25
Opération 26
Name Link Routine 28

PEEK Subprogram 30
PEEKV Subprogram 30
POKEV Subprogram 31
CHARPAT Subprogram 31

LOADING ASSEMBLY LANGUAGE PROGRAMS 31

TEXAS INSTRUMENTS
HOME COMPUTER

SYSTEM UTILITY ROUTINES 34
Standard Utilities 35

VDP Single Byte Write — VSBW 35
VDP Multiple Byte Write — VMBW 35
VDP Single Byte Read — VSBR 36
VDP Multiple Byte Read — VMBR 36
VDP Write to Register — VWTR 36
Keyboard Scan — KSCAN 37

Extended Utilities 37
Linking to GROM-Resident Routines — GPLLNK. .38
Linking to ROM-Resident Routines — XMLLNK .. .45
Linking to Device Service Routines — DSRLNK .. .50

Tl BASIC Interface Utilities 52
Numeric Assignment — NUMASG 52
String Assignment — STRASG 53
Get Numeric Parameter — NUMREF 54
Get String Parameter — STRREF 54
Error Reporting — ERR 54

Sample Program 56
EASY BUG DEBUGGER 64

Operation 64
Commands and Special Function Keys 65

Modify CPU Memory — M 66
Modify VDP Memory — V 67
Display GROM Memory — G 68
Execute Assembly Program — E 69
CRU Single-Bit I/O — C 69
Save CPU Memory to CS1 — S 69
Load Storage from CS1 — L 70

APPENDIX A: CPU Memory Map 71
APPENDIX B: Mini Memory ROM Organization 72
APPENDIX C: RAM Organization — Tl BASIC Files 73
APPENDIX D: Mini Memory RAM Organization —

Assembly Language Storage 74
APPENDIX E: VDP RAM Memory Map 75
APPENDIX F: VDP RAM with Tl BASIC Interpreter 76
INDEX 77
SERVICE AND WARRANTY INFORMATION 79

Mini Memory

INTRODUCTION

The Mini Memory Solid State Software™ Command Module increases
the versatility of your Texas Instruments TI-99/4 or TI-99/4A Home
Computer by providing additional memory for your system and
important tools for program development. In addition, the module
contains a built-in battery, which permits the programs and data
stored in the module's Random Access Memory (RAM) to be retained
when the computer console is turned off, even if the module is
removed from the console.

The features of the Mini Memory module include:
• A total of 14K bytes of memory. This memory consists of 6K bytes

of Graphics Read Only Memory (GROM), 4K bytes of Read Only
Memory (ROM), and 4K bytes of RAM. The programs resident in the
GROM and ROM provide additional important program development
tools. The RAM provides additional memory space for data and
program storage.

• A built-in battery in the module to preserve the data or programs
stored in the RAM memory.

• Additional files. Besides the 4K-byte RAM file in the Mini Memory
module itself, the 24K-byte segment of the Memory Expansion unit,
if attached, can be used by Tl BASIC programs.

• Assembly language capabilities. With the Mini Memory module,
assembly language object programs can be loaded into the module
itself or into the Memory Expansion unit, if attached.

• Additional Tl BASIC subprograms. With the Mini Memory module,
several additional subprograms can be called with Tl BASIC
statements. These subprograms include the ability to PEEK and
POKE values.

• Additional utility routines. The Mini Memory module includes
several program routines which permit access to the computer's
resources; for example, interfacing user programs with ROM- and
GROM-resident programs, interfacing assembly language programs
with the Tl BASIC interpreter, and accessing the Video Display
Processor (VDP) RAM.

• A resident debug program. The EASY BUG debug program is a
useful program-development tool with which you can access the
internal resources of the computer system and troubleshoot your
programs.

TEXAS INSTRUMENTS
HOME COMPUTER

APPLICATIONS

You can use the RAM in the Mini Memory module to store either data
or programs. This memory is "CPU memory," which means it is fast-
access memory. You can take advantage of this fast storage and
retrieval to store data which is used frequently in an application or to
store assembly language programs which perform rapid computations.

A Tl BASIC program which you frequently use can be stored in the
Mini Memory module, rather than on a cassette tape or diskette, for
quicker loading.

Generally, Random Access Memory (for example, the "user" memory
in the computer console) loses its contents when the console is
turned off. The battery-activated Mini Memory module, however,
retains its contents when you turn the console off. Programs or data
can be stored in the battery-powered RAM, the console turned off, and
the module removed from the console. Then, when you reinsert the
module and turn the console on, your data or program is ready to use.

CAUTION
When you remove or insert the Mini
Memory module, the computer console
should be OFF to prevent the possibility of
any data or programs stored in RAM being
lost or altered.

An important feature of the Mini Memory module is its capability of
implementing assembly language programs. The module allows you to
load your own assembly language programs for direct access to the
programmable components in the computer (such as the TMS9900
microprocessor or the TMS9918 Video Display Processor). Assembly
language programs can also directly access devices such as the
Wired Remote Controllers or cassette tape recorders through their
interface ports on the console.

In addition, the module makes it possible for assembly language
subroutines to be called from Tl BASIC programs. These assembly
language subroutines can perform functions which would be
inefficient or impossible to implement in BASIC. Program routines
resident in the module's GROM and ROM provide a convenient
interface between Tl BASIC programs and assembly language
programs.

Mini Memory

Also included in the module is the EASY BUG debugging program.
With EASY BUG, you can access the memory and programmable
components in the computer. EASY BUG also includes commands for
loading and storing memory-image data on cassette tape.

GENERAL MEMORY INFORMATION

Note: In this manual, the greater than symbol (>) indicates that the
following number is a hexadecimal (base 16) number.

The Mini Memory module contains a total of 14K bytes of memory,
consisting of 4K bytes of battery-powered Random Access Memory
(RAM), 4K bytes of Read Only Memory (ROM), and 6K bytes of
Graphics Read Only Memory (GROM). Resident in ROM and GROM are
a number of routines which add additional callable subprograms to Tl
BASIC and which are useful for interfacing assembly language
programs with Tl BASIC programs.

Appendix A shows the memory organization for the computer's entire
memory space. The 4K bytes of ROM in the Mini Memory module
occupy memory addresses >6000 through >6FFF (or from 24576
through 28671). Appendix B illustrates the details of the ROM
organization.

The 4K bytes of RAM in the module occupy memory addresses >7000
through >7FFF (or from 28672 through 32767). Appendix C shows the
details of the RAM organization when it is used for Tl BASIC files.
Appendix D describes how the RAM is organized when it is used for
assembly language storage. The GROM occupies memory space which
is not directly mapped into the CPU memory address space.
Appendices E and F contain information about the RAM in the Video
Display Processer (VDP).

Mini Memory

HOW TO USE THIS MANUAL

This manual assumes that you are already experienced in
programming with Tl BASIC. Statements, commands, and functions
that are the same as in Tl BASIC are only discussed briefly. For a
complete description, see the User's Reference Guide included with
your TI-99/4 or TI-99/4A Home Computer.

If you intend to use the Mini Memory module for creating your own
assembly language programs, it is assumed that you are experienced
in TMS9900 assembly language programming and that you are familiar
with the internal organization of data and file structures used by the
Home Computer. For a complete discussion of these topics, see the
Editor/Assembler owner's manual.

The remainder of this manual explains the various features included in
the Mini Memory module. The section entitled "Using the Module"
explains the various options that are presented on the selection
screen when the Mini Memory module is first brought into operation
and explains how to select these options.

The section on "Loading and Saving Tl BASIC Data Files" explains
how to use the Mini Memory module for accessing data files, and the
"Loading and Saving Tl BASIC Programs" section describes how to
use the module for loading and storing program files.

The section on "Additional Tl BASIC Subprograms" explains the
additional subprograms the Mini Memory module provides to interface
with assembly language programs and the computer system.

"Loading Assembly Language Programs" discusses the procedures
for loading assembly language programs and subprograms, and the
"System Utility Routines" section describes the Mini Memory module
utilities which access CPU ROM and GROM routines.

The "EASY BUG Debugger" section details the operation of the EASY
BUG debugging program, and the six appendices contain information
about the memory organization of the Home Computer.

Mini Memory

HOW TO USE THIS MANUAL

This manual assumes that you are already experienced in
programming with Tl BASIC. Statements, commands, and functions
that are the same as in Tl BASIC are only discussed briefly. For a
complete description, see the User's Reference Guide included with
your TI-99/4 or TI-99/4A Home Computer.

If you intend to use the Mini Memory module for creating your own
assembly language programs, it is assumed that you are experienced
in TMS9900 assembly language programming and that you are familiar
with the internal organization of data and file structures used by the
Home Computer. For a complete discussion of these topics, see the
Editor/Assembler owner's manual.

The remainder of this manual explains the various features included in
the Mini Memory module. The section entitled "Using the Module"
explains the various options that are presented on the selection
screen when the Mini Memory module is first brought into operation
and explains how to select these options.

The section on "Loading and Saving Tl BASIC Data Files" explains
how to use the Mini Memory module for accessing data files, and the
"Loading and Saving Tl BASIC Programs" section describes how to
use the module for loading and storing program files.

The section on "Additional Tl BASIC Subprograms" explains the
additional subprograms the Mini Memory module provides to interface
with assembly language programs and the computer system.

"Loading Assembly Language Programs" discusses the procedures
for loading assembly language programs and subprograms, and the
"System Utility Routines" section describes the Mini Memory module
utilities which access CPU ROM and GROM routines.

The "EASY BUG Debugger" section details the operation of the EASY
BUG debugging program, and the six appendices contain information
about the memory organization of the Home Computer.

TEXAS INSTRUMENTS
HOME COMPUTER

USING THE MODULE

Before inserting or removing the Mini Memory module, it's a good
practice to turn off the computer console. Turning the console off
prevents the possibility of "contact bounce" between the module and
console contacts, which could cause you to lose or alter the contents
of the module's Random Access Memory.

Note: Be sure the module is free of static electricity before inserting it
into the computer. (See "Service and Warranty Information" for details
about static electricity.)

TEXAS INSTRUMENTS

HOME COMPUTER
READY-PRESS ANY KEY TO BEGIN

© 1979 TEXAS INSTRUMENTS

1. Slide the module into the slot on the console. Then turn the
computer ON, and wait for the master title screen to appear.

2. Press any key to make the master selection list appear. Two
options for the Mini Memory module appear on this list: EASY BUG
and MINI MEMORY. If you select EASY BUG, the EASY BUG
debugging program is brought into operation and its selection
screen appears. (For detailed information on EASY BUG, see the
section "EASY BUG Debugger.") If you select MINI MEMORY, you
can choose to load files, run programs, or initialize the Mini
Memory module's Random Access Memory. Press the key
corresponding to the number beside the desired option.

Note: To remove the module, first return the computer to the master
title screen by pressing QUIT. Then turn the computer console OFF,
and remove the module from the slot.

If you select MINI MEMORY from the master seJection list, the
following selections are available.

10

Mini Memory

* MINI MEMORY *

PRESS:
1 TO LOAD AND RUN
2 RUN
3 RE-INITIALIZE

© 1981 TEXAS INSTRUMENTS

Three options are presented. To select an option, press the
appropriate key for that option.

LOAD AND RUN loads assembled programs in tagged or compressed
object format (stored on diskette) into memory and runs the programs.
RUN executes programs previously loaded into memory, and
RE-INITIALIZE re-initializes the Mini Memory module and prepares it
for loading new programs. These three options are discussed in the
following paragraphs.

LOAD AND RUN

The LOAD AND RUN option allows you to load and execute assembly
language programs developed with the Editor/Assembler package and
stored on a diskette. When you press 1 to select the LOAD AND RUN
option, the prompt "FILE NAME?" appears. This file must contain an
assembly language program in object format. Type the filename and
then press ENTER; for example, typing

DSK1.DEM0
and pressing ENTER loads a file named DEMO from a diskette in Disk
Drive 1.

After the file is loaded, the filename is erased from the screen. The
computer is now ready to accept another filename. You may load as
many files as you like until the memory is full. When you have loaded
all your files, press ENTER (without entering a filename) to proceed.

The prompt "PROGRAM NAME?" appears next. The program name is
any entry point in a program which is marked by a label DEFined in
the DEF list of the program. Pressing ENTER without entering a
program name creates an error condition.

11

TEXAS INSTRUMENTS
HOME COMPUTER

RUN
If you have previously loaded an assembly language object program,
choose the RUN option to run the program. Remember, a program
loaded into the Mini Memory module is retained even if the console is
turned off. Therefore, you can run this program without reloading it.

If you press 2 when the Mini Memory selection list is on the screen,
the prompt "PROGRAM NAME?" is displayed. Enter the name of the
program. The program name must be an entry point in a program
which appears in the internal REF/DEF table. (For more information on
the REF/DEF table, see "LOAD Subprogram.") If you press ENTER
without entering a program name, the computer locates and runs the
program most recently executed.

REINITIALIZE
If you press 3 to select the RE-INITIALIZE option, the Mini Memory
module's Random Access Memory is initialized to accept new files.
Any programs or data stored in the Random Access Memory are lost.

When you choose this option, the screen goes blank momentarily, and
then the selection screen reappears.

If the message MEMORY ALREADY INITIALIZED, HIT "PROC'D" TO
CONFIRM is displayed, press PROC'D if you want to re-initialize
memory. Re-initializing clears all existing program references from the
memory and prepares for loading new programs. Note: Press PROC'D
ONLY if you want to load a new program and the remaining memory
space is too small to add the new program.

If you do not want to re-initialize, press any other key to return to the
selection list without re-initializing memory.

12

Mini Memory

LOADING AND SAVING Tl BASIC DATA FILES

Probably the most common application for the Mini Memory module is
fast, temporary data storage for use by Tl BASIC programs. Since it
retains its data even if power to the console is turned off, the Mini
Memory module is useful for preserving small amounts of data.

You can establish a file of up to 4K bytes in the Mini Memory module
alone. If the Memory Expansion unit is connected to the computer
console, the Mini Memory module also allows you to access an
additional file, EXPMEM2, located in the Memory Expansion unit. This
file can have a length of up to 24K bytes.

ADDITIONAL FILES INTRODUCED TO THE SYSTEM

The Mini Memory module introduces two new files to the system.
1. MINIMEM—The 4K read/write memory segment located in the Mini

Memory module itself.
2. EXPMEM2—A 24K memory segment located in the Memory

Expansion unit.

The last file is available only if the Memory Expansion unit is
connected to the system and turned on. Refer to the Memory
Expansion unit owner's manual for more information on how to
connect this unit to the system and the proper initialization procedure.

13

TEXAS INSTRUMENTS
HOME COMPUTER

FILE ACCESS

The memory in the Mini Memory module and the Memory Expansion
unit can be used for data file storage by Tl BASIC at any time.
However, if you want to use these files for data storage together with
storing assembly language programs, you must take certain
precautions to avoid destroying data and/or assembly language
programs. See "Mixing Assembly Language Programs and Tl BASIC
Files" for more information on this procedure.

WARNING
If data files are stored in the the Mini
Memory module (the file called MINIMEM),
the assembly language capabilities cannot
be used.

Data File Specifications

The following specifications define data files to be stored in the Mini
Memory module.
• File Organizations—SEQUENTIAL and RELATIVE.
• File types—DISPLAY and INTERNAL.
• Record length—VARIABLE and FIXED.
• Operation modes—INPUT, OUTPUT, UPDATE, and APPEND.
• BASIC functions—EOF.

The following restrictions apply to the above specifications.
• The VARIABLE-length record type can be used only with

SEQUENTIAL files.
• For a file with VARIABLE-length records, a zero-length data item in

the first record will be stored incorrectly. To ensure proper file
operation, make sure that the first record in your file is not a null
string.

For more information on data file handling and accessing files, refer
to the "File Processing" section of the User's Reference Guide.

14

Mini Memory

Setting Up a Mini Memory File for Data Storage

You can think of the files introduced to the system by the Mini
Memory module as high-speed, out-of-program storage files, just as a
cassette or diskette is an out-of-program storage file. The Tl BASIC
statements used to set up and access files in the Mini Memory
module are the same as those described in the User's Reference
Guide.

To access a file, you must open it with an OPEN statement, listing the
file specifications you want the file to have.

OPEN #3:"MINIMEM",RELATIVE,FIXED,UPDATE,DISPLAY

Data can be written to the file with a PRINT statement and read from
the file with an INPUT statement. The RESTORE statement repositions
the file at its beginning record.

PRINT #3: A,B,C,D
RESTORE #3
INPUT #3: A,B,C,D

You should close the file when you no longer need to access it or if
you want to re-OPEN it to establish different specifications (like
changing it from an OUTPUT file to an INPUT file).

CLOSE #3

15

TEXAS INSTRUMENTS
HOME COMPUTER

Setting Up a Memory Expansion File for Data Storage

Setting up data files in the 24K-byte memory segment of the Memory
Expansion unit requires the same procedure as that described for the
Mini Memory module, with one exception.

To ensure that a file is properly opened and closed, each OPEN
statement must be preceded by a CALL LOAD statement specifying an
address and a value. (See "Additional Tl BASIC Subprograms" for full
information about the LOAD subprogram.) The address is the same for
each CALL LOAD statement; the value that follows the address
depends on the file type and record length.

For INTERNAL-type files with VARIABLE-length records, the format is
CALL L0AD(-24574,24)
OPEN #1:"EXPMEM2",SEQUENTIAL
,VARIABLE 32,INTERNAL,OUTPUT

For DISPLAY-type files with VARIABLE-lehgth records, the format is
CALL L0AD(-24574,16)
OPEN #1:"EXPMEM2",SEQUENTIAL
,VARIABLE 32,DISPLAY,OUTPUT

For INTERNAL-type files with FIXED-length records, the format is
CALL L0AD(-24574,8)

OPEN #1:"EXPMEM2",RELATIVE,F
IXED,UPDATE,INTERNAL

For DISPLAY-type files with FIXED-length records, the format is
CALL L0AD(-24574,0)
OPEN #1:"EXPMEM2",RELATIVE,F
IXED,UPDATE,DISPLAY

16

Mini Memory

Reading and Writing a Data File

The following programs illustrate writing data to the MINIMEM and
EXPMEM2 files and then reading the data.

MINIMEM Example:
100 OPEN #5:"MINIMEM",SEQUEN
TIAL, FIXED, OUTPUT, INTERNAL
110 INPUT X
120 INPUT Y
130 INPUT Z
140 PRINT #5:X, Y, Z
150 CLOSE #5

This segment opens the MINIMEM file (the 4K bytes of
RAM in the Mini Memory module) as an output file in
statement number 100. Lines 110 through 130 accept the
data values entered from the keyboard. Line 140 writes
these values to the MINIMEM file, and line 150 closes
the MINIMEM file.

At this point, the computer console can be turned off
and the Mini Memory module removed from the console.
The data is preserved just as if it had been stored on a
cassette or diskette.

The following segment reads the data values stored in
the MINIMEM file and displays the values on the screen.
200 OPEN #5:"MINIMEM",SEQUEN
TIAL,FIXED,INPUT,INTERNAL
210 INPUT #5: P, Q, R
220 PRINT P, Q, R
230 CLOSE #5

17

TEXAS INSTRUMENTS
HOME COMPUTER

EXPMEM2 Example:

100 CALL CLEAR
110 REM OPEN FILE FOR DISPLA
Y-TYPE,VARIABLE-LENGTH
120 CALL LOAD(-24574,16)
130 OPEN #1:"EXPMEM2",SEQUEN
TIAL,VARIABLE,DISPLAY,UPDATE
140 FOR 1=1 TO 20
150 PRINT #1:"RECORD #";I;"W
AS READ."
160 NEXT I
170 RESTORE #1
180 FOR J=l TO 20
190 INPUT #1:A$
200 PRINT A$
210 NEXT J
220 CLOSE #1

This program opens a file in EXPMEM2 (the 24K-byte
memory segment in the Memory Expansion unit), writes
20 records to the file, and then reads the records back
and displays them on the screen. Note the CALL LOAD
statement in line 120, which precedes the OPEN
statement in line 130, and the RESTORE statement in
line 170, which repositions file #1 at its beginning record.

Note: When the computer console is turned off, any data
stored in the Memory Expansion unit is destroyed.

LOADING AND SAVING Tl BASIC PROGRAMS

In addition to data file storage, the Mini Memory module is also useful
for storing short Tl BASIC programs or assembly language programs.
Assembly language programs stored on diskette are loaded through
the LOAD AND RUN option on the Mini Memory selection list, while
Tl BASIC programs can be saved and loaded using the SAVE and OLD
commands, respectively. For more information on these commands,
refer to the "Commands" section of the User's Reference Guide.

The Mini Memory module can store nearly 4K bytes (exactly 4088
bytes) of program data in its RAM.

18

Mini Memory

To use files for assembly language programs and Tl BASIC files
together, you must take certain precautions, which are described in
the section "Mixing Assembly Language Programs and Tl BASIC
Files."

LOADING AND STORING A PROGRAM
The following procedure shows you how to create a one-statement
test program, save it in the Mini Memory module, and then load it
back into the console's memory.

First, select Tl BASIC and enter the program.
100 PRINT "THIS IS A TEST"

Store the program by entering the command
SAVE MINIMEM

After the program is stored in the module, the computer console can
be turned off. Then, even if the Mini Memory module is removed from
the console, the program is preserved just as if it had been stored on
a cassette or diskette.

As a test, if you do not want to turn the console off at this point, enter
the command

NEW

to remove the program from the console memory. To load the program
back into the console memory, enter the command

OLD MINIMEM

Now, enter the LIST command to see that the program was loaded
back into memory.

MIXING ASSEMBLY LANGUAGE PROGRAMS AND Tl BASIC FILES

Assembly language programs and Tl BASIC files cannot be stored
simultaneously in the Mini Memory module. If the Mini Memory
module and the Memory Expansion unit are both available, however,
you can mix assembly language programs and Tl BASIC files, with the
following restrictions.
• The Mini Memory module must be used for assembly language

storage only.
• You can also store assembly language programs in the 8K-byte

segment of the Memory Expansion unit.

" " " " " ^ 1 9

TEXAS INSTRUMENTS
HOME COMPUTER

• The 24K-byte segment of the Memory Expansion unit must be used
for your Tl BASIC files.

WARNING
If data files are stored in the Mini Memory
module (the file called MINIMEM), the
Memory Expansion unit cannot be used for
assembly program storage.

When you have both the Mini Memory module and the Memory
Expansion unit and you want to mix assembly language programs and
Tl BASIC files, use the following steps to avoid destroying data and/or
programs.
1. Initialize the Mini Memory module by following one of two

procedures. One procedure is to select the RE-INITIALIZE option
from the Mini Memory selection screen. A second procedure is to
select Tl BASIC from the master selection list and use the CALL
INIT command. (See "Additional Tl BASIC Subprograms" for a
description of the INIT subprogram.)

2. From Tl BASIC, use the OPEN statement to reserve the EXPMEM2
file for data storage.

3. LOAD the assembly language programs you want to use. (See
"Loading Assembly Language Programs" for additional
information.)

ADDITIONAL Tl BASIC SUBPROGRAMS

Several subprograms included in the Mini Memory module provide an
interface between assembly language programs and Tl BASIC. These
subprograms are INIT, LOAD, LINK, PEEK, PEEKV, POKEV, and
CHARPAT. Each subprogram is discussed in this section. In these
discussions, the term "CPU memory" refers to all the memory directly
accessible by the Central Processing Unit (CPU). This includes the
memory in the module itself, the Memory Expansion unit, if attached,
and the scratchpad memory in the console.

20

Mini Memory

INIT SUBPROGRAM

Format: CALL INIT

The calling statement of the INIT subprogram has no arguments. We
recommend that you generally use CALL INIT in the command or
immediate mode to avoid inadvertently losing programs or data stored
in memory. However, if the CALL INIT statement is used in a program,
it must appear prior to the LOAD and LINK subprograms.

The INIT subprogram initializes the CPU memory for assembly
language subroutines and re-initializes the internal tables in the Mini
Memory module. When this subprogram is run, it checks to see if the
Memory Expansion unit is connected. If so, it sets the corresponding
table values in the Mini Memory module to enable access to both the
module and the Memory Expansion unit.

WARNING
CALL INIT erases all programs and data
from the Mini Memory module. Use it only
to clear the memory for loading new
programs or subroutines. Also, if the
Memory Expansion unit is not properly
connected or if it is not turned on when
CALL INIT is executed, the INIT
subprogram does not recognize the
Memory Expansion unit. If this happens,
this memory cannot be used for loading
programs.

Since the Mini Memory Command Module contains its own internal
power supply, the module does not have to be initialized every time
the main console is turned on. Only if you want to re-initialize the
module's memory does the INIT subprogram have to be used.

CAUTION
The Mini Memory module retains only the
data contained in the module itself. Any
data in the Memory Expansion unit is lost
if the system is turned off.

21

TEXAS INSTRUMENTS
HOME COMPUTER

LOAD SUBPROGRAM

The LOAD subprogram serves two purposes.
• It loads assembly language object files into CPU memory.
• It loads data into CPU memory.

The syntax for the CALL LOAD statement has two forms, depending
on the purpose of the CALL LOAD statement.

Loading Object Files

Format: CALL LOAD(obj-filename[,obj-filename,...])

This format of the CALL LOAD statement loads an assembly language
object file or pokes direct data into memory for later execution by the
CALL LINK statement.

The obi-filename (object filename) can be any valid string expression
and specifies the file to be opened and read by the LOAD subprogram.
Relocatable object code is loaded at the first available address, which
depends upon the system configuration; and space is reserved for the
assembly language programs according to the length specified in the
"0-tag" field in the object file. (For a description of object program tag
fields, see the Editor/Assembler owner's manual.) Absolute object
code is loaded at the absolute address specified in the object code.

For example, the statement

CALL LOAD("DSK1.DEMO")

loads the file DEMO from the diskette in Disk Drive 1.

CAUTION
Absolute code is loaded at the address
specified in the object code. No space is
reserved unless the length is specified in
the "0-tag" field. Loading data into memory
used by the Tl BASIC interpreter can cause
the system to crash.

22

Mini Memory

If you are using the Mini Memory module only, without the Memory
Expansion unit attached to the console and turned on, the first
assembly language program is loaded starting at >7118, the lowest
available address in the module's Random Access Memory (RAM). If
the Memory Expansion unit is connected and turned on, the first
assembly language program is loaded starting at >A000, the starting
address of the highest memory segment in the Memory Expansion
unit. Subsequent programs are loaded sequentially, beginning with the
lowest address in the high memory area.

See "Loading Assembly Language Programs" for additional
information.

Loading Data Files

Format: CALL LOAD(address,value[,...,"",address,value,...])

When the LOAD subprogram is used to load data into CPU memory, a
list of integers (called a poke list) should be specified. The poke list
should start with an address between 0 (>0000) and 32767 (>7FFF) or
an address between - 1 (>FFFF) and -32768 (>8000), followed by a
list of integers to be used as one-byte data values. These integer
values are loaded into consecutive locations, starting at the given
address. An empty string ("") separates the last byte of one poke list
and the starting address of the next. The address for a poke list is
absolute, and the data is not-relocatable.

For example, the statement
CALL LOAD (-32000,255,21,"" ,8197,85)

loads the value >FF15 at memory word address >8300 (byte
addresses >8300 and >8301) and the value >55 at memory byte
address >2005.

23

TEXAS INSTRUMENTS
HOME COMPUTER

If an object code program is loaded directly with a poke list, a name
entry must also be loaded so that the program can be accessed by a
CALL LINK statement (described below). The program name and
address are added to the REF/DEF table in the module's memory in
the following manner.

First, the First Free Address in the module (FFAM) and the Last Free
Address in the module (LFAM) must be read from memory by means of
the PEEK command (described below). The addresses of these two
variables are >701C and >701E respectively. After checking that
there is enough room (8 bytes) to add another label to the REF/DEF
table, subtract 8 from the old LFAM, and poke the new LFAM value to
>701E using the CALL LOAD statement. Load the program name
(must be exactly 6 bytes, including spaces) and the program address
(2 bytes) into the 8-byte space added to the REF/DEF table.

For example, if the LFAM is >8000, change it to >7FF8 and load the
name and then the address of the program.

LINK SUBPROGRAM

Format: CALL UNKIprogram-name [,parameter-list,"",...])

The LINK subprogram passes control and, optionally, a list of
parameters from a Tl BASIC program to an assembly language
program.

The program-name is a string expression consisting of from one
through six characters and must be an entry in the REF/DEF table.
This name must be defined in a program which has been loaded
previously. Or, if a program was loaded byte-by-byte by means of a
poke list in a CALL LOAD statement, the program name must have
been entered in the REF/DEF table explicitly. See the "LOAD
Subprogram" section for more information.

The parameter-list is optional. This list is used when parameters need
to be passed between the assembly language program and Tl BASIC.
You can pass string or numeric variables or expressions.

24

Mini Memory

Parameter Passing

Depending upon whether a parameter is a variable or an expression,
the parameter is passed by name or by value. Variables are passed by
name, and expressions are passed by value.

If a variable is passed to an assembly language program, it can have
its value changed in the assembly language program, thus changing
the value of the variable in the main program also. If the variable in a
parameter list has not appeared in previous TI BASIC statements, the
interpreter creates a Symbol Table entry for the variable.

Expressions are passed by value, since they are not directly
associated with a variable. The value of an expression cannot be
passed back to the calling program.

When an array element, such as A(9), is given in the parameter list, it
is passed as a variable. An entire array can be passed by following the
parameter name with parentheses. If the array has more than one
dimension, a comma must be placed inside the parentheses for each
additional dimension. For example, A() indicates a one-dimensional
numeric array called A. EXT$(,,) represents a three-dimensional string
array called EXT$.

To specify that certain variables are to be used only for passing a
value, but not for returning results, the variable can be enclosed in
parentheses. For example, (SUMI) refers to the current value of the
numeric variable SUMI. (A$(5)) refers to the value of the string array
element A$(5). Notice that complete arrays cannot be passed by value
but must be passed by name; thus, (A()) would be illegal.

A maximum of 15 arguments can be listed in the parameter list.

25

TEXAS INSTRUMENTS
HOME COMPUTER

Operation

The LINK subprogram performs the following actions.

• It evaluates the assembly language program name and its length (1
to 6 characters) and pushes this information onto the value stack.

• It builds the argument list, consisting of identifiers for each
argument in the parameter list, and builds a stack entry for each
argument.

• It moves the program name to the area where the utility routine can
access it and transfers control to the utility program.

• Upon return, it branches to an error routine if an error has been
detected. Otherwise, it clears the stack entry used during LINK
execution and returns to the Tl BASIC calling program.

The LINK subprogram passes information about the arguments via the
argument-identifier list in CPU RAM and the value stack in VDP RAM.

The argument identifiers, old value stack pointer, and the number of
arguments in the list are located in the following CPU RAM locations.

Address Contents
> 7002-> 7011 Argument identifier, one byte for each argument.
>8310 Old value stack pointer of Tl BASIC interpreter.
>8312 Number of arguments in the parameter list.

The argument-identifier codes are as follows.

0 Numeric expression
1 String expression
2 Numeric variable
3 String variable
4 Numeric array
5 String array

More information on each argument is stored in an eight-byte value
stack in VDP memory. The structure of an individual value stack
depends upon the type of argument, as described below.

26

y

Mini Memory

Numeric Expression—The stack contains the value of the numeric
expression. The value is expressed in radix 100 notation. The first byte
is the exponent of 100. If the exponent is positive, it is in excess of 64.
A negative exponent is expressed as a value less than 64 in the first
byte. The absolute value of the exponent is the difference between
this value and 64. The other seven bytes contain 0 to 99, for radix 100
digits. If the number is negative, the first word (two bytes) is the two's
complement of the number. For example,

>3F, >22, >00, >00, >00, >00, >00, >00 equals 0.34
>BE, >FB, >00, >00, >00, >00, >00, >00 equals -500

String Expression—A string stack entry consists of the following
information.

Bytes 0-1 >001C.
Byte 2 >65 (The string tag used by the Tl BASIC

interpreter).
Bytes 4-5 The pointer to the value of the string in VDP

memory.
Bytes 6-7 The length of the string. Byte 6 should always

be zero since the maximum string length is
255 characters.

Numeric Variable—This item is either a numeric variable or a numeric
array element. The stack contains the following information.

Bytes 0-1 The pointer to the variable's Symbol Table
entry in VDP memory.

Byte 2 Zero.
Bytes 4-5 The pointer to the eight-byte value of the

variable in VDP memory.

String Variable—This item is either a string variable or a string array
element. The stack entry contains the following information.

Bytes 0-1 The pointer to the variable's Symbol Table
entry in VDP RAM.

Byte 2 >65 (The string tag used by the Tl BASIC
interpreter).

Bytes 4-5 The pointer to the string's value in VDP
memory.

Bytes 6-7 The string length.

27

TEXAS INSTRUMENTS
HOME COMPUTER

Numeric Array—This entry results from an argument of the form A(),
A(,), etc. It is used to permit a subprogram to manipulate an entire
array. The string entry contains the following information.

Bytes 0-1 The pointer to the array's Symbol Table entry
in VDP RAM.

Byte 2 Zero.
Bytes 4-5 The pointer to the array's value space in VDP

RAM. The value space for a numeric array has
two bytes for each dimension which indicate
the maximum index for that dimension. The
values of the rest of the elements are stored
in sequential order.

String Array—This entry is similar to the entry for a numeric array,
except that byte 2 contains >65. The value space for a string array
contains two bytes for each dimension, indicating the maximum index,
followed by a pointer to each array element's value (string value) in
VDP RAM. Note that, with a numeric array, each array element is
stored consecutively in the same memory area, while the elements of
a string array are located in non-contiguous memory areas.

Name Link Routine

When an asssembly language subroutine is called from TI BASIC by a
CALL LINK statement, control passes to the subroutine through a
Name Link routine which resides in the utility program. The Name Link
routine finds the name of the routine in the REF/DEF table located at
the high end of the Mini Memory module's memory. When an
assembly language program is loaded, the Loader adds an eight-byte
entry to the REF/DEF table when it sees a REFed or DEFed label. This
REF/DEF table starts at >7FFF and goes down toward >7118, the
First Free Address (FFAM) in the module.

The REF/DEF table is searched from the lowest address up. Therefore,
if two routines are loaded with the same name, the second one loaded
is used. If the name you supply is greater than six characters or if the
Name Link routine cannot find the name in the table, an error results.

28

Mini Memory

The Name Link routine transfers control to the assembly language
program with a 9900 branch-and-link instruction (BL). When the
assembly language program is called from the link routine, the
workspace is located at >70B8, and the return address is in R11 of
that workspace. Before returning, your program should clear the byte
at >837C; otherwise, an error message may be displayed, even though
the program did not generate an error.

The assembly language program can assign new values to numeric or
string variables or to elements of numeric or string arrays with utilities
provided by the system. These utilities are described in the "System
Utility Routines" section.

Entries on the value stack which result from parameters passed by the
CALL LINK statement are automatically cleared by the LINK
subprogram. If you directly manipulate the value stack, however, you
must restore the stack to its original state before returning control to
the LINK subprogram.

29

TEXAS INSTRUMENTS
HOME COMPUTER

PEEK SUBPROGRAM

Format: CALL PEEK(address, var[,var,...,"",address, var,...])

The PEEK subprogram is used to read bytes of CPU RAM directly into
Tl BASIC variables.

The address parameter must be either a numeric expression or a
numeric variable. The address is a decimal value from -32768 to
32767, representing a two-byte integer value. Addresses above >7FFF
are written as negative numbers, treating the value as a
two's-complement integer. (For example, to access an address above
32767, subtract 65536 from it.)

The variable list (var parameters) must consist of numeric variables.
Each consecutive byte read from the memory is assigned to each
variable in the order listed in the variable list. A null string ("")
separates one PEEK sequence from the next one so that you can
repeatedly PEEK several locations of memory in a single statement.

For example, the statement
CALL P E E K (8 1 9 2 , A , B , C (8) , " " , 2 - 4 5 7 6 , X)

reads three bytes from address >2000 and up; assigns the values to
the variables A, B, and C(8), consecutively; reads one byte from
location >A000; and stores the value in variable X.

The returned value is a one-byte value and is always in the range of 0
through 255.

PEEKV SUBPROGRAM

Format: CALL PEEKV(address, var[,var,...,"",address, var,...])

The PEEKV subprogram is used to read bytes from VDP RAM. It works
exactly as PEEK does, except that PEEKV accesses VDP RAM instead
of CPU RAM.

The address is a decimal value from 0 to 16383, and the variable list
(var parameters) is a list of numeric variables which are to contain the
values read. Note that the VDP has 16K of RAM, and trying to access
a memory address higher than 16383 may crash the system. Also, see
"PEEK Subprogram" for more information.

30

Mini Memory

POKEV SUBPROGRAM

Format: CALL POKEV{address, var[,var "",address, var,...])

The POKEV Subprogram allows you to modify the value in the VDP
RAM. It works the same way as LOAD works when LOAD is used to
modify CPU memory.

The address is a decimal value from 0 to 16383, and var is a numeric
expression or numeric variable that contains a value to be placed in
the VDP memory at the specified address. Each specified value is
stored consecutively beginning at the given address. For example, the
statement

CALL P0KEV(784,30,30,30,"",2,V)

changes color table 16 to color table 18 (>310 to >312 in the VDP
RAM), resulting in a black foreground and gray background. If the
value of V is 161, the character "A" appears in the top left corner of
the screen.

CHARPAT SUBPROGRAM

Format: CALL CHARPAT(c/?ar-cocte, str-var[,char-code,str-var,...])

The CHARPAT subprogram returns a 16-character pattern identifier
that specifies the pattern of the character-code.

The char-code (character code) is any character number ranging from
32 through 159. Character codes 32 through 95 (through 127 on the
TI-99/4A) are normally reserved for ASCII characters and are initially
defined by the Tl BASIC interpreter. The string expression (definition)
of the character code is read into the str-var (string variable). This
expression consists of 16 characters of hexadecimal digits that
represent the character. Refer to the CHAR subprogram discussion in
the User's Reference Guide for more details on defining a character.

LOADING ASSEMBLY LANGUAGE PROGRAMS

The Mini Memory module and the Memory Expansion unit are a
powerful team. However, when they are used together, some care
must be exercised to ensure that your relocatable object files are
loaded into the proper memory areas.

31

TEXAS INSTRUMENTS
HOME COMPUTER

If both the Mini Memory module and the Memory Expansion unit are
being used, relocatable programs are loaded into the memory space in
the following sequence.

1. The Memory Expansion unit's highest memory segment (the
24K-byte area starting at >A000).

2. The Memory Expansion unit's lowest memory segment (the 8K-byte
area starting at >2000).

3. The Mini Memory module's memory (the 4K-byte area starting at

The first free address in high memory is initialized to >A000 by the
INIT subprogram, and relocatable code is reallocated to the starting
load address. Whenever a "O-tag" is encountered, the starting load
address is updated from the first free address in high memory, and the
program length is added to this address. Subsequent programs are
loaded sequentially, beginning with the lowest address in the high
memory area. (See Appendix A for a map of CPU memory when both
the Mini Memory module and the Memory Expansion unit are utilized.)

If you are using the Mini Memory module only, without the Memory
Expansion unit attached to the console and turned on, your program
loads directly into the module's Random Access Memory (RAM). The
first assembly language program is loaded starting at >7118, the
lowest available address in the module's RAM.

At times, you may want to load a program directly into the Mini
Memory module when the Memory Expansion unit is attached,
bypassing the normal loading sequence. To do so, it is necessary to
make the Memory Expansion unit temporarily "invisible" to the system
by clearing the values in memory locations >7022 through >7029 (see
Table 2, below). These are the pointer values that indicate the
presence of the Memory Expansion unit (see Table 1 for these values).

The easiest way to accomplish this task is to use a short Tl BASIC
program including two versions of the LOAD subprogram, one with a
"poke" list and one that loads the assembly language program into
the Mini Memory module.

CALL INIT
100 CALL LOAD(28706,0,0,0,0,
0 ,0 ,0 ,0)
110 CALL LOAD("DSK1.DEMO")
120 CALL LINK("LINES")

Mini Memory

The CALL INIT command initializes the system, clearing any
previously loaded data or program pointers. The first line of the
program zeroes references to the Memory Expansion unit, starting at
memory location 28706 (>7022). Line 110 loads a program named
DEMO from a diskette in Disk Drive 1, and line 120 executes DEMO,
starting at the entry point labeled LINES.

If you want to re-inform the system of the existence of the Memory
Expansion unit, you can again use CALL LOAD with a poke list of the
appropriate decimal values (see Table 1).

Table 1. Mini
Memory Expansion

Location
>7022
>7023
>7024
>7025
>7026
>7027
>7028
>7029

Memory variables, with
unit attached and turned on

Hex
Value
>A0
>00
>FF
>E0
>20
>00
>3F
>FF

Decimal
Value
160

0
255
224
32

0
63

255

Table 2. Mini Memory variables, with
Memory Expansion unit unattached, turned off,

or "invisible."

Location
>7022
>7023
>7024
>7025
>7026
>7027
>7028
>7029

Hex
Value
>00
>00
>00
>00
>00
>00
>00
>00

Decimal
Value

0
0
0
0
0
0
0
0

You can also use the M (Modify) command in EASY BUG to restore the
table values so that the system again recognizes the presence of the
Memory Expansion unit.

33

TEXAS INSTRUMENTS
HOME COMPUTER

Note: When you are creating assembly language programs, it is
important to know how to use the proper assembly language
directives to make sure programs and associated data are loaded
correctly. Refer to the Editor/Assembler owner's manual for guidelines
on writing a program so that it will load properly.

SYSTEM UTILITY ROUTINES

The utility routines resident in the Mini Memory module can be called
from an assembly language program to access machine resources and
interface with the Tl BASIC interpreter. The use of these routines
requires a knowledge of the routines themselves and the organization
of data used by the routines. Additional information on these topics is
included in the Editor/Assembler owner's manual.

Two types of utility programs are provided in the Mini Memory module.
• One program contains a collection of standard system utilities with

which to link to ROM/GROM routines, perform a keyboard scan,
access the VDP, etc.

• A second program contains Tl BASIC interface utilities with which
an assembly language program can access variables passed
through a CALL LINK statement in a Tl BASIC program. This
program also contains an error-handling utility to return exceptions
to a Tl BASIC program.

STANDARD UTILITIES

All utility routines use UTILWS (address >7092) for utility workspace
registers, and all parameters are passed through the calling program's
workspace registers. For your convenience, USRWSP (address >70B8)
is reserved for your program's set of workspace registers. However,
any register area you provide can be used to pass parameters.

The following sections describe the data-passing conventions and
calling-statement syntax for each routine.

34

Mini Memory

VDP Single Byte Write — VSBW

Format: BLWP @VSBW Equates VSBW to >6024.

This routine writes a single-byte value to a specified VDP RAM
address.

R0 The VDP RAM address.
R1 A one-byte value in the most significant byte of

Register 1.

LI R0,>0200 VDP RAM address > 0200.
LI Rl, >4l00 Character code for A.
BLWP 8VSBW Display the character.

Example:

This program displays the character "A" on the screen at location
>0200.

VDP Multiple Byte Write — VMBW

Format: BLWP@VMBW Equates VMBW to >6028.

This routine writes multiple bytes from CPU RAM to VDP RAM.

R0 VDP RAM address.
R1 Starting address of CPU RAM buffer.
R2 Number of bytes to write.

Example:

LI R0,>018E
LI R1,HI
LI R2,5
BLWP gVMBW

VDP RAM address >018E.
Address of text.
Number of bytes to write.
Display the characters.

HI TEXT 'HELLO' Text to be displayed.

This program displays the word "HELLO" in the middle of the screen
(VDP RAM address >018E).

35

TEXAS INSTRUMENTS
HOME COMPUTER

VDP Single Byte Read - VSBR

Format: BLWP@VSBR Equates VSBR to >602C.

This routine reads a single byte from a specified VDP RAM address.

RO VDP RAM address.
R1 The value read from VDP RAM in the most

significant byte.

Example:

LI R0,>0380 VDP RAM address >0380.
BLWP gVSBR Read one byte.

This program reads one byte of the color table (>0380) into the most
significant byte of Register 1.

VDP Multiple Byte Read — VMBR

Format: BLWP@VMBR Equates VMBR to >6030.

This routine reads multiple bytes from VDP RAM into CPU RAM.

RO VDP RAM address to read from.
R1 Starting address of CPU RAM buffer.
R2 Number of bytes to read.

Example:

LI R0,>0300 VDP RAM address >0300
LI R1,BUFF Buffer area.
LI R2,>0080 Load number of bytes to read.
BLWP gVMBR Read the bytes.

BUFF BSS >0080 Set up buffer for bytes read.

This program copies the >0080 bytes of spri te at t r ibute l ist data f rom
VDP RAM >0300 into the buffer area cal led BUFF.

VDP Write to Register — VWTR

Format: BLWP@VWTR Equates VWTR to >6034.

This routine writes a single-byte value to any of the VDP RAM
registers.

R0 Least significant byte contains the value to be
written; most significant byte contains the VDP
register number (0 through 7).

Mini Memory

Keyboard Scan — KSCAN

Format: BLWP® KSCAN Equates KSCAN to >6020.

This routine scans a specified keyboard and returns a keycode and
status. The following memory locations are used for communication
between a user program and the routine.

>8374 Keyboard device number. This one-byte number
must be specified by your program. The meaning
of this byte is the same as the key-unit in the Tl
BASIC KEY subprogram. See the User's
Reference Guide for more information on the
KEY subprogram.

>8375 ASCII value of the key pressed (one byte).
>8376 Wired Remote Controller Y-position (one byte).
>8377 Wired Remote Controller X-position (one byte).
>837C GPL status register (one byte).

The GPL (Graphic Programming Language) status byte may be tested
on return before the keycode is read. You can do this with a Compare
Ones Corresponding (COC) instruction. (See the Editor/Assembler
owner's manual for more information on this instruction.) Bit 5 of the
GPL status byte is set if a key was pressed on the last call to KSCAN.
The GPL status bits are assigned as follows.

H
7

GT
6

COND
5

CARRY
4

OVF
3

0
2

0
1

0
0

See the "Extended Utilities" section for a more complete description
of the other status bits.

EXTENDED UTILITIES

Extended utilities are provided to access routines in the console
GROMs and ROMs. These utilities are GPLLNK (link to GPL routines in
GROM), XMLLNK (link to routines in ROM), and DSRLNK (link to
Device Service Routines).

Since the extended utilities access routines in the console, extreme
care should be taken when you use these utilities. You should make
sure that the GPL workspace registers are not changed, the memory
space used by the console routine is set up properly, and the routine
returns correctly to your program.

37

TEXAS INSTRUMENTS
HOME COMPUTER

Linking to GROM-Resident Routines — GPLLNK

Format: BLWP@GPLLNK Equates GPLLNK to >6018.
DATA console-routine-address Gives address of GPL routine

to be executed.

The GPLLNK routine sets an internal flag to indicate that a GPL
program has been called from an assembly language program, loads
the GPL workspace (address >83E0), branches to the GROM code,
and executes the GPL routine specified by the DATA directive.

The GPL routine must return with a RTN statement in order for the
program to transfer back to the caller. When the RTN statement is
encountered in the GPL routine, the statement returns to the system
routine. The system routine checks the internal flag and, finding it set,
returns further back to the assembly language routine.

Some of the addresses of GPL routines and their calling and returning
conventions are given below. The names FAC, STACK, and STATUS
are used in the following descriptions. FAC is equated to >834A,
STACK is equated to >836E, and STATUS is equated to >837C.
STATUS is the GPL status byte. It is organized as follows.

Bit

Bit 7 High bit. Controlled during the execution of the GPL
interpreter.

Bit 6 Greater than bit. Controlled by the GPL interpreter during
the execution of the GPL program.

Bit 5 Condition bit. Controlled by the GPL interpreter. The key-
scan routine turns this bit on when a new key is
detected. Also, the DSR routine turns this bit on to
indicate that a file does not exist.

Bit 4 Carry bit. Controlled by the GPL interpreter.
Bit 3 Overflow bit. Controlled by the GPL interpreter.

High
7

Greater
6

Condition
5

Carry
4

Overflow
3

Unused
2,1,0

38

Mini Memory

The DATA directive specifies the address of the GPL routine to be
executed. Each routine is described below.
DATA >0016 Load Standard Character Set—Loads the standard

character set into VDP RAM.
Input: FAC—Pointer to the beginning address in

VDP RAM where characters are loaded.
Output: VDP RAM at the address specified in FAC

contains the standard character set.

DATA >0018 Load Small Character Set—Loads the small character
set (for TEXT mode) into VDP RAM.
Input: Same as Load Standard Character Set.
Output: Same as Load Standard Character Set.

DATA >0020 Execute Power-Up Routine—Powers up and initializes
the system.
Input: None.
Output: The system is powered up and initialized.

The sound and VDP circuits are cleared;
the default values for the VDP registers,
character set, color table, and status
block are loaded. The available VDP RAM
size is stored at >8370.

DATA >0034 Accept Tone—Issues an accepting tone for input. No
memory setup is required prior to calling the routine.

DATA >0036 Bad Response Tone—Issues a bad-response tone
warning. No memory setup is required prior to calling
the routine.

39

TEXAS INSTRUMENTS
HOME COMPUTER

DATA >0038 Get String Space Routine—Allocates a memory space
in VDP RAM with a specified number of bytes. This
routine should not be used outside the Tl BASIC
environment. If there is not enough space, the routine
does a "garbage collection" to eliminate temporary
strings and then tries again. If there is still not enough
space, the routine issues the MEMORY FULL error
message.
Input: Addresses >830C and >830D should

contain the number of bytes to be
allocated.

Output: Address >831C points to the allocated
string space and address >831A points
to the first free address in VDP RAM. The
four bytes at addresses >8356 through
>8359 are used by this routine. The FAC
area may be destroyed if a garbage
collection is done.

Note: Although this routine is designed to allocate a
string space in VDP RAM, it is also useful for assigning
space for the Peripheral Access Block (PAB) and data
buffer required by a DSR. See the Editor/Assembler
owner's manual for a description of Peripheral Access
Blocks.

DATA >003B Bit Reversal Routine—Provides a mirror image of a byte
of information. It is used most commonly to form a
mirror image of a character definition.
Input: FAC—Address of data in VDP RAM.

FAC+ 2—Number of bytes to reverse.
Output: The specified number of bytes in the VDP

RAM are bit-reversed; that is, bits 0 and 7,
bits 1 and 6, bits 2 and 5, and bits 3 and 4
are exchanged.

Side Effects: CPU RAM from >8300 through >8340 is
erased.

40

Mini Memory

DATA >003D Cassette Device Service Routine—Accesses the
cassette DSR routine.
Input: The Peripheral Access Block and data

buffer must be set up in VDP RAM prior
to the call. The screen offset is >60 for
Tl BASIC and >00 outside the Tl BASIC
environment. The screen start address
must be >00 for the prompts issued by
the cassette DSR. FAC is the device
name (for example, "CS1"). Address
>8356 points to the first character after
the name in the PAB. Addresses >8354
and >8355 are the length of the name (for
example, >0003 for "CS1"). The word at
address >83D0 should be set to >0000.
Address >836D must be set to >08 to
indicate a DSR call. The STATUS byte
must be >00.

Output: The cassette DSR prompts for the
operation of the cassette.

DATA >004A Load Lower Case Character Set—Loads the lower-case
character set into VDP RAM. Input and Output are the
same as those in loading other character sets.
Note: This routine applies only to the TI-99/4A console.

One of the uses for the GPL link routine is to call the floating-point
routines written in GPL from an assembly language program. When
these floating-point routines are called, the contents of CPU RAM
locations >834A through >836F may be used, and VDP RAM
locations >03C0 through >03DF are used as a buffer area.

The GPL status byte reflects the condition of the calculation. All of
the input and output data values are in floating-point format.

41

TEXAS INSTRUMENTS
HOME COMPUTER

When errors occur during the execution of floating-point routines, they
are indicated in CPU RAM location >8354. The error codes are given
below.

Code Error Description
01 Overflow error.
02 Syntax error.
03 Integer overflow on conversion.
04 Square root of negative number.
05 Negative number raised to non-integer power.
06 Log of negative number or zero.
07 Invalid argument in trig function.

The floating-point routines are described below.
DATA >0014 Convert Number to String (CNS)—Converts a floating-

point number to an ASCII string.
Input: FAC—8-byte floating-point value.

FAC + 11—If set to zero, the output string
is in BASIC format. Otherwise, the output
is in FIX mode, which requires data in
FAC+ 12 and FAC+13.
FAC + 12—If one, it expresses overflow
from the calculation range by ± EE...E.
Underflow is expressed as zero.
FAC + 13—The number of digits to fix to
the right of the decimal point. A negative
value disables the FIX mode.

Output: FAC—Modified.
FAC + 11—The least significant byte of
the address where the result string is
located. The value >8300 must be added
to obtain the real address.
FAC + 12—The length of the string in
bytes.

42

Mini Memory

DATA >0022 Greatest Integer Function (INT)—Computes the greatest
integer contained in the value.
Input: FAC—The floating-point value.
Output: FAC—The result. For positive numbers,

the integer is the truncated value. For
negative numbers, the integer is the
truncated value plus one.
STATUS—Set according to result.

DATA >0024 Involution Routine (PWR)—Raises a number to a
specified power.
Input: FAC—The exponent value.

STACK—The pointer to the stack in VDP
RAM which contains the 8-byte value.

Output: FAC—The result in floating-point format.
This is computed as EXP (exponent value)
* LOG (ABS(base)).
STATUS—Set according to result. Error
conditions: Negative number raised to a
non-integer power, and zero raised to a
negative power.

Side Effects: Locations >8375 and >8376 are
destroyed, and the one-word content of
>836E is decremented by 8. Also, the
addresses FAC +12 through FAC +19 are
destroyed.

DATA >0026 Square Root Routine (SQR)—Computes the square root
of a number.
Input: FAC—The input value.
Output: FAC—The square root of the input value.

STATUS—Set according to result.
Side Effects: Addresses >8375 and >8376 are

destroyed.

43

TEXAS INSTRUMENTS
HOME COMPUTER

DATA >0028 Exponent Routine (EXP)—Computes the inverse natural
logarithm of the input value.
Input: FAC—The input value.
Output: FAC—The resulting value.

STATUS—Set according to result.
Side Effects: Addresses >8375 and >8376 are

destroyed.

DATA >002A Natural Logarithm Routine (LOG)—Computes the
natural log of a number.
Input: FAC—The input value.
Output: FAC—The natural log of the input value.

STATUS — Set according to result.
Side Effects: Addresses >8375 and >8376 are

destroyed.

DATA >002C Cosine Routine (COS)—Computes the cosine of a
number.
Input: FAC—The input value.
Output: FAC—The cosine of the input value.

STATUS—Set according to result.
Side Effects: Locations >8375 and >8376 are

destroyed.

DATA >002E Sine Routine (SIN)—Computes the sine of a number.
Input: FAC—The input value.
Output: FAC—The sine of the input value.

STATUS—Set according to result.
Side Effects: Locations >8375 and >8376 are

destroyed.

DATA >0030 Tangent Routine (TAN)—Computes the tangent of a
number.
Input: FAC—The input value.
Output: FAC—The tangent of the input value.

STATUS—Set according to result.
Side Effects: Locations >8375 and >8376 are

destroyed.

44

Mini Memory

DATA >0032 Arctangent Routine (ATN)—Computes the arctangent of
a number.
Input: FAC—The input value.
Output: FAC—The arctangent of the input value.

STATUS—Set according to result.
Side Effects: Locations >8375 and >8376 are

destroyed.

Before calling a GPL routine, check to see if any memory used by your
program is accessed and modified in the routine. (Refer to the "Side
Effects" described above.) Since CPU RAM is used by many system
programs, it's easy to overlook information stored there. Also, some of
these routines use up to 26 bytes of the BASIC interpreter rollout area
beginning at location >03C0 in VDP RAM. Therefore, exercise caution
when you call a GPL routine.

Linking to ROM-Resident Routines — XMLLNK

Format: BLWP @ XMLLNK Equates XMLLNK to >601C.
DATA console-routine-code Defines ID code of ROM

routine to be executed,
or

DATA console-routine-address Gives address of ROM
routine to be executed.

Routines in the console ROM can be accessed through the XMLLNK
routine. You can access a routine in console ROM in one of two ways.

One way is to specify the routine's code in a DATA statement. The
low byte of the DATA statement should be set to zero. For example,

BLWP gXMLLNK
DATA > 1 2 0 0

branches to the routine CFI (convert floating point to integer) in the
console.

45

TEXAS INSTRUMENTS
HOME COMPUTER

that can be called from an assembly
in the following table.

Function
Floating-point addition
Floating-point subtraction
Floating-point multiplication
Floating-point division
Floating-point compare operation
Floating-point stack addition
Floating-point stack subtraction
Floating-point stack multiplication
Floating-point stack division
Floating-point stack compare
Convert string to number
Convert floating-point format to integer
Push a value into value stack
Pop a value from value stack
Convert integer to floating point

The XML code, which is a single byte, is split into a high nybble,
containing the XML table address, and a low nybble, containing the
index into that table. There are 16 table addresses defined in the CPU
address space. The high nybble specifies from which of the 16 tables
to get the branch address, and the low nybble determines which of the
16 addresses in the table is to be used. Each table can contain up to
16 two-byte entry point addresses.

A list of XML routine codes
language program are given

Routine
Code

06
07
08
09
0A
OB
OC
0D
0E
OF
10
12
17
18
23

Name
FADD
FSUB
FMULT
FDIV
FCOMP
SADD
SSUB
SMULT
SDIV
SCOMP
CSN
CFI
VPUSHG
VPOP
CIF

46

Mini Memory

Another way to access a routine in the console ROM is to specify its
address in the DATA statement. Note that the high bit of the DATA
word must be set so that the system program recognizes this data as
an address instead of an XML code. For example,

BLWP gXMLLNK
DATA >8D3A

branches to the console ROM address >0D3A, which is a floating-
point compare routine.

WARNING
Using direct memory addresses of console
ROM routines makes the assembly
language program calling the routine
completely machine dependent. Since the
memory addresses of console ROM
routines may change with future
modifications, use of this method of
access should be restricted to cases where
there is no other reasonable way to achieve
the required result.

FAC (the Floating Point Accumulator) starts at address >834A, ARG
(which contains arguments) starts at address >835C, and STACK is at
address >836E. The STATUS byte is at address >837C. All overflow
errors, except in Convert Floating Point to Integer (CFI), return >01 at
address >8354.

DATA >0600 Floating Point Addition (FADD)—Adds two values.
Input: FAC—First value.

ARG—Second value.
Output: FAC—Result of the addition.

DATA >0700 Floating Point Subtraction (FSUB)—Subtracts two
values.
Input: FAC—Value to be subtracted.

ARG—Value from which FAC is
subtracted.

Output: FAC—Result of the subtraction.

47

TEXAS INSTRUMENTS
HOME COMPUTER

DATA >0800 Floating Point Multiplication (FMULT)—Multiplies two
values.
Input: FAC—Multiplier.

ARG—Multiplicand.
Output: FAC—Result of the multiplication.

DATA >0900 Floating Point Division (FDIV)—Divides two values.
Input: FAC—Divisor.

ARG—Dividend.
Output: FAC—Result of the division.

DATA >0A00 Floating Point Compare (FCOM)—Compares two
floating-point numbers.
Input: ARG—First argument.

FAC—Second argument.
Output: STATUS—Set according to result. The

high bit is set if ARG is logically higher
than FAC. The greater than bit is set if
ARG is arithmetically greater than FAC.
The equal bit is set if ARG and FAC are equal.

DATA >0B00 Value Stack Addition (SADD)—Subtracts using a stack
in VDP RAM.
Input: STACK—Address in VDP RAM where the

left-hand term is located.
FAC—Right-hand value.

Output: FAC—Result of the addition.

DATA >0C00 Value Stack Subtraction (SSUB)—Subtracts using a
stack in VDP RAM.
Input: STACK—VDP RAM address that contains

the left-hand term.
FAC—Value to be subtracted.

Output: FAC—Result of the subtraction.

DATA >0D00 Value Stack Multiplication (SMULT)—Multiplies using a
stack in VDP RAM.
Input: STACK—VDP RAM address that contains

the multiplicand.
FAC—Multiplier value.

Output: FAC—Result of the multiplication.

Mini Memory

DATA >0E00 Value Stack Division (SDIV)—Divides using a stack in
VDP RAM.
Input: STACK—VDP RAM address that contains

the dividend.
FAC—Divisor value.

Output: FAC—Result of the division.

DATA >0F00 Value Stack Compare (SCOMP)—Compares a value in
the VDP RAM stack to the value in FAC.
Input: STACK—VDP RAM address that contains

the value to be compared.
FAC—The other value in the comparison.

Output: STATUS—Set according to result. The
high bit is set if the value pointed to by
STACK is logically higher than FAC. The
greater than bit is set if the value pointed
to by STACK is arithmetically greater
than FAC. The equal bit is set if the
values pointed to by STACK and FAC are
equal.

DATA >1000 Convert String to Number (CSN)—Coverts an ASCII
string to a floating-point number.
Input: FAC + 12—Address of the string in VDP

RAM.
Output: FAC—Result of the conversion in

floating-point format.

DATA >1200 Convert Floating Point to Integer (CFI)—Converts a
floating-point number to an integer.
Input: FAC—Floating-point number to be

converted.
Output: FAC—The one-word integer value. The

maximum value is >FFFF. If an overflow
occurs, FAC + 10 (>8354) is set to the
overflow error code, >03.

DATA >1700 Push Value onto Value Stack (VPUSHG)—Pushes a
value from FAC onto the value stack.

DATA >1800 Pop Value from Value Stack (VPOP)—Pops a value from
the value stack and places it in FAC.

TEXAS INSTRUMENTS
HOME COMPUTER

DATA >2300 Convert Integer to Floating Point (CIF)—Converts an
~[s^r) integer to a floating-point number.

Input: FAC—The one-word integer value to be
converted.

Output: FAC—Floating-point result.

Linking to Device Service Routines—DSRLNK

Format: BLWP @ DSRLNK Equates DSRLNK to >6038.
DATA console-routine-code Defines code of DSR routine

to be executed.

DSRLNK links an assembly language program to any Device Service
Routine (DSR) or subprogram in ROM. The data given is >8 for linkage
to a Device Service Routine and >10 for linkage to a subprogram.
Before this routine is called, a Peripheral Access Block (PAB) must be
set up in VDP RAM. A PAB is a block of memory that contains
information about the file to be accessed. In addition, CPU RAM
addresses >8356 through >8357 must contain a pointer to the device
or subprogram name length in the PAB.

After the routine is executed, information is passed back to your
assembly language program in the UTLTAB area. For example,
suppose that the following instructions are executed.

REF DSRLNK

BLWP @DSRLNK
DATA > 8

If no error occurs, the equal bit in the Status Register is reset on
return from DSRLNK. If an I/O error occurs, the equal bit is set, and the
error code is stored in the most significant byte of Register 0 of the
calling program's workspace.

50

Mini Memory

If calling the RS232 Device Service Routine, your program must
preserve and then restore the values stored in the GROM-Read and
GROM-Write addresses. The following program segment shows how to
adjust these values.

REF GRMRA
REF GRMWA

SAVEG BSS 2

MOVB 8GRMRA,@SAVEG
MOVB 8GRMRA,gSAVEG+l
DEC @SAVEG

BLWP gDRSLNK

DATA >8

MOVB @SAVEG,@GRMWA
MOVB @SAVEG+1,@GRMWA

Note: Since the cassette DSR is in the GROM, it must be accessed
through GPLLNK, rather than DSRLNK. To access a cassette, use
BLWP ©GPLLNK with DATA >003D.

51

TEXAS INSTRUMENTS
HOME COMPUTER

Tl BASIC INTERFACE UTILITIES

These utilities allow an assembly language program to read or assign
values to variables passed in a parameter list from a CALL LINK
statement in a Tl BASIC program. These utility routines include
argument-passing utilities and an error-reporting utility.

All of the argument-passing routines use their own workspace area,
located at >7092. However, all the parameters are passed through the
calling program's workspace.

The following sections describe the data-passing conventions and the
calling-statement syntax for each routine.

Numeric Assignment — NUMASG

Format: BLWP ©NUMASG Equates NUMASG to >6040.

This routine assigns a numeric value to a numeric variable passed as
an argument.

R0 Zero if a simple numeric variable is used, or
an array element number if an assignment is
made to an array element. The assignment
utility tests for legal bounds on the element
number. With OPTION BASE 0, the element
number must range from 0 to (maximum
number of elements - 1). With OPTION BASE
1, the element number must range from 1 to
the maximum number of elements.

R1 Argument number (full word) as it appears in
the argument list of the CALL LINK
statement.

>834A FAC area. Contains an 8-byte floating-point
value to be assigned to the variable.

If the requested argument is not a numeric variable or a numeric array
element, an error message is issued.

52

Mini Memory

String Assignment — STRASG

Format: BLWP ©STRASG Equates STRASG to >6048.

This routine assigns a string to a string variable passed as an
argument to your assembly language program. The utility does the
following.
• Allocates space for the string in VDP RAM.
• Copies the string into the allocated VDP RAM.
• Assigns the string to the selected variable.
• Modifies the original argument stack entry to point to the new

string. The string to be assigned must be created in RAM by your
assembly language program. The first byte of the string contains
the length of the string.

The registers are assigned the following values.
RO Zero if a str ing is ass igned to a s imple st r ing

variable, or an array element number if
ass igned to an array element. Wi th OPTION
BASE 0, the element number must range f rom
0 to (max imum number of e lements - 1).
Wi th OPTION BASE 1, the element number
must range f rom 1 to the max imum number of
e lements .

R1 Argument number as it appears in the
argument l ist of the CALL LINK statement
(one ful l word).

R2 Address of the str ing to be ass igned. The
st r ing must be in RAM.

If the argument speci f ied is not a s t r ing var iable or an element of a
st r ing array, an error message is issued.

53

TEXAS INSTRUMENTS
HOME COMPUTER

Get Numeric Parameter — NUMREF

Format: BLWP © N U M R E F Equates NUMREF to >6044 .

This ut i l i ty retrieves the value of a numeric parameter.

RO Array e lement number if the argument is a
numeric array; otherwise, zero.

R1 Parameter number as it appears in the
argument l ist of the CALL LINK statement .

>834A FAC area. The beginning address of an 8-byte
value of the numeric parameter, returned by
the utility routine.

Get String Parameter — STRREF

Format: BLWP ©STRREF Equates STRREF to >604C.

This routine retrieves the value of a string parameter. Your program
must allocate space in RAM memory before calling this routine, and
the first byte of this allocated buffer must contain the maximum
buffer length. If the string does not fit in the buffer, an error condition
occurs.

RO Array e lement number if the argument is a
string array; otherwise, zero.

R1 Parameter number as it appears in the
argument list of the CALL LINK statement.

R2 Address of the buffer you assign.

If the string fits in the buffer, the string is copied into the buffer
following the length byte, and the length byte is modified to reflect the
actual length of the string.

Error Reporting — ERR

Format: BLWP © E R R Equates ERR to >6050.

This rout ine t ransfers cont ro l to the error-report ing rout ine in the Tl
BASIC interpreter. The assembly language program may report any
ex is t ing Tl BASIC error or warn ing message upon returning to Tl
BASIC.

RO Error code in the most s ign i f icant byte.

54

Mini Memory

The error messages that can be issued from your program are listed in
the following table.

CAUTION
Error codes smaller than >10 are reserved
for the Mini Memory module. Therefore,
using these codes in your program can
cause unpredictable side-effects.

Code
00
01
02
03
04
05
06
07
08
09
0A
0B
OC
0D
0E
OF
10
11
12
13

Error Message
DSR error-Bad Name
DSR error-Write Protected
DSR error-Bad Attribute
DSR error-Illegal Operation
DSR error-Buffer Full
DSR error-Read Past EOF
DSR error-Device Error
DSR error-File Error
Memory Full (closes file)
Incorrect Statement (N/A)
Bad Tag
Checksum Error
Duplicate Definition
Unresolved References
Incorrect Statement (N/A)
Program Not Found
Incorrect Statement
Bad Name
Can't Continue
Bad Value

Code
14
15
16
17
18
19
1A
1B
1C

1D
1E
1F
20
21

22
23
24
25

26-FF

Error Message
Number Too Big
String-Number Mismatch
Bad Argument
Bad Subscript
Name Conflict
Can't Do That
Bad Line Number
For-Next Error
I/O Error (assumes PAB
address in >8304)
File Error
Input Error
Data Error
Line Too Long
Memory Full (does not
close file)
Syntax Error
Numeric Overflow
Unrecognized Character
String Truncated
Unknown Error

55

TEXAS INSTRUMENTS
HOME COMPUTER

SAMPLE PROGRAM

The following program is similar to the DISPLAY...AT routine in
Tl Extended BASIC. It illustrates the system utilities which interface
with the machine resources and the Tl BASIC Interpreter.

The program listing follows the conventions required by the Line-by-
Line Assembler, which is stored on the cassette tape included with
the Mini Memory module. To enter the program via the Editor/
Assembler program, you must follow the conventions described in the
Editor/Assembler owner's manual. For your convenience, the REFs
that are applicable to the Editor/Assembler program are given below.

* THESE REFS ALLOW PROGRAM ENTRY VIA THE'EDITOR/ASSEMBLER
a** ***********

REF VSBW VDP SINGL BYTE WRITE
REF VMBR VDP MULT BYTE READ
REF VMBW VDP MULT BYTE WRITE
REF NUMREF GET NUMERIC PARAM.
REF XMLLNK EXECUTE ROM ROUTINE
REF STRREF GET STRING PARAM.
REF ERR EXECUTE ERR RPT ROUTINE

FC EQU >834A FLOATING ACCUM
DEF DISP$

* THESE EQUATES ALLOW PROGRAM ENTRY
* VIA THE LINE-BY-LINE ASSEMBLER
x**************#*********#************x*****# x********#*

FC
SW
MR
MW
NR
SR
XM
ER

EQU >834A
EQU >6024
EQU >6030
EQU >6028
EQU > 60-44
EQU >604C
EQU >601C
EQU >6050

FLOATING ACCUM
VDP SINGL BYTE WRITE
VDP MULT BYTE READ
VDP MULT BYTE WRITE
GET NUMERIC PARAM.
GET STRING PARAM.
EXECUTE ROM ROUTINE
EXECUTE ERR RPT ROUTINE

a** ***********

56

Mini Memory

7D00 AORG >7D00

7D00 Bl BSS 256 STRING BUFFER
7E00 B2 BSS .32 LINE BUFFER (FOR SCROLLING)

* * # * * * * * * * • * # # * * * * * * * * * * * * * # * # *

REGISTER USAGE

- TEMP VAR VDP ADDR ERR #(MSBY)
- TEMP VAR VDP DATA(MSBY) CPU BUFF ADDR
- TEMP VAR BYTE COUNT STR BUFF PTR
- STRING BUFF PTR

VDP SCREEN ADDR OF CHAR
- COUNT OF BYTES LEFT TO PRINT
- SCREEN OFFSET CONST FOR BASIC
- EDGE OF SCREEN LIMIT VARIABLE

- 2ND LEVEL LINKAGE
- BASIC RETURN LINKAGE
- SUBROUTINE LINK FOR BL
- CRU BASE ADDR (UNUSED)
- TEMP VARIABLE FOR SCROLL
- TEMP VARIABLE FOR SCROLL
- TEMP VARIABLE FOR SCROLL

*
*
*
*
*
*
*

*
*
*
*
*
#
*
#
*
*

RO
Rl
R2
R3
RA
R5
R6
R7
R8
R9
RIO
Rll
R12
R13
R14
R15

57

TEXAS INSTRUMENTS
HOME COMPUTER

a *
* MINIMAL IMPLEMENTATION (DISPLAY...AT)

* THE SYNTAX FOR THE BASIC STATEMENT IS:
* CALL LINK("DISP$",ROW,COL,STRING)

* NOTE THAT ONLY STRINGS MAY BE DISPLAYED,
* AND ONLY ONE STRING PER CALL STATEMENT
* IS ALLOWED. THERE IS LIMIT CHECKING ON
* ROW & COLUMN VALUES.

7E20 C28B
7E22 04C0
7E24 0201
7E26 0001
7E28 06A0
7E2A 7E6C
7E2C 06A0
7E2E 7E78
7E30 0001
7E32 0018
7E34 C120
7E36 834A
7E38 0604
7E3A 0A54
7E3C C1C4
7E3E 0581
7E40 06A0
7E42 7E6C
7E44 06A0
7E46 7E78
7E48 0001
7E4A 001C
7E4C A120
7E4E 834A
7E50 0584
7E52 0581

DS MOV Rll,R10
CLR RO
LI Rl, 1

BL @GN

BL @LC

DATA 1
DATA 24
MOV gFC,R4

DEC R4
SLA R4,5
MOV R4,R7
INC Rl
BL @GN

BL @LC

DATA 1
DATA 28
A @FC,R4

INC R4
INC Rl

SAVE LINK TO BASIC
CLR TO GET VALUE
INITIALIZE PARAM PNTR

GET ROW NUMBER

CHECK FOR IN LIMITS

MIN ROW VALUE
MAX ROW VALUE
GET ROW VALUE

ADJUST FOR MACH LANG
MPY ROW BY 32
MAKE COPY OF ROW ADDR
INCR PARAM PNTR
GET" COL NUMBER

CHECK LIMITS

MIN COL=1
MAX C0L=28
ADD IN ROW VAL

ADJ FOR BASIC
INCR PARAM PNTR

58

Mini Memory

7E54 0202 LI R2,B1 LOAD FIRST BUFFR PNTR
7E56 7D00
7E58 0712 SETO *R2 MAX STR LEN = 255
7E5A 0420 BLWP @SR GET BASIC STRING
7E5C 604C
7E5E 04C5 CLR R5 CLR BYTE COUNT
7E60 C0C2 MOVE R2,R3 COPY BUFFR PNTR
7E62 D173 MOVB *R3+,R5 GET LENGTH BYTE
7E64 06C5 SWPB R5 LEFT ADJ BYTE
7E66 06A0 BL @PR
7E68 7E8E
7E6A 045A B *R10 RETURN BASIG

a**
* GN - GET NUMERIC PARAMETER
#
* GETS THE BASIC NUMERIC PARAMETER,
* CONVERTS IT TO INTEGER, AND LEAVES THE
* RESULT IN FC (FLOATING ACC >834A)

7E6C 0420 GN BLWP @NR GET BASIC NUMB.
7E6E 6044
7E70 0420 BLWP gXM GO TO ROM CODE
7E72 601C
7E74 1200 DATA >1200 FLTPT-TO-INTGR
7E76 045B B *R11 RETURN

59

TEXAS INSTRUMENTS
HOME COMPUTER

a *
* LC - LIMIT CHECK ON SIGNED INTEGER
*
* CHECKS THE WORD VALUE IN FC AGAINST THE
* UPPER AND LOWER LIMITS WHICH FOLLOW THE
* BL CALL. IF THE VALUE IS OUTSIDE
* LIMITS, THE ERROR ROUTINE IS CALLED
* WITH THE CODE FOR 'BAD VALUE'.
* OTHERWISE, CONTROL RETURNS TO THE
* CALLING PROGRAM,
a**

7E78 8EE0 LC C @FC,*R11+ CHK LOWER LIM.
7E7A 834A
7E7C 1104 JLT EC IF LESS, ERROR
7E7E 8EE0 C @FC,*R11+ CHK UPPER LIM.
7E80 834A
7E82 1501 . JGT EC IF MORE, ERROR
7E84 O45B B *R11 RETURN
7E86 1300 EC LI RO, >1300 LOAD ERROR CODE
7E88 1300
7E8A 0420 BLWP @ER GO TO ERR ROUTN
7E8C 6050

60

Mini Memory

* PRINT STRING FROM CPU BUFFER
#
* SINCE THIS PROGRAM IS CALLED FROM BASIC,
* THERE IS A SCREEN BIAS OF >60 (I.E.,
* SCREEN VAL=ASCII VAL + >60)
*
* UPON ENTRY TO THIS ROUTINE, THE
* FOLLOWING REGISTERS ARE INITIALIZED
*
* R3 - POINTER TO START OF STRING
* IN CPU RAM
* R4 - BEGINNING SCREEN (VDP) ADDR
* R5 - LENGTH OF STRING
* R7 - START-OF-ROW ADDR (R0W*32)
a**

7E8E C24B PR MOV Rll, R9 SAVE SUBROUTINE LINKAGE
7E90 0227 AI R7,30 ADD EOL OFFSET
7E92 001E
7E94 0206 LI R6, >6000 ASCII OFF CONST
7E96 6000
7E98 C004 RE MOV R4,R0 MOV VDP ADDR
7E9A D073 MOVB *R3+,R1 GET LEN BYTE
7E9C B046 AB R6,R1 ADD ASCI OFFST
7E9E 0420 BLWP @SW WRITE ONE BYTE
7EA0 6024
7EA2 0584 INC R4 POINT TO NEXT
7EA4 0605 DEC R5 DEC CHAR COUNT
7EA6 1601 JNE LI JUMP IF NOT DONE
7EA8 0459 B *R9 RET TO MAIN PRG
7EAA 81C4 LI C R4,R7 IS NEXT POSITION OFF THE EDGE
7EAC 1AF5 JL RE IF OK, JUMP & MOVE BYTE
7EAE 0227 AI R7,32 INCR CHEK LIM
7EB0 0020
7EB2 0224 AI R4,4 ADDR PNTR TO NEXT LINE
7EB4 0004

61

TEXAS INSTRUMENTS
HOME COMPUTER

7EB6 C007
7EB8 0950
7EBA 0280
7EBC 0018
7EBE 1AEC

7EC0 06A0
7EC2 7ECE
7EC4 0227
7EC6 FFEO
7EC8 0224
7ECA FFEO
7ECC 10E5

MOV R7,R0
SRL R0,5
CI R0,24

JL RE

BL gSC

Al R7,-32

Al R4,-32

JMP RE

COPY LINEND LIM
DIVIDE ADDR BY 32
IS IT OUT OF LIMITS

IF IN LIMITS,
JMP & SET UP ADDR
SCROLL THE SCREEN

BRING LIMIT ON SCREEN

BRING ADDR ON SCREEN

SET UP NEW ADDR

* SCROLL - SCROLL THE SCREEN UP AND FILL
* THE BOTTOM LINE WITH SPACES

7ECE
7ED0
7ED2
7ED4
7ED6
7ED8
7EDA
7EDC
7EDE
7EE0
7EE2
7EE4
7EE6
7EE8

0200
FFEO
0201
7E00
0202
0020
0220
0040
0420
6030
0220
FFEO
0280
02E0

SC

L4

LI R0,-32

LI R1,B2

LI R2.32

Al R0,64

BLWP @MR

Al R0,-32

CI R0,>2EO

SET UP SCREEN

SET UP BUFFR PNTR

SET UP BUFFR LEN

MOV DOWN ONE LINE

READ A LINE INTO BUFFR

ADJUST ADDR FOR ONE LINE UP

IS THIS LAST

62

1
7EEA
7EEC
7EEE
7EF0
7EF2
7EF4
7EF6
7EF8
7EFA
7EFC
7EFE
7F00
7F02

i
1109
1301
045B
C341 SI
C382
020F
2020
CF4F L3
064E
16FD
0420 NP
6028
10EB

JLT NP
JEQ SI
B *R11
MOV R1,R13
MOV R2,R14
LI R15,>2020

MOV R15,*R13+
DECT Rl4
JNE L3
BLWP gMW

JMP LA
END

Mini Memory

IF NOT, STORE LINE
JUMP IF LAST LINE
SCROLL IS DONE
COPY BUFFR PNTR
COPY BUFFER LEN
LOAD 2 SPACE DATA

MOV ONE BYTE
DEC BYTE COUNT
PAD NEXT WORD
MULT BYTE WRITE

63

TEXAS INSTRUMENTS
HOME COMPUTER

EASY BUG DEBUGGER

EASY BUG is a useful program development tool with which you can
debug your assembly language programs and access the memory
input/output (I/O) ports of the computer. With EASY BUG, you can:
• Inspect and, optionally, modify the contents of CPU and VDP

memory.
• Display the contents of GROM.
• Execute assembly language programs from EASY BUG.
• Directly access the peripheral devices which are connected to the

computer via the TMS9900 microprocessor's serial I/O port, the
Communications Register Unit (CRU).

• Save and load programs on casssette.

OPERATION

When the EASY BUG option is selected from the master selection list,
the following screen is displayed.

===C0MMAND TYPES ARE===
MXXXX MODIFY CPU MEMORY
GXXXX DISPLAY GROM MEMORY
VXXXX MODIFY VDP MEMORY
EXXXX EXEC. ASSEMBLY PROGRAM
CXXXX CRU SINGLE-BIT I/O
SXXXX SAVE CPU MEMORY TO CS1

(STARTING AT XXXX)
L LOAD STORAGE FROM CS1
===SPECIAL FUNCTION KEYS ARE===
'AID' DISPLAY THIS SCREEN
PERIOD ABORT A COMMAND
ENTER ENTER COMMAND/DATA
MINUS DISPLAY LAST MEMORY

(CURRENT UNCHANGED)
SPACE DISPLAY NEXT MEMORY

(CURRENT UNCHANGED)
NOTE CPU RAM 8370-83FF IS

RESERVED FOR EASY BUG

This screen summarizes the commands and special function keys
used with EASY BUG. The "X's" following the letter commands
indicate a hexadecimal address that you enter.

64

Mini Memory

Press any key except QUIT to clear the screen and receive a question
mark (?) prompt, asking for a command entry.

COMMANDS AND SPECIAL FUNCTION KEYS

A single letter command is used to execute each routine of EASY
BUG. Each command (with the exception of the Load Storage
command) should be followed by up to four hexadecimal digits
indicating an address. If you enter more than four digits, only the last
four are used. If less than four digits are entered, they are treated as
the last digits of a four-digit value, with the first digits being zero.
After typing a command and an address, press ENTER to execute the
command.

M (Modify CPU Memory)

G (Display GROM Memory)

V (Modify VDP Memory)

E (Execute Assembly Program)

C (CRU Single-Bit I/O)

S (Save CPU Memory)

L (Load Storage)

Allows you to inspect and, optionally,
change the contents of CPU memory.
Allows you to display the contents of
GROM memory.
Allows you to inspect and, optionally,
change the contents of VDP memory.
Allows you to run an assembly
language program in CPU RAM.
Allows you to inspect and, optionally,
change individual I/O bits.
Allows you to transfer the contents of
CPU memory to an audio cassette.
Allows you to load an assembly
language program from cassette into
CPU memory.

To stop a command's operation, press the PERIOD (.) key. The
question-mark prompt reappears.

The ENTER, MINUS, and SPACE function keys are used with the Modify
CPU Memory (M), Display GROM Memory (G), Modify VDP Memory (V),
and CRU Single-Bit I/O (C) commands. The functions of these keys are
included in the descriptions of these commands.

Press AID to return to the EASY BUG display screen after the screen
has been cleared. This key works only when it is entered immediately
after a question-mark prompt from EASY BUG.

Each of the EASY BUG commands is described in the following sections.

65

TEXAS INSTRUMENTS
HOME COMPUTER

Modify CPU Memory - M

Format: Mxxxx (where xxxx is a hexadecimal value)

This command displays the contents of a selected CPU memory
location and gives you the option of changing the data in that
location. If a memory location is not specified with the command,
>0000 is used.

After you type the command and address and press ENTER, the
specified memory address and its contents are displayed.

To change the contents of the displayed memory address, type a two-
digit hexadecimal value and press ENTER. The last two digits you type
are the value used; thus, if you make a mistake when entering a value,
simply keep typing until the last two digits are correct. Notice that the
left- and right-arrow keys do not work with EASY BUG.

After a memory location and its contents are displayed, you can press
the SPACE bar to cause the next location and its contents to be
displayed, or the MINUS (-) key to display the previous location and
its contents.

Notice that if you type a value followed by a SPACE or MINUS, the
content of the memory location is not modified. Only when you press
ENTER directly after typing a value is the content changed. /

Typing a PERIOD (.) terminates the command and displays the
question-mark prompt.

CPU RAM resides in the console, the Mini Memory module, and the
Memory Expansion unit, if attached. It is directly addressable from a
TMS9900 assembly language program.

The following example inspects the contents of memory locations
>8300, >8301, and >8302; changes the contents of >8302 to >F7;
changes the contents of >8303 to >12; and redisplays the contents of
>8302 and >8303. Finally, the content of >8304 is inspected but is
not changed, since the value entered (>3C) was not followed by
pressing ENTER. Typing a PERIOD terminates the command and returns
to the question-mark prompt.

66

Mini Memory

Display

M8300 =00 — >
M8301 =00—>
M8302 = 00 — >
M8303 =00—>
M8304 =00—>
M8303 =12—>
M8302 = F 7 - >
M8303 =12 — >
M8304 =00 — >
M8305 =00—>

Entries
M8300 <ENTER>

<ENTER>
<SPACE>

F7 <ENTER>
8A12 < ENTER >

<MINUS>
<MINUS>
<SPACE>
<SPACE>

3C <SPACE>
< PERIOD >

CAUTION
Do not modify the contents of CPU memory
addresses >8370 through >83FF since
this area of memory is used by EASY BUG.

Modify VDP Memory — V

Format: Vxxxx (where xxxx is a hexadecimal value)

This command displays the contents of a selected VDP memory
address and gives you the option of changing the data at that
address. If a memory location is not specified, >0000 is used.

Note: Since VDP RAM does not extend beyond >3FFF, this is
normally the largest address you enter for the Modify VDP Memory
command. If you select a larger address, a value is displayed, but this
"phantom" location cannot be altered. Otherwise, this command
works like the Modify CPU RAM (M) command.

VDP RAM consists of 16K bytes of memory at addresses >0000
through >3FFF. It normally contains screen-related information used
by the Video Display Processor, such as screen image, sprite
definition, color tables, and character pattern tables. It is also used, in
general, as a storage space by applications programs. In particular,
higher memory is used by DSRs (Device Service Routines) to pass I/O
information. Application programs also use part of VDP RAM as a
buffer for DSRs and as a PAB (Peripheral Access Block) to pass
information on a file to the appropriate DSR. See Appendix E for more
detailed information on the organization of VDP RAM.

67

TEXAS INSTRUMENTS
HOME COMPUTER

When the Tl BASIC language is in use, the VDP RAM also holds the
BASIC program, the program symbol table, the value stack, the string
space, etc. Do not alter the VDP RAM without sufficient knowledge of
the BASIC interpreter since the interpreter uses the VDP RAM in a
special order. A detailed configuration of VDP RAM while Tl BASIC is
in use is shown in Appendix F.

Since VDP RAM is not directly addressable by the CPU, TMS9900
assembly language code (including instructions and workspace)
cannot be executed in VDP RAM.

Display GROM Memory — G

Format: Gxxxx (where xxxx is a hexadecimal value)

This command is used to display the contents of selected GROM
memory locations. If a memory location is not specified with the
command, >0000 is used.

Since GROM is read-only memory, it is not possible to alter the
contents of these locations. Otherwise, this command works like the
Modify CPU Memory (M) command.

The computer can address up to eight GROMs. Three GROMs in the
console control part of the computer operating system and the Tl
BASIC interpreter. Up to five additional GROMs may be located in a
Command Module. The number of GROMs in a Command Module
depends upon the size of the program in the module.

GROM addresses range from >0000 through >F7FF. Each GROM has
6K bytes of memory, starting from an address with an even-numbered
first digit. For example, GROM 0 starts at address >0000 and
occupies address space through >17FF; GROM 1 starts at address
>2000 and occupies address space through >37FF.

The following is a layout of the GROM memory space.

GROM 0 Locations > 0000 through >17FF) Contained
GROM 1 Locations >2000 through >37FF > in the
GROM 2 Locations >4000 through >57FF) console
GROM 3 Locations >6000 through >77FF
GROM 4 Locations >8000 through >97FF
GROM 5 Locations >A000 through >B7FF
GROM 6 Locations >C000 through >D7FF
GROM 7 Locations >E000 through >F7FF

Contained
in a

Command
Module

68

Mini Memory

Execute Assembly Program — E

Format: Exxxx (where xxxx is a hexadecimal number)

This command is used to run an assembly language program located
in CPU RAM.

Program control is passed to the location specified. This address
should be an entry point in an assembly language program. If a
memory location is not specified with the command, >0000 is used.

CRU Single-Bit I/O — C

Format: Cxxx (where xxxx is a hexadecimal number)

This command is used to display and, optionally, change the CRU bit
at the specified location. If a location is not specified with the
command, >0000 is used.

After you type the command and address and press ENTER, the
specified address is displayed, along with the state of the bit at that
location (either zero or one). The state of the bit is indicated by the
least significant digit of the two-digit value. The left digit is zero.

For example, a display of
C0201 =00—>

indicates the bit at address >0201 is a zero (the least significant digit
of the two-digit value is zero); whereas a display of

C0202 =01 — >

indicates that the bit at address >0202 is one.

To change the state of a bit, enter a zero or a one.

Save CPU Memory to CS1 — S

Format: Sxxxx (where xxxx is a hexadecimal value)

This command dumps the contents of CPU memory to cassette unit
number 1, starting at the specified memory location. This command is
used to save the contents of a program and/or data on a cassette tape
so that it can be loaded again later.

If no address is specified, the contents of memory are dumped,
starting from >0000.

69

TEXAS INSTRUMENTS
HOME COMPUTER

After you type the starting address and press ENTER, the prompt
TO?

is displayed. Enter the address of the last memory location you want
to dump to cassette tape.

After you enter this address and press the ENTER key, the contents of
the memory range are dumped to the cassette tape on cassette unit
number (CS1).

Note: To save all of the contents of the Mini Memory module,
including references and pointers, enter a starting address of >7000
and an ending address of >7FFF.

Load Storage from CS1—L

Format: L

This command loads a program from a cassette tape in a cassette
recorder/player. The program is loaded into the same memory space it
occupied when it was saved with the S command (see above).

When the question-mark prompt (?) is on the screen, press L to load a
program from cassette. The computer prints instructions on the
screen to help you through the procedure. Follow the directions as
they appear on the screen. (Be sure you have connected the recorder
and inserted the appropriate cassette tape into the recorder.)

See the User's Reference Guide for additional information on loading
cassettes.

70

>0000

>1FFF

>2000

>3FFF

APPENDIX A

CPU Memory Map

Console ROM

Memory Expansion — 8K-byte
(Low Memory)

Mini

segment

Memory

0000

8191

8192

16383

>4000

>5FFF

Peripheral ROMs (mapped)
for device service routines

16384

24575

>6000

>6FFF
Mini Memory — 4K-byte ROM segment

24576

28671

>7000

>7FFF

Mini Memory — 4K-byte RAM segment
(Medium Memory)

28672

32767

>8000

>9FFF

Memory Mapped Devices for
VDP, GROM, Sound and Speech
CPU RAM at >8300 - >83FF

- 32768

- 24577

>A000

>FFFF

Memory Expansion — 24K-byte segment
(High Memory)

- 24576

- 1

71

TEXAS INSTRUMENTS
HOME COMPUTER

>6000
>6010
>6012
>6014
>6016
>6018
>601C
>6020
>6024
>6028
>602C
>6030
>6034
>6038
>603C
>6040
>6044
>6048
>604C
>6050
>6054

APPENDIX B

Mini Memory ROM Organization

XML >70
XML >71
XML >72

BLWP ©GPLLNK
BLWP @XMLLNK
BLWP @KSCAN
BLWP @VSBW
BLWP @VMBW
BLWP @VSBR
BLWP @VMBR
BLWP @VWTR
BLWP ©DSRLNK
BLWP ©LOADER
BLWP ©NUMASG
BLWP ©NUMREF
BLWP ©STRASG
BLWP ©STRREF
BLWP ©ERR

Standard ROM/GROM Header
NAMLNK — Name Link Routine
TGOBLD — Tagged Object Loader
CIF — Convert Integer to Floating
Unused
Link to GROM Routine
Link to ROM Routine
Keyboard Scan
VDP Single Byte Write
VDP Multiple Byte Write
VDP Single Byte Read
VDP Multiple Byte Read
VDP Write to Register
Link to Device Service Routine
Tagged Object Loader
Numeric Assignment Routine
Get Numeric Parameter
String Assignment Routine
Get String Parameter
Error Reporting Routine
Start of ROM program Area

>6F38 Start of Pre-Defined REF/DEF Table

>6FFF End of Pre-Defined REF/DEF Table

72

Mini Memory

APPENDIX C

RAM Organization—Tl BASIC Files

ID Word >5AA5
File Information—Status
Information
Logical Record Length
End-of-File Pointer
Current File Entry Point
Start of File Space

32787 >7FFF End of File Space

MINIMEM
(the 4K-byte
segment in the
Mini Memory
module)

28672
28674

28675
28676
28678
28680

>7000
>7002

>7003
>7004
>7006
>7008

EXPMEM2
(the 24K-byte
segment in the
Memory Expansion
unit)

- 24576
-24574

- 24573
-24572
- 24570
- 24568

- 1

>A000
>A002

>A003
>A004
>A006
>A008

>FFFF

ID Word >5AA5
File Information—Status
Information
Logical Record Length
End-of-File Pointer
Current File Entry Point
Start of File Space

End of File Space

73

TEXAS INSTRUMENTS
HOME COMPUTER

APPENDIX D

Mini Memory RAM Organization—Assembly Language Storage

ID Word >A55A
Identifiers for Arguments

First Free Address in Medium Memory (>7000->7FFF)
Last Free Address in Medium Memory
Default Entry Address (>0000)
First Free Address in High Memory (>A000->FFE0)
Last Free Address in High Memory
First Free Address in Low Memory (>2000->3FFF)
Last Free Address in Low Memory
Checksum Value
Pointer to Flag Byte in PAB
GPL Return Address
CRU Address of Peripheral
Device Name Length
Pointer to Device Name in PAB
Version Number of DSR

28672
28674

28700
28702
28704
28706
28708
28710
28712
28714
28716
28718
28720
28724
28726
28728

>7000
>7002
>7012
>701C
>701E
>7020
>7022
>7024
>7026
>7028
>702A
>702C
>702E
>7030
>7034
>7036
>7038

Used by
Tagged
Object
Loader

28730 >703A 80-byte Record Buffer for Loader

28810 >708A NAME Buffer

28818 >7092 UTILWS Utility Workspace

28824 >7098 DSR Link Routine Workspace (Overlaps with UTILWS)

28856 >70B8 USRWSP User Program Workspace Registers

28888 >70D8 Linking Loader Workspace Registers

28920 >70F8 Internal Data Storage

28952 >7118 Free Space

32767 >7FFF Start of User Defined REF/DEF Tables

74

>0380

>0800

>OFFF

Mini Memory

APPENDIX E

VDP RAM Memory Map

>0000

>02FF

>0300

>037F

Pattern Name Table
(>0300 bytes)

Sprite Attribute List

0000

767

768

895

Pattern Color Table (>0380 - >3FFF)
and Free Space

Pattern Generator Area
Default Characters >0900 - >0AFF

Also used for PAB Area

896

>03FF

>0400

>077F

>0780

>07FF

Sprite Descriptor Blocks

Sprite Velocity Table

1023

1024

1919

1920

2047

2048

4095

>1000
Free Memory Space

Used also for PABs and Buffers

4096

>137F
>1380

>34FF

>3500

>3FFF

Used as Buffer for Program File Load

Blocks Reserved for Disk DSR

4991
4992

13567
13568

16383

75

TEXAS INSTRUMENTS
HOME COMPUTER

>oooo

>02FF

>0300

>031F

>0320

>03BD

>03BE

>03FF

>0400

>05FF

>0600

>37FF

APPENDIX F

VDP RAM with BASIC Interpreter

Screen

Color and Sprite Table

Crunch Buffer

BASIC Temporaries
and Interpreter Roll-Out Area

Character Tables

Value Stack

String Space

Dynamic Symbol Table and PABs

Static Symbol Table

Line Number Table

Crunched Program

0

767

768

799

800

957

958

1023

1024

1535

1536

16383

76

INDEX

A

ARG 47
Assembler 56
a
D

Battery 5, 6, 81
C
CHARPAT subprogram 31
CRU Single-bit I/O command 64,

65, 69
D
Debugger 5, 64-70
Display GROM memory

command 64, 65, 68
DSRLNK 37, 50-51

Mini Memory

K

KSCAN 37

L

LINK subprogram 24-29
LOAD AND RUN option 11
Load storage command 64, 65,

70
LOAD subprogram 22-24

M
Memory

CPU memory 6, 7, 20, 22, 26,
30,32,35,36,37,41,45,
50,64-70, 71-76

Graphics Read Only Memory
(GROM) 5, 7, 34, 37-45, 64,
65,68

EASY BUG debugger 5, 64-70
ERR 54-55
Error messages 42, 55
Execute assembly program

command 64, 65, 69

F
FAC 38, 47
Files (general) 5, 13-18

Access 14-18
EXPMEM2 13, 16, 18, 73
Loading and saving 15-18
MINIMEM 13, 15, 16,73
Organization 14
Specifications 14

G-H
GPL status byte 37, 38
GPLLNK 37, 38-45

I-J
INIT subprogram 21

Memory expansion unit 5, 13,
14, 16, 18, 19-20, 21, 31-33,
66,71,73

Mini Memory module 5, 6-7,
13, 15,20,21,23,24,28,
32-33,66,70,71,74

Random Access Memory
(RAM) 5, 6, 7, 20, 30-31,
32-33, 35-37, 39-45, 48-50,
67-68, 71, 73-76

Read Only Memory (ROM) 5,
7, 37, 45-50, 52-55, 71-72

VDP memory 5, 6, 26-28,
30-31,34-37,38-41,45,
48-49,53,64,65,67-68,71,
75-76

Mixing assembly language
programs and Tl BASIC
files 14, 19-20

Modify CPU memory command
64, 65, 66-67

Modify VDP memory command
64, 65, 67-68

77

TEXAS INSTRUMENTS
HOME COMPUTER

N W-X-Y-Z
NUMASG 52, 72 XML routine codes 46, 72
NUMREF 54, 72 XMLLNK 37, 45-50

OP
PAB (Peripheral Access Block)

40,41,50,75
PEEK subprogram 30
PEEKV subprogram 30
POKEV subprogram 31

OR

REF/DEF table 12, 24, 28-29
RE-INITIALIZE option 11, 12
RUN option 11, 12

S
Save CPU memory command 64,

65, 69-70
STACK 38, 43, 47, 48-49
STATUS 38, 43-45, 47, 48-49
STRASG 53
STRREF 54

T

Tl BASIC interface utilities 52-63
Tl BASIC subprograms 20-31

U
UTILWS 34
USRWSP 34

V
Video display processor (VDP) 5,

6
VMBR 36
VMBW35
VSBR 36
VSBW 35
VWTR 36

78

Mini Memory

SERVICE AND WARRANTY INFORMATION

These modules are durable devices, but they should be handled with
the same care you would give any other piece of electronic equipment.
Keep the module clean and dry, and don't touch the recessed
contacts.

CAUTION:
The contents of a Command Module can be

damaged by static electricity discharges.

Static electricity build-ups are more likely to occur when the natural
humidity of the air is low (during winter or in areas with dry climates).
To avoid damaging the module, just touch any metal object (a
doorknob, a desklamp, etc.) before handling the module.

If static electricity is a problem where you live, you may want to buy a
special carpet treatment that reduces static build-up. These
commercial preparations are usually available from local hardware
and office supply stores.

In Case of Difficulty

If the module does not appear to be operating properly, return to the
master title screen by pressing QUIT. Turn the computer OFF,
withdraw the module, align it with the module opening, and reinsert it
carefully. Then turn the computer on, and press any key to make the
master selection list appear.

If the module is accidentally removed from the slot while the module
contents are being used, the computer may behave erratically. To
restore the computer to normal operation, turn the computer console
off, and wait a few seconds. Then turn the computer on again.

If you have any difficulty with your computer or the Mini Memory
module, please contact the dealer from whom you purchased the unit
and/or module for service directions, or see the warranty at the back
of this book.

Additional information concerning use and service can be found in
your User's Reference Guide.

79

TEXAS INSTRUMENTS
HOME COMPUTER

Exchange Center Information

If your module requires service, instead of returning it to your dealer
or to a service facility for repair or replacement, you may elect to
exchange it for a factory-reconditioned module of the same model (or
equivalent model specified by Tl) by bringing it in person to one of the
exchange centers which have been established across the United
States. A handling fee will be charged by the exchange center for in-
warranty exchanges. Out-of-warranty exchanges will be charged at the
rates in effect at the time of the exchange.

To determine if there is an exchange center in your area, look for
Texas Instruments Exchange Center in the white pages of your
telephone directory, or look under the Calculator and Adding Machine
heading in the yellow pages. Please call the exchange center for
availability and exchange fee information. Write our Consumer
Relations Department for further details and the location of the
nearest exchange center.

80

Mini Memory

Battery Information

The battery in the Mini Memory module should remain active for
approximately two years with proper care. For best results, store the
module only at normal room temperatures. AVOID PROLONGED
EXPOSURE OF THE MODULE TO TEMPERATURES ABOVE 100°F, as
high temperatures can shorten battery and component life.

When the battery is no longer active, the module will continue to
perform properly while inserted in the console with the power on;
however, the memory contents will not be retained if the console is
turned off.

To check for proper operation of the battery, follow these steps.
1. With the module in place in the console, store a short Tl BASIC

program in the module memory by means of the SAVE MINIMEM
command, and turn the console off.

2. Wait several seconds, and turn the console on again. Then select Tl
BASIC and load the program from the module memory by using the
OLD MINIMEM command.

3. LIST the program to be sure that the program has been loaded into
console memory.

When the battery is no longer functioning, return the Mini Memory
module to a Texas Instruments Service Facility or the Exchange
Center nearest you for replacement with a new or reconditioned
module (at Tl's option). A service fee will be charged for replacement if
the module is no longer in warranty.

81

TEXAS INSTRUMENTS
HOME COMPUTER

THREE-MONTH LIMITED WARRANTY
HOME COMPUTER SOFTWARE MODULE
Texas Instruments Incorporated extends this consumer warranty only to
the original consumer purchaser.

WARRANTY COVERAGE
This warranty covers the electronic and case components of the software
module and cassette. These components include all semiconductor chips
and devices, plastics, boards, wiring and all other hardware contained in
this module and cassette ("the Hardware"). This limited warranty does
not extend to the programs contained in the software module and
cassette and in the accompanying book materials ("the Programs").

The Hardware is warranted against malfunction due to defective
materials or construction. THIS WARRANTY IS VOID IF THE HARDWARE HAS
BEEN DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS
OR WORKMANSHIP.

WARRANTY DURATION
The Hardware is warranted for a period of three months from the date of
the original purchase by the consumer.

WARRANTY DISCLAIMERS
ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE
THREE-MONTH PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR
LOSS OF USE OF THE HARDWARE OR OTHER INCIDENTAL OR
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE
CONSUMER OR ANY OTHER USER.

Some states do not allow the exclusion or limitation of implied
warranties or consequential damages, so the above limitations or
exclusions may not apply to you in those states.

LEGAL REMEDIES
This warranty gives you specific legal rights, and you may also have
other rights that vary from state to state.

PERFORMANCE BY Tl UNDER WARRANTY
During the above three month warranty period, defective Hardware will
be replaced when it is returned postage prepaid to a Texas Instruments
Service Facility listed below. The replacement Hardware will be
warranted for three months from date of replacement. Other than the
postage requirement, no charge will be made for replacement.

82

Mini Memory

TI strongly recommends that you insure the Hardware for value prior to
mailing.

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

Texas Instruments Service Facility Geophysical Services Incorporated
P.O. Box 2500 41 Shelley Road
Lubbock, Texas 79408 Richmond Hill, Ontario, Canada L4C5G4

Consumers in California and Oregon may contact the following Texas
Instruments offices for additional assistance or information.
Texas Instruments Consumer Service Texas Instruments Consumer Service
831 South Douglas Street 6700 Southwest 105th
El Segundo, California 90245 Kristin Square, Suite 110
(213)973-1803 Beaverton, Oregon 97005

(503)643-6758

IMPORTANT NOTICE OF DISCLAIMER REGARDING THE PROGRAMS

The following should be read and understood before purchasing and/or
using the software module and cassette.
TI does not warrant that the Programs will be free from error or will meet
the specific requirements of the consumer. The consumer assumes
complete responsibility for any decision made or actions taken based on
information obtained using the Programs. Any statements made
concerning the utility of the Programs are not to be construed as express
or implied warranties.
TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESS OR IMP LIED,
INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGA RDING
THE PROGRAMS AND MAKES ALL PROGRAMS AVAILABLE SOLELY ON AN "A S
IS" BASIS. IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO AN YONE
FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAM AGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THE
PROGRAMS AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS
INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT E XCEED
THE PURCHASE PRICE OF THE SOFTWARE MEDIA. MOREOVER, TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY KIND
WHATSOEVER BY ANY OTHER PARTY AGAINST THE USER OF THE PROGRAM S.

Some states do not allow the exclusion or limitation of implied
warranties or consequential damages, so the above limitations or
exclusions may not apply to you in those states.

83

